【摘要】隨著人口老齡化的不斷發(fā)展,心臟衰老導(dǎo)致心臟肥大、心肌纖維化增加、電信號傳導(dǎo)異常等病理變化所引起的心血管疾病發(fā)病率逐年升高。以p300/CBP為主的組蛋白乙酰轉(zhuǎn)移酶介導(dǎo)的表觀遺傳調(diào)控在其發(fā)病過程起重要作用?,F(xiàn)總結(jié)目前關(guān)于p300/CBP的結(jié)構(gòu)、功能、調(diào)控心血管疾病發(fā)展的作用機(jī)制及其靶向藥物的研究現(xiàn)狀,并對其未來的應(yīng)用和發(fā)展前景進(jìn)行展望,為治療心臟衰老相關(guān)的疾病提供新的思路。
【關(guān)鍵詞】組蛋白乙酰轉(zhuǎn)移酶;p300/CBP;心臟衰老;心房顫動
【DOI】10.16806/j.cnki.issn.1004-3934.2024.12.014
Mechanisms of p300/CBP in Regulating Cardiac Aging and Associated Diseases
HE Wenchao,ZHANG Zhengyi
(The Second Hospital amp; Clinical Medical School,Lanzhou University,Lanzhou 730000,Gansu,China)
【Abstract】With the continuous development of the aging population,the incidence of cardiovascular diseases caused by pathological changes such as cardiac hypertrophy,increased myocardial fibrosis,and abnormal electrical signal conduction due to cardiac aging is rising year by year.Histone acetyltransferases,especially p300/CBP,play a significant role in the pathogenesis of these diseases through epigenetic regulation.This summary reviews the current research on the structure,function,mechanisms of action in the development of cardiovascular diseases,and the current status of research on targeted drugs for p300/CBP.It also provides an outlook on future applications and prospects,offering new perspectives for the treatment of cardiac age related diseases.
【Keywords】Histone acetyltransferase;p300/CBP;Cardiac aging;Atrial fibrillation
p300和CBP是人類和多數(shù)高等真核生物體內(nèi)的兩種組蛋白乙酰轉(zhuǎn)移酶(histone acetyltransferase,HAT)。二者間存在高度序列同源性,分別能夠與腺病毒E1A蛋白和cAMP應(yīng)答元件結(jié)合蛋白質(zhì)(cAMP response element binding protein,CREB)特異性結(jié)合[1],且與人類基因組中的其他乙酰轉(zhuǎn)移酶之間幾乎沒有序列同源性[2],故常稱為p300/CBP。p300/CBP參與細(xì)胞周期進(jìn)展和細(xì)胞的生長、分化、抗壓,是一類非常重要的輔助激活因子[3],越來越多的研究表明,p300/CBP與心臟衰老相關(guān)心血管疾病的發(fā)生發(fā)展密切相關(guān),現(xiàn)對其作用機(jī)制和靶點(diǎn)做一總結(jié),以期為臨床心血管疾病的防治提供新思路。
1 p300/CBP的結(jié)構(gòu)與功能
1.1 p300/CBP的結(jié)構(gòu)
p300(又稱EP300或KAT3B)含有2 414個氨基酸,分子量約為300 000,其編碼基因位于22號染色體q13.2;CBP(又稱CREBBP或KAT3A)由2 441個氨基酸組成,其編碼基因位于16號染色體p13.3[4]。p300/CBP分為結(jié)構(gòu)域和無序結(jié)構(gòu)域,包括激酶誘導(dǎo)的CREB相互作用結(jié)構(gòu)域、溴域、植物同源結(jié)構(gòu)域、ZZ型鋅指結(jié)構(gòu)域、核受體相互作用結(jié)構(gòu)域、轉(zhuǎn)錄適配器鋅指結(jié)構(gòu)域、反式激活域以及HAT結(jié)構(gòu)域[5-6]。p300/CBP通常處于自身抑制的二聚體狀態(tài),在與染色質(zhì)上的磷酸化和二聚化轉(zhuǎn)錄因子結(jié)合后被激活[7],表達(dá)其HAT活性。
1.2 p300/CBP的功能
p300/CBP作為在多種組織細(xì)胞中廣泛表達(dá)的表觀遺傳調(diào)節(jié)因子和轉(zhuǎn)錄共激活因子,能夠通過乙酰化組蛋白,打開染色質(zhì)構(gòu)象,募集RNA聚合酶,促進(jìn)轉(zhuǎn)錄,以響應(yīng)細(xì)胞內(nèi)或細(xì)胞外信號,調(diào)節(jié)細(xì)胞功能。研究[8]顯示,1/3的核蛋白乙?;躳300/CBP的調(diào)節(jié),并可調(diào)控30多種與增強(qiáng)子相關(guān)的轉(zhuǎn)錄調(diào)節(jié)因子,還能參與營養(yǎng)和能量代謝途徑的多種信號通路。常見的使用p300/CBP作為下游效應(yīng)器信號的通路包括cAMP通路、雌激素途徑、Notch信號和p53蛋白調(diào)控的DNA損傷反應(yīng)通路[9-10]。p300/CBP能夠響應(yīng)信號通路的方式,一是通過p300/CBP本身的翻譯后修飾,即通過自身磷酸化、甲基化、乙酰化等不同修飾,減輕底物結(jié)合位點(diǎn)的位阻,增強(qiáng)靶基因的表達(dá)[11];二是由于p300/CBP擁有結(jié)合多種不同蛋白質(zhì)的能力,能結(jié)合多種復(fù)合物,充當(dāng)?shù)孜镆阴;摹皣婌F劑”,或作為蛋白質(zhì)聚集的支架,使得蛋白質(zhì)-DNA之間依靠自身多種不同結(jié)構(gòu)域發(fā)生相互作用[12]。
2 p300/CBP在心臟衰老中的調(diào)節(jié)作用
心臟衰老的主要特征是應(yīng)激誘導(dǎo)的病理性心肌細(xì)胞肥大、心臟成纖維細(xì)胞和內(nèi)皮細(xì)胞功能障礙、心臟基質(zhì)重塑、心臟功能下降,最終可導(dǎo)致心搏驟停[8]。應(yīng)激誘導(dǎo)的心肌細(xì)胞會表現(xiàn)出多種細(xì)胞衰老特征,如DNA損傷、內(nèi)質(zhì)網(wǎng)應(yīng)激、線粒體功能障礙、收縮功能障礙、肥大生長和衰老相關(guān)分泌表型(senescence-associated secretory phenotype,SASP)[13] 。衰老心肌細(xì)胞分泌的SASP包括轉(zhuǎn)化生長因子(transforming growth factor,TGF)-α、TGF-β、白細(xì)胞介素-6等[14] 。而TGF-β是組織纖維化修復(fù)反應(yīng)的主要調(diào)節(jié)因子[15],早有實(shí)驗(yàn)證明,p300可通過經(jīng)典TGF-β-Smad信號通路激活介導(dǎo)肝纖維化的表觀遺傳調(diào)控,TGF-β配體與TGF-β受體Ⅰ、Ⅱ結(jié)合后,形成異源四聚體復(fù)合物,其高度依賴Akt信號通路介導(dǎo)的高活性p300以磷酸化Smad2/3,形成Smad2、3、4為主的Smad結(jié)合元件,并與轉(zhuǎn)錄因子形成復(fù)合物,激活促纖維化基因[16] ,該通路隨后也被證明是心臟衰老的重要影響因素[17]。近年來,隨著表觀遺傳學(xué)的不斷發(fā)展,p300/CBP被證實(shí)可通過乙?;M蛋白H3、H4及轉(zhuǎn)錄因子p53等更多通路來介導(dǎo)細(xì)胞衰老和纖維化,而特異性p300抑制劑在相關(guān)基礎(chǔ)實(shí)驗(yàn)中也獲得顯著成效,這高度提示p300/CBP可能是應(yīng)激誘導(dǎo)的細(xì)胞衰老和心臟衰老相關(guān)病理的核心靶點(diǎn)[4]。
2.1 心臟肥大
心臟病理性肥大是心臟基質(zhì)重塑的關(guān)鍵過程,最終可導(dǎo)致心室擴(kuò)大和心力衰竭[18]。研究[19]表明,心臟肥大與表觀遺傳修飾,尤其是組蛋白的翻譯后修飾之間存在復(fù)雜的關(guān)系。Sawalha等[20]率先發(fā)現(xiàn)使用去氧腎上腺素(phenylephrine,PE)誘導(dǎo)可刺激心肌細(xì)胞發(fā)生病理性肥大,而p300CH1結(jié)構(gòu)域沉默的突變體受相同刺激后未出現(xiàn)該現(xiàn)象。Shimizu等[21]進(jìn)一步證實(shí)了以p300/CBP為主的HAT復(fù)合物活性增加時,與心臟肥大相關(guān)的轉(zhuǎn)錄因子心臟鋅指蛋白[GATA結(jié)合蛋白4(GATA binding protein 4,GATA4)]依賴性基因的表達(dá),包括利尿鈉肽前體A(natriuretic peptide precursor A,NPPa)、內(nèi)皮素-1(endothelin-1,ET-1)和肌球蛋白重鏈(myosin heavy chain 7,MyH7)表達(dá)增加,實(shí)驗(yàn)小鼠左心室肥大、擴(kuò)張并出現(xiàn)心功能障礙。實(shí)驗(yàn)[6,22]認(rèn)為,HAT復(fù)合物一方面可通過組蛋白H3賴氨酸27殘基的乙?;せ顔幼踊蛟鰪?qiáng)子等轉(zhuǎn)錄調(diào)控元件,參與心臟肥大;另一方面,可作為GATA4的共激活因子,參與心臟肥大反應(yīng)刺激誘導(dǎo)的乙?;虳NA結(jié)合,促進(jìn)心臟基質(zhì)重塑。而Li等[23]通過Ⅲ類組蛋白脫乙酰酶SIRT 6的過表達(dá),抑制PI3K-Akt信號通路來促進(jìn)p300的蛋白酶體依賴性降解,并抑制其下游靶基因p65,抑制PE誘導(dǎo)的心肌細(xì)胞肥大,進(jìn)一步表明p300是誘導(dǎo)心臟病理性肥大的重要表觀遺傳調(diào)節(jié)因子,同時提示抑制HAT或增加脫乙酰酶可能是治療心臟肥大的潛在方向。
2.2 心肌纖維化
心肌纖維化的發(fā)生和進(jìn)展是心臟基質(zhì)重塑的標(biāo)志,是惡性心律失常發(fā)生的基礎(chǔ)[24];也是心臟衰老的主要表現(xiàn)之一[25]。心肌纖維化的主要病理改變包括心肌細(xì)胞數(shù)量減少、殘余心肌細(xì)胞肥大、肌原纖維方向改變、心臟成纖維細(xì)胞增生和膠原蛋白的沉積[26]。Gao等[27]在人成纖維細(xì)胞和C57BL/6小鼠模型中,通過免疫共沉淀實(shí)驗(yàn)和蛋白質(zhì)印跡法發(fā)現(xiàn),p300、腫瘤抑制因子p53及其下游p21、纖溶酶原激活物抑制物-1(plasminogen activator inhibitor-1,PAI-1)在衰老細(xì)胞中表達(dá)顯著增加,p300過表達(dá)小鼠的p53、ac-p53、p21和纖維化相關(guān)蛋白[Ⅰ型膠原α1鏈(collagen type Ⅰα1,COL1A1)、基質(zhì)金屬蛋白酶(matrix metallopeptidase,MMP)-2/9、TGF-β、Smad3和p-Smad3]水平明顯升高,心室壁厚度增加,心房和房室傳導(dǎo)速度下降,心房顫動誘導(dǎo)敏感性顯著增加,而使用特異性p300乙酰轉(zhuǎn)移酶抑制劑或敲低p300的小鼠,其相關(guān)蛋白表達(dá)明顯下降,心肌纖維化程度降低,心房顫動誘導(dǎo)敏感性下降。這提示p53可能是p300介導(dǎo)心肌細(xì)胞衰老信號通路中的核心下游靶點(diǎn)之一,一方面可通過激活p21直接誘導(dǎo)細(xì)胞衰老,另一方面可與TGF-β-Smad3信號通路相互作用以增加心臟成纖維細(xì)胞中纖維化因子的表達(dá),加劇心肌纖維化,還可通過激活PAI-1促進(jìn)細(xì)胞外基質(zhì)的形成和沉積,加劇纖溶功能障礙,促進(jìn)衰老相關(guān)性心肌纖維化[28-30]。后續(xù)基因集富集分析[27]表明,p300與纖維化基因集和細(xì)胞衰老基因集中p53、p21和COL1A1/3A1基因表達(dá)呈高度正相關(guān)。這些實(shí)驗(yàn)結(jié)果進(jìn)一步豐富了p300所介導(dǎo)的心臟衰老相關(guān)機(jī)制通路,也為心律失常的治療提供了新的研究靶點(diǎn)。
2.3 內(nèi)皮-間充質(zhì)轉(zhuǎn)化
乳酸是線粒體呼吸的能量來源,是表觀遺傳修飾的重要分子,是體內(nèi)代謝調(diào)控的支點(diǎn)之一。研究[31]指出,乳酸可能通過誘導(dǎo)TGF-β-Smad2信號通路激活及表觀遺傳修飾,引發(fā)內(nèi)皮-間充質(zhì)轉(zhuǎn)化(endothelial-to-mesenchymal transition,EndoMT),使心內(nèi)膜內(nèi)皮細(xì)胞表型向以肌成纖維細(xì)胞為主的間充質(zhì)細(xì)胞轉(zhuǎn)化,導(dǎo)致心肌梗死后的心功能障礙。p300/CBP作為TGF-β的直接轉(zhuǎn)錄靶標(biāo),可以促進(jìn)TGF-β的特異性轉(zhuǎn)錄因子Snail1的乙?;腿樗峄?,以誘導(dǎo)組蛋白H4乙?;?,參與Smad2的特異性靶基因HEY1和錨蛋白重復(fù)結(jié)構(gòu)域1(ankyrin repeat domain 1,ANKRD1)基因的協(xié)同上調(diào)[15,32],導(dǎo)致內(nèi)皮細(xì)胞標(biāo)志物CD31和血管內(nèi)皮鈣黏蛋白的水平降低,促進(jìn)間充質(zhì)細(xì)胞標(biāo)志物成纖維細(xì)胞特異性蛋白1、α-平滑肌肌動蛋白和COL1A1的表達(dá),以誘導(dǎo)纖維化的發(fā)生。而抑制了p300與Snail1間相互作用后,間充質(zhì)標(biāo)志物和心內(nèi)膜內(nèi)皮損傷標(biāo)志物血小板內(nèi)皮細(xì)胞黏附分子1、鈣黏蛋白5水平明顯降低,提示p300在EndoMT中的重要地位[31]。見圖1。
3 p300/CBP在心血管疾病中的調(diào)節(jié)作用
由于p300在加速心臟衰老病理學(xué)中的關(guān)鍵作用,其在心臟衰老相關(guān)心血管疾病中也備受關(guān)注。研究指出,血管緊張素Ⅱ誘導(dǎo)的高血壓小鼠模型p300含量明顯增加,使用p300抑制劑干預(yù)后,小鼠心臟大小、左心室壁厚度、心肌纖維化程度均有所下降[8];在高鹽誘導(dǎo)的高血壓大鼠模型實(shí)驗(yàn)中也得到類似結(jié)果[33]。這可能與p300-GATA4轉(zhuǎn)錄復(fù)合物形成減少,后續(xù)高血壓反應(yīng)基因(NPPa和MyH7)表達(dá)被抑制有關(guān)[21]。Vlad等[34]的一項(xiàng)研究表明,動脈粥樣硬化患者病灶樣本中p300和NADPH氧化酶5(NADPH oxidase 5,Nox5)水平顯著升高,并共定位于富含巨噬細(xì)胞的區(qū)域中。過表達(dá)p300增強(qiáng)了巨噬細(xì)胞中Nox5蛋白分泌,并誘導(dǎo)產(chǎn)生大量活性氧,介導(dǎo)氧化應(yīng)激損傷血管內(nèi)皮細(xì)胞,加速脂質(zhì)斑塊形成。另有基礎(chǔ)研究[35]證明,p300和組蛋白脫乙酰酶SIRT1可共調(diào)節(jié)血管平滑肌細(xì)胞的8-氧代鳥嘌呤DNA糖基化酶活性來調(diào)節(jié)DNA的損傷與修復(fù),進(jìn)而控制動脈粥樣硬化的進(jìn)程。p300在心肌梗死后的心臟基質(zhì)重塑中也起關(guān)鍵作用。在結(jié)扎左前降支誘導(dǎo)的心肌梗死小鼠模型中,高表達(dá)p300往往意味著更高程度的心室擴(kuò)張和心臟基質(zhì)重塑,更易誘發(fā)嚴(yán)重的心力衰竭。p300結(jié)構(gòu)域基因敲除或使用抑制劑可緩解心肌梗死導(dǎo)致的左心室擴(kuò)張、左室射血分?jǐn)?shù)下降、收縮壓降低和心室纖維化[36]。前文提到p300通過p53/Smad信號通路誘導(dǎo)的心肌纖維化水平升高也被證明與老年患者心房顫動的發(fā)生高度相關(guān)[27]。這些結(jié)果進(jìn)一步表明p300是心臟衰老的核心分子,更是治療心血管疾病新藥研發(fā)的有效靶點(diǎn)。
4 p300/CBP在心臟衰老治療中的進(jìn)展
眾多研究已表明,p300/CBP在加速心臟衰老機(jī)制中起關(guān)鍵作用,通過其特異性抑制劑可減緩或逆轉(zhuǎn)心臟衰老相關(guān)的病理改變。然而目前發(fā)現(xiàn)的乙酰轉(zhuǎn)移酶抑制劑數(shù)量較少。人工合成的HAT抑制劑Lys-CoA雖然對p300具有特異性抑制作用,但難以通過細(xì)胞膜[37];天然的HAT抑制劑能夠滲透細(xì)胞膜,但大多對p300/CBP沒有特異性[38]。目前發(fā)現(xiàn)一種生姜中提取的多酚類物質(zhì),姜黃素及其類似物對p300/CBP具有特異性抑制作用[39]。在大鼠模型中,50 mg/(kg·d)的姜黃素口服干預(yù)防止了高血壓、心肌梗死誘導(dǎo)的心臟結(jié)構(gòu)和功能損傷,顯著抑制心臟肥大,維持了正常左心室厚度。與依那普利聯(lián)用時,其改善心肌梗死后左心室收縮功能的作用更加顯著。然而由于其溶解性差、吸收率低、代謝迅速,在體內(nèi)生物利用度低,目前僅能作為保健性膳食補(bǔ)充劑使用[40]。近來,人工合成的姜黃素類似物GO-Y030在動物實(shí)驗(yàn)中表現(xiàn)良好,其對p300的抑制活性比姜黃素高約9倍,達(dá)到與姜黃素相同水平的心臟獲益,劑量僅需姜黃素的1/100,并且可以抑制由主動脈縮窄手術(shù)誘導(dǎo)的心臟纖維化,抑制組蛋白乙酰化,這是姜黃素所不能比擬的[41]。而日本學(xué)者新發(fā)現(xiàn)的生姜提取物6-shogaol與姜黃素化學(xué)結(jié)構(gòu)類似,也表現(xiàn)出與GO-Y030極為相似的p300抑制作用[36],在藥代動力學(xué)方面更占據(jù)優(yōu)勢[42],具有更高的生物利用度,并被證明可通過抗氧化、促進(jìn)鐵死亡等其他途徑改善心臟功能,可作為新藥研究的候選。
盡管臨床前研究數(shù)據(jù)證明了這些化合物具有相當(dāng)?shù)闹委煗摿?,但現(xiàn)未進(jìn)行大規(guī)模、長時間的動物實(shí)驗(yàn)來確定其特異性和生物毒性。并且由于p300在通過調(diào)控組蛋白和轉(zhuǎn)錄因子的乙?;约せ钷D(zhuǎn)錄外,還參與多種細(xì)胞信號通路,調(diào)節(jié)控制多種細(xì)胞和器官功能[43]。如何修飾藥物以避免治療脫靶,預(yù)防可能出現(xiàn)的副作用,還需要進(jìn)一步的實(shí)驗(yàn)與研究。
參 考 文 獻(xiàn)
[1]Zeng Q,Wang K,Zhao Y,et al.Effects of the acetyltransferase p300 on tumour regulation from the novel perspective of posttranslational protein modification[J].Biomolecules,2023,13(3):417.
[2]Martire S,Nguyen J,Sundaresan A,et al.Differential contribution of p300 and CBP to regulatory element acetylation in mESCs[J].BMC Mol Cell Biol,2020,21(1):55.
[3]王艷哲,吳明,葉朝陽.p300/CBP在腎臟纖維化的作用和機(jī)制[J].腎臟病與透析腎移植雜志,2022,31(5):461-464,500.
[4]Ghosh AK.p300 in cardiac development and accelerated cardiac aging[J].Aging Dis,2020,11(4):916-926.
[5]Chen Q,Yang B,Liu X,et al.Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents[J].Theranostics,2022,12(11): 4935-4948.
[6]Kikuchi M,Morita S,Wakamori M,et al.Epigenetic mechanisms to propagate histone acetylation by p300/CBP[J].Nat Commun,2023,14(1):4103.
[7]Yu D,Liang Y,Kim C,et al.Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma[J].Nat Commun,2023,14(1):378.
[8]Ghosh AK.Acetyltransferase p300 is a putative epidrug target for amelioration of cellular aging-related cardiovascular disease[J].Cells,2021,10(11):2839.
[9]Svensson K,Labarge SA,Sathe A,et al.p300 and cAMP response element-binding protein-binding protein in skeletal muscle homeostasis,contractile function,and survival[J].J Cachexia Sarcopenia Muscle,2020,11(2):464-477.
[10]Wang J,Zhou Z.Estrogen-dependent activation of NCOA3 couples with p300 and NF-κB to mediate antiapoptotic genes in ER-positive breast cancer cells[J].Discover Discov Oncol,2023,14(1):28.
[11]di Pietrantonio N,di Tomo P,Mandatori D,et al.Diabetes and its cardiovascular complications:potential role of the acetyltransferase p300[J].Cells,2023,12(3):431.
[12]Cheng Q,He F,Zhao W,et al.Histone acetylation regulates ORMDL3 expression-mediated NLRP3 inflammasome overexpression during RSV-allergic exacerbation mice[J].J Cell Physiol,2023,238(12):2904-2923.
[13]Kumari R,Jat P.Mechanisms of cellular senescence:cell cycle arrest and senescence associated secretory phenotype[J].Front Cell Dev Biol,2021,9:645593.
[14]Dees C,P?tter S,Zhang Y,et al.TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis[J].J Clin Invest,2020,130(5):2347-2363.
[15]Ma J,Sanchez-Duffhues G,Goumans MJ,et al.TGF-β-induced endothelial to mesenchymal transition in disease and tissue engineering[J].Front Cell Dev Biol,2020,8:260.
[16]Wang Y,Tu K,Liu D,et al.p300 acetyltransferase is a cytoplasm-to-nucleus shuttle for SMAD2/3 and TAZ nuclear transport in transforming growth factor β-stimulated hepatic stellate cells[J].Hepatology,2019,70(4):1409-1423.
[17]Rubio K,Molina-Herrera A,Pérez-González A,et al.EP300 as a molecular integrator of fibrotic transcriptional programs[J].Int J Mol Sci,2023,24(15):12302.
[18]Hastings MH,Castro C,F(xiàn)reeman R,et al.Intrinsic and extrinsic contributors to the cardiac benefits of exercise[J].JACC Basic Transl Sci,2024,9(4):535-552.
[19]Huang Z,Song S,Zhang X,et al. Metabolic substrates,histone modifications,and heart failure[J].Biochim Biophys Acta Gene Regul Mech,2023,1866(1):194898.
[20]Sawalha K,Norgard N,López-Candales A.Epigenetic regulation and its effects on aging and cardiovascular disease[J].Cureus,2023,15(5):e39395.
[21]Shimizu S,Sunagawa Y,Hajika N,et al.Multimerization of the GATA4 transcription factor regulates transcriptional activity and cardiomyocyte hypertrophic response[J].Int J Biol Sci,2022,18(3):1079-1095.
[22]Han Y,Nie J,Wang DW,et al.Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors[J].Front Cardiovasc Med,2022,9:931475.
[23]Li X,Liu L,Li T,et al.SIRT6 in senescence and aging-related cardiovascular diseases[J].Front Cell Dev Biol,2021,9:641315.
[24]Mao Y,F(xiàn)u Q,Su F,et al.Trends in worldwide research on cardiac fibrosis over the period 1989-2022:a bibliometric study[J].Front Cardiovasc Med,2023,10:1182606.
[25]Mehdizadeh M,Naud P,Abu-Taha IH,et al.The role of cellular senescence in profibrillatory atrial remodelling associated with cardiac pathology[J].Cardiovasc Res,2024,120(5):506-518.
[26]Cunha PS,Laranjo S,Heijman J,et al.The atrium in atrial fibrillation—A clinical review on how to manage atrial fibrotic substrates[J].Front Cardiovasc Med,2022,9:879984.
[27]Gao XY,Lai YY,Luo XS,et al.Acetyltransferase p300 regulates atrial fibroblast senescence and age-related atrial fibrosis through p53/Smad3 axis[J].Aging cell,2023,22(1):e13743.
[28]Lai Y,He J,Gao X,et al.Involvement of plasminogen activator inhibitor-1 in p300/p53-mediated age-related atrial fibrosis[J].PeerJ,2023,11:e16545.
[29]Li Q,Lai Y,Gao X,et al.Involvement of plasminogen activator inhibitor-1 and its related molecules in atrial fibrosis in patients with atrial fibrillation[J].PeerJ,2021,9:e11488.
[30]Datta Chaudhuri R,Datta R,Rana S,et al.Cardiomyocyte-specific regression of nitrosative stress-mediated S-Nitrosylation of IKKγ alleviates pathological cardiac hypertrophy[J].Cell Signal,2022,98:110403.
[31]Fan M,Yang K,Wang X,et al.Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction[J].Sci Adv,2023,9(5):eadc9465.
[32]Fang Z,Wang X,Sun X,et al.The role of histone protein acetylation in regulating endothelial function[J].Front Cell Dev Biol,2021,9:672447.
[33]Funamoto M,Sunagawa Y,Katanasaka Y,et al.Histone acetylation domains are differentially induced during development of heart failure in Dahl salt-sensitive rats[J].Int J Mol Sci,2021,22(4):1771.
[34]Vlad ML,Manea SA,Lazar AG,et al.Histone acetyltransferase-dependent pathways mediate upregulation of NADPH oxidase 5 in human macrophages under inflammatory conditions:a potential mechanism of reactive oxygen species overproduction in atherosclerosis[J].Oxid Med Cell Longev,2019,2019:3201062.
[35]Shi J,Wang QH,Wei X,et al.Histone acetyltransferase P300 deficiency promotes ferroptosis of vascular smooth muscle cells by activating the HIF-1α/HMOX1 axis[J].Mol Med,2023,29(1):91.
[36]Kawase Y,Sunagawa Y,Shimizu K,et al.6-Shogaol,an active component of ginger,inhibits p300 histone acetyltransferase activity and attenuates the development of pressure-overload-induced heart failure[J].Nutrients,2023,15(9):2232.
[37]Strachowska M,Robaszkiewicz A.Characteristics of anticancer activity of CBP/p300 inhibitors—Features of their classes,intracellular targets and future perspectives of their application in cancer treatment[J].Pharmacol Ther,2024,257:108636.
[38]He ZX,Wei BF,Zhang X,et al.Current development of CBP/p300 inhibitors in the last decade[J].Eur J Med Chem,2021,209:112861.
[39]Sunagawa Y,Tsukabe R,Irokawa Y,et al.Anserine,a histidine-containing dipeptide,suppresses pressure overload-induced systolic dysfunction by inhibiting histone acetyltransferase activity of p300 in mice[J].Int J Mol Sci,2024,25(4):2344.
[40]Funamoto M,Sunagawa Y,Katanasaka Y,et al.Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD[J].Int J Chron Obstruct Pulmon Dis,2016,11:2029-2034.
[41]Shimizu K,Sunagawa Y,F(xiàn)unamoto M,et al.The synthetic curcumin analogue GO-Y030 effectively suppresses the development of pressure overload-induced heart failure in mice[J].Sci Rep,2020,10(1):7172.
[42]Bapat P,Ghadi R,Chaudhari D,et al.Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin[J].Int J Pharm,2019,560:219-227.
[43]Zorro Shahidian L,Haas M,Le Gras S,et al.Succinylation of H3K122 destabilizes nucleosomes and enhances transcription[J].EMBO Rep,2021,22(3):e51009.
收稿日期:2024-05-19