【摘要】動脈粥樣硬化是一種危害人類生命健康的慢性疾病。巨噬細(xì)胞作為炎癥反應(yīng)的重要介質(zhì),參與動脈粥樣硬化發(fā)生發(fā)展。近年來研究發(fā)現(xiàn),巨噬細(xì)胞焦亡是促進(jìn)動脈粥樣硬化發(fā)生發(fā)展的重要機(jī)制,其中胱天蛋白酶-1-Gasdermin家族介導(dǎo)的巨噬細(xì)胞焦亡在動脈粥樣硬化中起到關(guān)鍵作用。因此減輕巨噬細(xì)胞焦亡可能是逆轉(zhuǎn)動脈粥樣硬化的潛在治療靶點。現(xiàn)主要綜述巨噬細(xì)胞焦亡促進(jìn)動脈粥樣硬化發(fā)生發(fā)展及其相關(guān)抑制藥物的治療前景。
【關(guān)鍵詞】巨噬細(xì)胞;細(xì)胞焦亡;動脈粥樣硬化;胱天蛋白酶
【DOI】10.16806/j.cnki.issn.1004-3934.2024.12.013
Macrophage Pyroptosis in Promoting the Occurrence and Development of Atherosclerosis
ZHOU Mengdan,LI Kulin,WANG Ruxing
(Department of Cardiology,Wuxi People’s Hospital Affiliated to Nanjing Medical University,Wuxi 214000,Jiangsu,China)
【Abstract】Atherosclerosis is a chronic disease that threatens human life and health.Macrophage,as an important mediator of inflammatory response,is involved in the development of atherosclerosis.Pyroptosis is a key cause of macrophage death in atherosclerotic plaques.In recent years,it has been found that macrophage pyroptosis is an important mechanism to promote the occurrence and development of atherosclerosis,and the caspase-1-GSDMD mediated macrophage pyroptosis pathway plays a key role in atherosclerosis.Therefore,alleviating macrophage pyroptosis is a potential therapeutic target for reversing atherosclerosis.This article mainly reviews the promotion of macrophage pyroptosis in the occurrence and development of atherosclerosis and the treatment prospects of related inhibitors.
【Keywords】Macrophage;Pyroptosis;Atherosclerosis;Caspase
動脈粥樣硬化(atherosclerosis,AS)是造成心腦血管疾病發(fā)生的主要原因[1]。高脂血癥、高血壓、高血糖和吸煙等是AS的主要危險因素[2]。在AS的早期,AS相關(guān)危險因素可以導(dǎo)致脂肪沉積物在血管內(nèi)壁中積聚并損傷內(nèi)皮細(xì)胞[3],損傷的內(nèi)皮細(xì)胞表達(dá)趨化因子并募集單核細(xì)胞[4],這些單核細(xì)胞在富含生長因子和促炎細(xì)胞因子的局部微環(huán)境中分化為巨噬細(xì)胞[4]。巨噬細(xì)胞通過其表面的清道夫受體,可快速識別并吞噬脂肪沉積物,轉(zhuǎn)化為泡沫細(xì)胞,從而形成最早的AS斑塊[1]。在AS的晚期,泡沫細(xì)胞釋放脂質(zhì)和組織因子成為壞死核心,形成不穩(wěn)定斑塊[5]。不穩(wěn)定斑塊易發(fā)生破裂,導(dǎo)致血栓形成,引起血管腔快速閉塞導(dǎo)致心力衰竭、心肌梗死、心律失常甚至猝死的發(fā)生[6]。因此,巨噬細(xì)胞作為斑塊的重要組成部分及炎癥反應(yīng)的重要介質(zhì),參與AS的所有階段[7]。
1 巨噬細(xì)胞焦亡
細(xì)胞焦亡是由各種生理和病理因素激活胱天蛋白酶(caspase)后,活化Gasdermin(GSDM)家族從而介導(dǎo)的細(xì)胞程序性死亡[8]。人類GSDM家族包括GSDMA、GSDMB、GSDMC、GSDMD、GSDME和GSDMF[9]。目前,主要有4條不同的通路誘導(dǎo)細(xì)胞焦亡,包括通過caspase-1介導(dǎo)的典型途徑、通過caspase-11/4/5介導(dǎo)的非典型途徑、凋亡caspase激活介導(dǎo)途徑和其他caspase介導(dǎo)的通路[10]。
細(xì)胞焦亡可以釋放死亡宿主細(xì)胞的細(xì)胞質(zhì)內(nèi)容物,從而啟動炎癥反應(yīng),加劇AS[11]。細(xì)胞焦亡是導(dǎo)致AS斑塊中巨噬細(xì)胞死亡的關(guān)鍵原因,斑塊中的細(xì)胞焦亡可以誘發(fā)炎癥反應(yīng),導(dǎo)致巨噬細(xì)胞轉(zhuǎn)變?yōu)榕菽?xì)胞,加劇AS[12]。因此,巨噬細(xì)胞焦亡在AS的發(fā)生發(fā)展進(jìn)程中起到關(guān)鍵作用。
2 巨噬細(xì)胞焦亡與AS
2.1 巨噬細(xì)胞焦亡典型途徑促進(jìn)AS
caspase-1介導(dǎo)的典型途徑的產(chǎn)生依賴炎癥小體的激活。其中,炎癥小體可以促進(jìn)細(xì)胞因子的成熟并以細(xì)胞焦亡的形式誘導(dǎo)細(xì)胞死亡[11]。目前由caspase-1-GSDMD激活的典型途徑已發(fā)現(xiàn)可以由含NOD 樣受體(NOD-like receptor,NLR)家族成員中的NLRP1、NLRP3、NLRC4以及黑色素瘤缺乏因子2炎癥小體(absent in melanoma 2 inflammasome,AIM2)等炎癥小分子介導(dǎo),其中NLRP3最為廣泛[13]。
2.1.1 NLRP3-caspase-1-GSDMD介導(dǎo)的典型巨噬細(xì)胞焦亡途徑
NLRP3結(jié)構(gòu)域氨基末端吡啶結(jié)構(gòu)域(an amino N-terminal pyrin domain,PYD)通過含有caspase募集結(jié)構(gòu)域的細(xì)胞凋亡相關(guān)斑點樣蛋白質(zhì)(apoptosis-associated speck-like protein containing a CARD,ASC)與caspase-1胱天蛋白酶激活募集結(jié)構(gòu)域(caspase activation and recruitment domain,CARD)連接,激活caspase-1[14]。caspase-1可以切割GSDMD的N端和C端結(jié)構(gòu)域,使其分離。N端結(jié)構(gòu)域在細(xì)胞質(zhì)膜上寡聚化,產(chǎn)生孔隙,一方面成為白細(xì)胞介素(interleukin,IL)-1β和IL-18轉(zhuǎn)運(yùn)的通道;另一方面質(zhì)膜孔隙允許離子流動,導(dǎo)致細(xì)胞內(nèi)外離子梯度失衡,引起細(xì)胞腫脹破裂、細(xì)胞內(nèi)容物釋放、細(xì)胞膜及細(xì)胞器被破壞。二者共同參與細(xì)胞焦亡[11]。巨噬細(xì)胞是IL-1β和IL-18的主要來源,IL-1β和IL-18主要負(fù)責(zé)AS中caspase-1介導(dǎo)的細(xì)胞焦亡,并通過釋放趨化因子和蛋白酶等促進(jìn)斑塊破裂和動脈血栓形成,最終引起動脈血管閉塞[11]。AS斑塊中巨噬細(xì)胞焦亡也可誘發(fā)炎癥,使巨噬細(xì)胞轉(zhuǎn)變?yōu)榕菽?xì)胞,進(jìn)一步加劇AS[12](見圖1)。
血漿中低密度脂蛋白膽固醇及同型半胱氨酸(homocysteine,Hcy)升高是AS發(fā)生發(fā)展的重要危險因素[15-16]。研究[17]發(fā)現(xiàn)氧化型低密度脂蛋白(oxidized low-density lipoprotein,oxLDL)可以誘導(dǎo)巨噬細(xì)胞形成泡沫細(xì)胞。oxLDL通過誘導(dǎo)巨噬細(xì)胞中細(xì)胞焦亡相關(guān)分子生物學(xué)標(biāo)志物NLRP3、caspase-1、N-GSDMD、IL-18和IL-1β的表達(dá)升高,引起巨噬細(xì)胞焦亡[17]。而先天性免疫的重要調(diào)節(jié)因子TRIM64是激活NLRP3炎癥小體的重要啟動因素[17]。因此,在oxLDL誘導(dǎo)巨噬細(xì)胞形成泡沫細(xì)胞的過程中caspase-1-GSDMD的典型途徑起重要作用。
抑制caspase-1-GSDMD的典型途徑是藥物抗AS的重要靶點。以槲皮素為代表的天然抗氧化劑已被證明對AS有效。Cong等[18]研究發(fā)現(xiàn)其與抑制caspase-1-GSDMD的典型途徑密切相關(guān)。在AS小鼠模型中,氧化相關(guān)蛋白復(fù)合物KEAP1-NRF2表達(dá)增加,引起細(xì)胞焦亡典型通路相關(guān)分子NLRP3、caspase-1表達(dá)升高,激活巨噬細(xì)胞焦亡典型通路。而槲皮素可以通過與KEAP1分子的Arg483位點結(jié)合,增強(qiáng)NRF2活性,抑制NLRP3-caspase-1-GSDMD介導(dǎo)的巨噬細(xì)胞焦亡,逆轉(zhuǎn)AS。Zhang等[19]發(fā)現(xiàn)Hcy可以通過激活巨噬細(xì)胞的內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS),引起細(xì)胞線粒體鈣超載及誘導(dǎo)ERS相關(guān)蛋白結(jié)合至NLRP3啟動子區(qū),增強(qiáng)NLRP3轉(zhuǎn)錄,激活NLRP3-caspase-1-GSDMD典型途徑,導(dǎo)致巨噬細(xì)胞死亡,加重AS。同時使用caspase-1選擇性抑制劑(VX-765)可以逆轉(zhuǎn)細(xì)胞裂解和細(xì)胞焦亡從而緩解巨噬細(xì)胞焦亡。
2.1.2 AIM2-caspase-1-GSDMD介導(dǎo)的典型巨噬細(xì)胞焦亡途徑
AIM2是先天免疫受體,可被各種生理及病理因素所釋放的雙鏈DNA激活,在AS早期啟動、進(jìn)展以及斑塊晚期破裂中發(fā)揮作用。AIM2可以激活caspase-1介導(dǎo)的典型途徑的巨噬細(xì)胞焦亡[20]。Fidler等[21]研究發(fā)現(xiàn)在潛能未定克隆性造血引起AS的小鼠模型中,AS斑塊范圍增大和核心壞死更為明顯。其主要機(jī)制是激活A(yù)IM2-caspase-1-GSDMD介導(dǎo)的巨噬細(xì)胞焦亡,促進(jìn)AS血管內(nèi)血栓形成。相關(guān)研究[22]發(fā)現(xiàn)AIM2抑制劑氧化苯胂可以通過減少ASC酪氨酸去磷酸化,從而抑制AIM2的激活,最終減輕巨噬細(xì)胞焦亡(見圖1)。
2.2 巨噬細(xì)胞焦亡非典型途徑促進(jìn)AS
巨噬細(xì)胞焦亡非典型途徑主要是由細(xì)胞內(nèi)毒素受體caspase-11/4介導(dǎo),由革蘭氏陰性細(xì)菌脂多糖(lipopolysaccharide,LPS)激活[23]。LPS的識別促進(jìn)caspase-11/4的快速寡聚化,導(dǎo)致GSDMD裂解成N-GADMD形成孔隙,促進(jìn)細(xì)胞因子IL-1β和IL-18的釋放,最終導(dǎo)致細(xì)胞焦亡[10](見圖1)。
Jiang等[24]發(fā)現(xiàn)GSDMD和caspase-4的mRNA表達(dá)在冠心病患者的外周血單核細(xì)胞中上調(diào),其中caspase-4的表達(dá)與冠狀動脈AS的嚴(yán)重程度密切相關(guān);同時體內(nèi)研究表明caspase-11減少可以在很大程度上減少AS病變的體積及巨噬細(xì)胞浸潤。高遷移率族蛋白B1(high mobility group box 1,HMGB1)是促進(jìn)AS發(fā)生、發(fā)展的核蛋白[25]。體外機(jī)制研究[26]表明caspase-11/4介導(dǎo)的炎癥部分是通過GSDMD介導(dǎo)的巨噬細(xì)胞焦亡發(fā)生的。Liang等[26]發(fā)現(xiàn)巨噬細(xì)胞衍生的細(xì)胞外囊泡可以通過裝載HMGB1小干擾RNA(siHMGB1),減少巨噬細(xì)胞轉(zhuǎn)化成泡沫細(xì)胞,同時抑制LPS激活caspase-11-GSDMD的巨噬細(xì)胞非典型焦亡途徑。因此,靶向caspase-11/4-GSDMD通路可作為治療AS的替代策略。
2.3 凋亡caspase介導(dǎo)細(xì)胞焦亡途徑
細(xì)胞凋亡是限制病原體復(fù)制、防止感染傳播和維持組織穩(wěn)態(tài)的基本防御機(jī)制,caspase-3是凋亡相關(guān)caspase[27]。巨噬細(xì)胞凋亡參與AS斑塊的不同階段。在早期病變中,巨噬細(xì)胞凋亡會通過抑制炎癥來限制斑塊的形成;在晚期斑塊中,巨噬細(xì)胞凋亡抑制炎癥,加速斑塊壞死或破裂,導(dǎo)致血管內(nèi)血栓形成[28]。同時有研究[29]發(fā)現(xiàn)在AS早期,巨噬細(xì)胞對凋亡的易感性增加,減少AS斑塊大小從而延緩AS進(jìn)展,但在晚期則會增加斑塊的大小同時增加斑塊破裂的風(fēng)險。而焦亡相關(guān)蛋白GSDME可以被caspase-3切割并活化,同時增強(qiáng)caspase-3活性,使細(xì)胞凋亡轉(zhuǎn)化為細(xì)胞焦亡[30]。Wei等[31]發(fā)現(xiàn)GSDME主要在AS巨噬細(xì)胞中表達(dá),并在晚期AS進(jìn)展中起到關(guān)鍵作用。信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄活化因子3(signal transducer and activator of transcription 3,STAT3)是加劇AS的關(guān)鍵分子。體內(nèi)研究[31]發(fā)現(xiàn)在高脂飲食喂養(yǎng)的AS小鼠模型中STAT3表達(dá)增加,上調(diào)磷酸化轉(zhuǎn)錄激活因子3,靶向激活GSDME啟動子區(qū)域,增強(qiáng)其轉(zhuǎn)錄,引起GSDME表達(dá)升高。而上調(diào)的GSDME可以增加caspase-3的活性并促進(jìn)其將巨噬細(xì)胞凋亡轉(zhuǎn)化為巨噬細(xì)胞焦亡。因此caspase-3介導(dǎo)的巨噬細(xì)胞焦亡是STAT3促進(jìn)AS的重要途徑。而在GSDME基因敲除小鼠中,IL-1β等炎癥因子基因轉(zhuǎn)錄以及表達(dá)水平下降減少,AS程度減輕。
3 巨噬細(xì)胞焦亡治療AS的潛在靶點
3.1 NLRP3抑制劑可以抑制巨噬細(xì)胞焦亡治療AS
他汀類藥物具有調(diào)脂及穩(wěn)定AS斑塊的作用。Zha等[32]發(fā)現(xiàn)他汀類藥物可以通過抑制NLRP3、caspase-1、N-GSDMD及IL-1β的表達(dá),有效減少巨噬細(xì)胞焦亡,從而穩(wěn)定斑塊。秋水仙堿是一種非選擇性NLRP3抑制劑。Li等[33]發(fā)現(xiàn)秋水仙堿可以通過抑制NLRP3炎癥小體的激活從而抑制巨噬細(xì)胞焦亡,達(dá)到治療慢性冠狀動脈疾病的作用。同時,臨床試驗[34]表明對慢性冠狀動脈疾病患者每日給予0.5 mg秋水仙堿后,發(fā)生心血管事件的風(fēng)險顯著低于接受安慰劑的患者。三氧化二砷用于心臟支架涂層可以抑制支架內(nèi)再狹窄。另有研究[35]發(fā)現(xiàn)三氧化二砷可以抑制NLRP3的表達(dá)及caspase-1的激活,從而抑制caspase-1-GSDMD誘導(dǎo)的典型細(xì)胞焦亡途徑,減少巨噬細(xì)胞焦亡,有效抑制AS的進(jìn)展(見圖1)。
3.2 GSDMD抑制劑可以抑制巨噬細(xì)胞焦亡治療AS
由于GSDMD是巨噬細(xì)胞焦亡的關(guān)鍵蛋白,因此開發(fā)出有前途的GSDMD抑制劑可以作為治療AS的潛在藥物[36]。Humphries等[37]發(fā)現(xiàn)富馬酸二甲酯可以通過阻斷NLRP3、NLRC4或AIM2激活誘導(dǎo)的細(xì)胞焦亡,減少GSDMD的N端結(jié)構(gòu)域形成和細(xì)胞裂解,延緩AS。Hu等[38]發(fā)現(xiàn)雙硫侖最初用于治療酒精成癮、新冠病毒感染。其主要機(jī)制是抑制GSDMD活化,減少GSDMD N端結(jié)構(gòu)域造成的細(xì)胞孔隙,防止細(xì)胞裂解。因此,富馬酸二甲酯及雙硫侖通過影響GSDMD的作用或可作為治療AS的潛在藥物,其在巨噬細(xì)胞焦亡中的作用有待進(jìn)一步研究(見圖1)。
4 總結(jié)及展望
綜上所述,巨噬細(xì)胞焦亡在AS的早期及晚期進(jìn)程中起到重要作用,本文主要從巨噬細(xì)胞焦亡的各種途徑分別總結(jié)其在AS中起到的作用及其機(jī)制。然而,目前針對巨噬細(xì)胞焦亡對于AS的作用較為集中在典型途徑上,尤其是NLRP3相關(guān)的典型途徑上,而對于其他非典型途徑的機(jī)制仍有待進(jìn)一步研究。巨噬細(xì)胞焦亡相關(guān)蛋白如NLRP3炎癥小體、GSDMD蛋白和caspase均可以作為治療AS的靶點。
但大量證據(jù)仍支持巨噬細(xì)胞焦亡是有效防治AS的新靶點。對巨噬細(xì)胞焦亡致AS的作用及機(jī)制的進(jìn)一步探索以及靶向治療巨噬細(xì)胞焦亡新藥物的不斷開發(fā),將為AS的臨床診斷和治療提供更多的思路與方法,以巨噬細(xì)胞焦亡作為治療AS的相關(guān)藥物靶點仍有巨大研究空間。
利益沖突 所有作者均聲明不存在利益沖突
參 考 文 獻(xiàn)
[1]Wu J,He S,Song Z,et al.Macrophage polarization states in atherosclerosis[J].Front Immunol,2023,14:1185587.
[2]Gusev E,Sarapultsev A.Atherosclerosis and inflammation:insights from the theory of general pathological processes[J].Int J Mol Sci,2023,24(9):7910.
[3]Xu S,Ilyas I,Little PJ,et al.Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies[J].Pharmacol Rev,2021,73(3):924-967.
[4]Jinnouchi H,Guo L,Sakamoto A,et al.Diversity of macrophage phenotypes and responses in atherosclerosis[J].Cell Mol Life Sci,2020,77(10):1919-1932.
[5]Hou P,F(xiàn)ang J,Liu Z,et al.Macrophage polarization and metabolism in atherosclerosis[J].Cell Death Dis,2023,14(10):691.
[6]Ma J,Zhang H,Chen Y,et al.The role of macrophage iron overload and ferroptosis in atherosclerosis[J].Biomolecules,2022,12(11):1702.
[7]Chen R,Zhang H,Tang B,et al.Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets[J].Signal Transduct Target Ther,2024,9(1):130.
[8]Wei X,Xie F,Zhou X,et al.Role of pyroptosis in inflammation and cancer[J].Cell Mol Immunol,2022,19(9):971-992.
[9]Newton K,Strasser A,Kayagaki N,et al.Cell death[J].Cell,2024,187(2):235-256.
[10]Rao Z,Zhu Y,Yang P,et al.Pyroptosis in inflammatory diseases and cancer[J].Theranostics,2022,12(9):4310-4329.
[11]Lin L,Zhang MX,Zhang L,et al.Autophagy,pyroptosis,and ferroptosis: new regulatory mechanisms for atherosclerosis[J].Front Cell Dev Biol,2021,9:809955.
[12]Qian Z,Zhao Y,Wan C,et al.Pyroptosis in the initiation and progression of atherosclerosis [J].Front Pharmacol,2021,12:652963.
[13]Wei Y,Yang L,Pandeya A,et al.Pyroptosis-induced inflammation and tissue damage[J].J Mol Biol,2022,434(4):167301.
[14]Fu J,Wu H.Structural mechanisms of NLRP3 inflammasome assembly and activation[J].Annu Rev Immunol,2023,41:301-316.
[15]Albosta MS,Grant JK,Taub P,et al.Inclisiran: a new strategy for LDL-C lowering and prevention of atherosclerotic cardiovascular disease[J].Vasc Health Risk Manag,2023,19:421-431.
[16]Paganelli F,Mottola G,F(xiàn)romonot J,et al.Hyperhomocysteinemia and cardiovascular disease: is the adenosinergic system the missing link[J].Int J Mol Sci,2021,22(4):1690.
[17]Luo X,Weng X,Bao X,et al.A novel anti-atherosclerotic mechanism of quercetin: competitive binding to KEAP1 via Arg483 to inhibit macrophage pyroptosis[J].Redox Biol,2022,57:102511.
[18]Cong L,Liu X,Bai Y,et al.Melatonin alleviates pyroptosis by regulating the SIRT3/FOXO3α/ROS axis and interacting with apoptosis in Atherosclerosis progression[J].Biol Res,2023,56(1):62.
[19]Zhang S,Lv Y,Luo X,et al.Homocysteine promotes atherosclerosis through macrophage pyroptosis via endoplasmic reticulum stress and calcium disorder[J].Mol Med,2023,29(1):73.
[20]Baatarjav C,Komada T,Karasawa T,et al.dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury[J].Cell Death Differ,2022,29(12):2487-2502.
[21]Fidler TP,Xue C,Yalcinkaya M,et al.The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis[J].Nature,2021,592(7853):296-301.
[22]Mambwe B,Neo K,Javanmard Khameneh H,et al.Tyrosine dephosphorylation of ASC modulates the activation of the NLRP3 and AIM2 Inflammasomes[J].Front Immunol,2019,10:1556.
[23]Abu khweek A,Amer AO.Pyroptotic and non-pyroptotic effector functions of caspase-11[J].Immunol Rev,2020,297(1):39-52.
[24]Jiang M,Sun X,Liu S,et al.Caspase-11-Gasdermin D-mediated pyroptosis is involved in the pathogenesis of atherosclerosis[J].Front Pharmacol,2021,12:657486.
[25]Zhao F,Guo Z,Hou F,et al.Magnoflorine alleviates “M1” polarized macrophage-induced intervertebral disc degeneration through repressing the HMGB1/Myd88/NF-κB pathway and NLRP3 inflammasome[J].Front Pharmacol,2021,12:701087.
[26]Liang W,Wei R,Zhu X,et al.Downregulation of HMGB1 carried by macrophage-derived extracellular vesicles delays atherosclerotic plaque formation through Caspase-11-dependent macrophage pyroptosis[J].Mol Med,2024,30(1):38.
[27]Zhan J,Wang J,Liang Y,et al.Apoptosis dysfunction: unravelling the interplay between ZBP1 activation and viral invasion in innate immune responses[J].Cell Commun Signal,2024,22(1):149.
[28]Li M,Wang ZW,F(xiàn)ang LJ,et al.Programmed cell death in atherosclerosis and vascular calcification[J].Cell Death Dis,2022,13(5):467.
[29]Gautier EL,Huby T,Witztum JL,et al.Macrophage apoptosis exerts divergent effects on atherogenesis as a function of lesion stage[J].Circulation,2009,119(13):1795-804.
[30]Hu Y,Liu Y,Zong L,et al.The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles[J].Cell Death Dis,2023,14(12):836.
[31]Wei Y,Lan B,Zheng T,et al.GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis[J].Nat Commun,2023,14(1):929.
[32]Zha S,Yu X,Wang X,et al.Topical simvastatin improves lesions of diffuse normolipemic plane xanthoma by inhibiting foam cell pyroptosis[J].Front Immunol,2022,13:865704.
[33]Li H,Yang H,Qin Z,et al.Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway[J].BMC Cardiovasc Disord,2024,24(1):23.
[34]Nidorf SM,F(xiàn)iolet ATL,Mosterd A,et al.Colchicine in patients with chronic coronary disease[J].N Engl J Med,2020,383(19):1838-1847.
[35]Li Z,Zou X,Lu R,et al.Arsenic trioxide alleviates atherosclerosis by inhibiting CD36-induced endocytosis and TLR4/NF-κB-induced inflammation in macrophage and ApoE-/- mice[J].Int Immunopharmacol,2024,128:111452.
[36]Burdette BE,Esparza AN,Zhu H,et al.Gasdermin D in pyroptosis[J].Acta Pharm Sin B,2021,11(9):2768-2782.
[37]Humphries F,Shmuel-galia L,Ketelut-carneiro N,et al.Succination inactivates gasdermin D and blocks pyroptosis[J].Science,2020,369(6511):1633-1637.
[38]Hu JJ,Liu X,Xia S,et al.Fda-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J].Nat Immunol,2020,21(7):736-745.
收稿日期:2024-07-23