【摘要】目的 探究雷公藤紅素通過(guò)調(diào)節(jié)Toll樣受體4/髓樣分化因子88/核因子κB(TLR4/MyD88/NF-κB)通路對(duì)抵抗素(Resistin)誘導(dǎo)的H9c2心肌細(xì)胞肥大的影響。方法 (1)對(duì)H9c2細(xì)胞給予100 ng/mL抵抗素處理6、12、24、48、72 h,記作正常對(duì)照組(Control)、抵抗素6 h組(Resistin 6 h)、抵抗素12 h組(Resistin 12 h)、抵抗素24 h組(Resistin 24 h)、抵抗素48 h組(Resistin 48 h)、抵抗素72 h組(Resistin 72 h)。(2)對(duì)H9c2細(xì)胞給予/不予TLR4基因干擾,并用抵抗素誘導(dǎo)48 h,記作抵抗素組(Resistin)、陰性對(duì)照組(Mock)和TLR4基因干擾組(si-TLR4)。(3)對(duì)H9c2細(xì)胞給予雷公藤紅素/TLR4通路抑制劑TAK-242處理,并用抵抗素誘導(dǎo)48 h,記作抵抗素組(Resistin)、雷公藤紅素組(Celastrol)、TLR4抑制劑組(TAK-242)、雷公藤紅素+TLR4抑制劑(TAK-242)組(Celastrol+TAK-242)。羅丹明-鬼筆環(huán)肽染色觀察細(xì)胞肥大;流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期和細(xì)胞凋亡率;RT-qPCR檢測(cè)細(xì)胞心肌肥厚標(biāo)志物[心房利尿鈉肽(ANP)、腦鈉肽(BNP)、β肌球蛋白重鏈(β-MHC)]mRNA水平;Western blotting檢測(cè)細(xì)胞TLR4、MyD88、NF-κB p65、p-NF-κB p65蛋白水平。結(jié)果 (1)與Control組比較,Resistin 24 h組、Resistin 48 h組、Resistin 72 h組細(xì)胞明顯肥大,ANP、BNP、β-MHC mRNA水平升高,S期細(xì)胞比例降低,G0/G1期細(xì)胞比例、細(xì)胞凋亡率升高,TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平升高(P均lt;0.05)。(2)與Resistin組/Mock組比較,si-TLR4組細(xì)胞肥大明顯改善,細(xì)胞ANP、BNP、β-MHC mRNA水平降低,S期細(xì)胞比例升高,G0/G1期細(xì)胞比例、細(xì)胞凋亡率降低,TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平降低(P均lt;0.05)。(3)與Resistin組比較,Celastrol組、TAK-242組、Celastrol+TAK-242組細(xì)胞肥大明顯改善,細(xì)胞ANP、BNP、β-MHC mRNA水平降低,S期細(xì)胞比例升高,G0/G1期細(xì)胞比例、細(xì)胞凋亡率降低,TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平降低(P均lt;0.05)。結(jié)論 雷公藤紅素通過(guò)調(diào)節(jié)TLR4/MyD88/NF-κB通路改善抵抗素誘導(dǎo)的H9c2心肌細(xì)胞肥大。
【關(guān)鍵詞】雷公藤紅素;TLR4/MyD88/NF-κB通路;抵抗素;糖尿病心肌??;心肌細(xì)胞肥大
【DOI】10.16806/j.cnki.issn.1004-3934.2024.12.019
Celastrol Improves H9c2 Cardiomyocyte Hypertrophy Induced by Resistin by Regulating TLR4/MyD88/NF-κB Pathway
CAO Lu1,LIU Peng2,ZHANG Haiming1,LI Haihong3,YANG Lili1,MA Ruizhi1,RONG Aiguo1
(1.Department of Laboratory Medicine,Shanxi Provincial Integrated TCM and WM Hospital,Taiyuan 030000,Shanxi,China;2.Department of Cardiac Surgery,Shanxi Cardiovascular Hospital,Taiyuan 030000,Shanxi,China;3.Department of Blood Transfusion,Shanxi Provincial Integrated TCM and WM Hospital,Taiyuan 030000,Shanxi,China)
【Abstract】Objective To explore the effect of Celastrol on H9c2 cardiomyocyte hypertrophy induced by resistin by regulating the Toll like receptor 4/myeloid differentiation factor 88/nuclear factor-κB (TLR4/MyD88/NF-κB) pathway.Methods (1)H9c2 cells were treated with 100 ng/mL resistin for 6,12,24,48,and 72 h,and designated as the normal control group (Control),resistin 6 h group (Resistin 6 h),resistin 12 h group (Resistin 12 h),resistin 24 h group (Resistin 24 h),resistin 48 h group (Resistin 48 h),and resistin 72 h group (Resistin 72 h).(2)H9c2 cells were treated with/without TLR4 gene interference and induced with resistin for 48 h,designated as resistin group (Resistin),negative control group (Mock),and TLR4 gene interference group (si-TLR4).(3)H9c2 cells were treated with Celastrol/TLR4 pathway inhibitor TAK-242 and induced with resistin for 48 h,designated as Resistin group,Celastrol group,TLR4 inhibitor group (TAK-242),Celastrol+TLR4 inhibitor group (Celastrol+TAK-242).Rhodamine-phalloidin staining was used to observe cell hypertrophy;Flow cytometry was used to detect cell cycle and apoptosis rate;RT-qPCR was used to detect cellular cardiac hypertrophy markers atrial natriuretic peptide (ANP),brain natriuretic peptide (BNP),and β-myosin heavy chain (β-MHC) mRNA levels;Western blotting was used to detect TLR4,MyD88,NF-κB p65,and p-NF-κB p65 protein levels in cells.Results (1)Compared with Control group,cell in Resistin 24 h group,Resistin 48 h group,and Resistin 72 h group were significant hypertrophy,ANP,BNP,and β-MHC mRNA levels were increased,the proportion of S phase cells was decreased,while the proportion of G0/G1 phase cells and apoptosis rate were increased,TLR4,MyD88,p-NF-κB p65/NF-κB p65 protein levels were increased (all Plt;0.05).(2)Compared with Resistin group/Mock group,cell hypertrophy in si-TLR4 group was significant improved,ANP,BNP,and β-MHC mRNA levels were decreased,the proportion of S phase cells was increased,while the proportion of G0/G1 phase cells and apoptosis rate were decreased,TLR4,MyD88,p-NF-κB p65/NF-κB p65 protein levels were decreased (all Plt;0.05).(3)Compared with Resistin group,cell hypertrophy in Celastrol group,TAK-242 group,Celastrol+TAK-242 group were significant improved,ANP,BNP,and β-MHC mRNA levels were decreased,the proportion of S phase cells were increased,while the proportion of G0/G1 phase cells and apoptosis rate were decreased,TLR4,MyD88,p-NF-κB p65/NF-κB p65 protein levels were decreased (all Plt;0.05).Conclusion Celastrol improved H9c2 cardiomyocyte hypertrophy induced by resistin by regulating TLR4/MyD88/NF-κB pathway.
【Keywords】Celastrol;TLR4/MyD88/NF-κB pathway;Resistin;Diabetic cardiomyopathy;Cardiomyocyte hypertrophy
糖尿病心肌病(diabetic cardiomyopathy,DCM)是臨床較常見(jiàn)的糖尿病并發(fā)癥,是指由長(zhǎng)期糖尿病引起的獨(dú)立于高血壓、冠心病等疾病的特異性心肌病變,以病理性心肌肥厚為特征;病理性心肌肥厚能夠誘導(dǎo)患者出現(xiàn)心功能異常,最終進(jìn)展為心力衰竭、心律失常和心源性休克,甚至猝死[1]。臨床流行病學(xué)研究[2]顯示,糖尿病患者發(fā)生心力衰竭的危險(xiǎn)性持續(xù)增加,在排除伴有冠心病或風(fēng)濕性心臟病后,糖尿病患者心力衰竭的發(fā)生率更高;在排除年齡、血壓、體重和血清膽固醇等因素后,這種增加的危險(xiǎn)性仍存在。然而,目前尚無(wú)治療DCM的特效方法,臨床主要采用控制血糖、血壓、血脂和抗心力衰竭等方式緩解病情,雖然已經(jīng)發(fā)現(xiàn)了許多關(guān)于DCM的致病機(jī)制、預(yù)防和治療靶點(diǎn),但對(duì)于預(yù)防或治療的最佳策略還未達(dá)成共識(shí)。在DCM眾多致病因素中,胰島素抵抗是導(dǎo)致心肌肥厚、心肌纖維化及細(xì)胞凋亡的主要驅(qū)動(dòng)因素[3]。抵抗素是一種由脂肪細(xì)胞分泌的多肽類激素,能夠作用于骨骼肌細(xì)胞、干細(xì)胞和脂肪細(xì)胞,降低其對(duì)胰島素的敏感性,從而產(chǎn)生胰島素抵抗[4]。研究[5]顯示,糖尿病及肥胖患者血抵抗素水平顯著升高,抵抗素能夠促進(jìn)胰島素抵抗和糖尿病進(jìn)展。另有研究顯示,心力衰竭與抵抗素水平呈正相關(guān)[6],且抵抗素能夠誘導(dǎo)H9c2心肌細(xì)胞肥大[7]。上述研究表明抵抗素可能與誘發(fā)病理性心肌肥厚及心力衰竭有關(guān)。Toll樣受體4(Toll-like receptor 4,TLR4)是一種重要的免疫調(diào)節(jié)蛋白,可通過(guò)識(shí)別病原體相關(guān)分子模式,激活相關(guān)細(xì)胞因子,介導(dǎo)炎癥介質(zhì)的釋放[8]。TLR4和下游配體髓樣分化因子88(myeloid differentiation factor 88,MyD88)結(jié)合后,可激活核因子κB(nuclear factor κB,NF-κB)表達(dá),NF-κB與抑制蛋白IκBα解離后轉(zhuǎn)移至細(xì)胞核內(nèi),從而參與各種炎癥介質(zhì)的表達(dá)[9]。研究[10]顯示,抑制TLR4/MyD88/NF-κB通路的過(guò)度激活能夠減輕DCM心肌細(xì)胞凋亡。此外,抵抗素可通過(guò)TLR4途徑誘發(fā)胰島素抵抗[11],且TLR4通路的激活能夠使心肌發(fā)生不良性結(jié)構(gòu)重構(gòu),并誘導(dǎo)左心室肥厚[12]。由此可見(jiàn),TLR4/MyD88/NF-κB通路在病理性心肌肥厚中發(fā)揮重要調(diào)節(jié)作用。雷公藤紅素是一種具有生物活性的天然三萜類化合物,主要來(lái)源于中藥雷公藤的根皮,具有較強(qiáng)的抗氧化、抗炎、抗腫瘤活性[13]。研究[14]顯示,雷公藤紅素可抑制血管緊張素轉(zhuǎn)換酶通路減輕鏈脲佐菌素誘導(dǎo)的小鼠DCM。此外,雷公藤紅素能夠減輕TLR4激活介導(dǎo)的胰島素抵抗[15],并減輕血管緊張素Ⅱ誘導(dǎo)的心臟重構(gòu)[16]。然而,雷公藤紅素對(duì)抵抗素誘導(dǎo)的病理性心肌肥厚的作用及其機(jī)制尚未報(bào)道。
基于此,本研究擬探究雷公藤紅素對(duì)抵抗素誘導(dǎo)的H9c2心肌細(xì)胞肥大的影響,以及TLR4/MyD88/NF-κB通路在其中的調(diào)節(jié)作用,以期為完善并優(yōu)化糖尿病病理性心肌肥厚的防治策略奠定基礎(chǔ)。
1 材料和方法
1.1 細(xì)胞
大鼠H9c2心肌細(xì)胞購(gòu)自上海雅吉生物科技有限公司(貨號(hào):YS117C);H9c2細(xì)胞接種于含10%胎牛血清、1%青霉素/鏈霉素的DMEM培養(yǎng)基中,并放于37 ℃ 5% CO2細(xì)胞培養(yǎng)箱中培養(yǎng),每2~3 d換一次培養(yǎng)液,待細(xì)胞長(zhǎng)到70%~80%時(shí)傳代培養(yǎng)。
1.2 試劑和儀器
抵抗素(貨號(hào):FY-P524527)購(gòu)自武漢菲越生物科技有限公司;雷公藤紅素(貨號(hào):PS0048-0020)購(gòu)自成都普思生物科技股份有限公司;TLR4抑制劑TAK-242(貨號(hào):M04333)購(gòu)自北京百奧萊博科技有限公司;心房利尿鈉肽(atrial natriuretic peptide,ANP)、腦鈉肽(brain natriuretic peptide,BNP)、β肌球蛋白重鏈(β-myosin heavy chain,β-MHC)引物購(gòu)自生工生物工程(上海)股份有限公司;兔多抗TLR4、兔多抗MyD88、兔多抗p-NF-κB p65(貨號(hào):bs-20594R、bs-1047R、bs-3485R);兔多抗NF-κB p65(貨號(hào):ab19870)購(gòu)自英國(guó)abcam公司。
DFM-90C倒置熒光顯微鏡購(gòu)自上海蔡康光學(xué)儀器有限公司;CytoFLEX流式細(xì)胞儀購(gòu)自美國(guó)Beckman Coulter公司;ABI 7500型熒光定量PCR儀購(gòu)自美國(guó)Applied Biosystems公司;165-8001垂直電泳儀購(gòu)自美國(guó)Bio-Rad公司。
1.3 病理性心肌肥厚H9c2細(xì)胞模型制備和分組
(1)H9c2細(xì)胞隨機(jī)分為6組:正常對(duì)照組(Control)、抵抗素6 h組(Resistin 6 h)、抵抗素12 h組(Resistin 12 h)、抵抗素24 h組(Resistin 24 h)、抵抗素48 h組(Resistin 48 h)、抵抗素72 h組(Resistin 72 h)。Control組細(xì)胞正常培養(yǎng),不做任何處理;各抵抗素組細(xì)胞分別給予100 ng/mL抵抗素處理6、12、24、48、72 h。培養(yǎng)結(jié)束后,收集細(xì)胞備用。
(2)H9c2細(xì)胞隨機(jī)分為3組:抵抗素組(Resistin)、陰性對(duì)照組(Mock)和TLR4基因干擾組(si-TLR4)。Resistin組細(xì)胞不做轉(zhuǎn)染處理;Mock組、si-TLR4組細(xì)胞使用脂質(zhì)體轉(zhuǎn)染法,分別將不含/含TLR4基因的siRNA質(zhì)粒轉(zhuǎn)染H9c2心肌細(xì)胞48 h。轉(zhuǎn)染步驟如下:分別取1 μg不含/含TLR4基因的siRNA溶于50 μL培養(yǎng)基中,向其中加入3 μL LipofectamineTM 2000混勻,再加入Mock組、si-TLR4組細(xì)胞中,轉(zhuǎn)染48 h后,經(jīng)遺傳霉素篩選出不表達(dá)TLR4的穩(wěn)定細(xì)胞株。隨后,各組細(xì)胞均給予100 ng/mL抵抗素[17]處理48 h。培養(yǎng)結(jié)束后,收集細(xì)胞備用。
(3)H9c2細(xì)胞隨機(jī)分為4組:抵抗素組(Resistin)、雷公藤紅素組(Celastrol)、TLR4抑制劑組(TAK-242)、雷公藤紅素+TLR4抑制劑組(Celastrol+TAK-242)。各組細(xì)胞均給予100 ng/mL抵抗素處理48 h。隨后,Celastrol組、TAK-242組、Celastrol+TAK-242組細(xì)胞分別或同時(shí)加入雷公藤紅素(800 nmol/L)[18]和TAK-242(25 μmol/L)[19]處理24 h。培養(yǎng)結(jié)束后,收集細(xì)胞備用。
1.4 羅丹明-鬼筆環(huán)肽染色
收集H9c2細(xì)胞,1 000 r/min離心5 min,棄上清,加入50 μL培養(yǎng)基重懸細(xì)胞,細(xì)胞在4%多聚甲醛溶液中室溫固定30 min,磷酸鹽緩沖液(phosphate buffered saline,PBS)洗滌3次,加入0.1% Triton X-100滲透5 min,PBS洗滌3次,加入羅丹明-鬼筆環(huán)肽工作液室溫孵育60 min,PBS洗滌3次,加入碘化丙啶(propidium iodide,PI)染液復(fù)染,熒光顯微鏡觀察染色情況。
1.5 流式細(xì)胞術(shù)檢測(cè)
細(xì)胞周期:收集H9c2細(xì)胞,1 000 r/min離心5 min,棄上清,加入1 mL PBS重懸,1 000 r/min離心5 min,棄上清,加入1 mL 70%乙醇4 ℃固定4 h,1 000 r/min離心5 min,棄上清,加入1 mL PBS重懸,1 000 r/min離心5 min,棄上清,加入500 μL PI染液,37 ℃避光孵育30 min,使用流式細(xì)胞儀進(jìn)行分析。
細(xì)胞凋亡:收集H9c2細(xì)胞,1 000 r/min離心5 min,棄上清,加入200 μL結(jié)合緩沖液重懸,加入5 μL Annexin V-FITC室溫避光孵育10 min,1 000 r/min離心5 min,棄上清,加入200 μL結(jié)合緩沖液重懸,加入5 μL PI染液復(fù)染,使用流式細(xì)胞儀進(jìn)行分析。
1.6 RT-qPCR檢測(cè)
使用TRIzol?試劑從H9c2細(xì)胞中提取總RNA,使用NanoDropTM分光光度計(jì)測(cè)量RNA濃度,使用cDNA逆轉(zhuǎn)錄試劑盒PrimeScript RT Master Mix進(jìn)行逆轉(zhuǎn)錄,反應(yīng)條件為:37 ℃15 min,85 ℃5 s。使用TB Green Premix Ex Taq Ⅱ?qū)Λ@得的cDNA進(jìn)行PCR擴(kuò)增,使用熒光定量PCR儀進(jìn)行擴(kuò)增反應(yīng),反應(yīng)條件為:95 ℃ 30 s、95 ℃ 3 s、60 ℃ 30 s,40個(gè)循環(huán),β-actin用作內(nèi)標(biāo),使用2-ΔΔCT公式計(jì)算ANP、BNP、β-MHC mRNA表達(dá)水平。引物序列如下,ANP-F:5’-AGGCCATATTGGAGCAAATC-3’,ANP-R:5’-CATCTTCTCCTCCAGGTGGT-3’;BNP-F:5’-GTGCTGCCCCAGATGATTCT-3’,BNP-R:5’-GCAGC-TTCTGCATCGTGGAT-3’;β-MHC-F:5’-TGCTCTACAA-TCTCAAGGAGAGGT-3’,β-MHC-R:5’-TGTTGACGG-TCTTACCAGCTC-3’;β-actin-F:5’-GAACCCTAAGGCC-AACCG-3’,β-actin-R:5’-TACGTACATGGCTGGGGTGT-3’。
1.7 Western blotting檢測(cè)
使用RIPA裂解試劑從H9c2細(xì)胞中提取總蛋白,使用BCA法測(cè)定蛋白濃度。蛋白與上樣緩沖液混合加熱變性,配制5%濃縮膠和10%分離膠,通過(guò)SDS-PAGE分離蛋白,反應(yīng)條件為:濃縮膠90 V 30 min,120 V 50 min。將凝膠中的蛋白轉(zhuǎn)移到PVDF膜上,反應(yīng)條件為:200 mA 90 min。PVDF膜使用5%脫脂牛奶室溫封閉2 h,PVDF膜與一抗(TLR4、MyD88、p-NF-κB p65、NF-κB p65、β-actin,以1:2 000稀釋)4 ℃下孵育過(guò)夜,使用含吐溫-20的Tris磷酸緩沖液洗滌3次后,PVDF膜與HRP偶聯(lián)的二抗(以1:5 000稀釋)室溫下孵育2 h。使用增強(qiáng)化學(xué)發(fā)光試劑顯色,顯影,曝光。以β-actin作內(nèi)標(biāo),通過(guò)Image J軟件計(jì)算TLR4、MyD88、p-NF-κB p65、NF-κB p65蛋白表達(dá)水平。
1.8 統(tǒng)計(jì)學(xué)方法
使用SPSS 20.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。細(xì)胞ANP、BNP、β-MHC mRNA水平,TLR4、MyD88、p-NF-κB p65、NF-κB p65蛋白水平均為計(jì)量數(shù)據(jù),均符合正態(tài)分布,以均數(shù)±標(biāo)準(zhǔn)差(±s)表示,多組間數(shù)據(jù)的比較使用單因素方差分析,多組間兩兩比較使用LSD-t檢驗(yàn)。Plt;0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 抵抗素誘導(dǎo)H9c2心肌細(xì)胞肥大
羅丹明-鬼筆環(huán)肽染色顯示,抵抗素處理24 h以上,能明顯誘導(dǎo)H9c2細(xì)胞肥大(Plt;0.05,圖1A)。同時(shí),RT-qPCR結(jié)果顯示,與Control組比較,Resistin 24 h組、Resistin 48 h組、Resistin 72 h組細(xì)胞心肌肥厚標(biāo)志物ANP、BNP、β-MHC mRNA水平明顯升高(Plt;0.05,圖1B)。
流式細(xì)胞術(shù)結(jié)果顯示,與Control組比較,Resistin 24 h組、Resistin 48 h組、Resistin 72 h組S期細(xì)胞比例明顯降低,G0/G1期細(xì)胞比例、細(xì)胞凋亡率明顯升高(Plt;0.05,圖1C和1D)。
Western blotting結(jié)果顯示,與Control組比較,Resistin 24 h組、Resistin 48 h組、Resistin 72 h組細(xì)胞TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平明顯升高(Plt;0.05,圖1E)。
2.2 抵抗素調(diào)節(jié)TLR4/MyD88/NF-κB通路誘導(dǎo)H9c2心肌細(xì)胞肥大
羅丹明-鬼筆環(huán)肽染色顯示,TLR4基因干擾能夠明顯抑制H9c2細(xì)胞肥大(Plt;0.05,圖2A)。同時(shí),RT-qPCR結(jié)果顯示,與Resistin組/Mock組比較,si-TLR4組細(xì)胞心肌肥厚標(biāo)志物ANP、BNP、β-MHC mRNA水平明顯降低(Plt;0.05,圖2B)。
流式細(xì)胞術(shù)結(jié)果顯示,與Resistin組/Mock組比較,si-TLR4組S期細(xì)胞比例明顯升高,G0/G1期細(xì)胞比例、細(xì)胞凋亡率明顯降低(Plt;0.05,圖2C和2D)。
Western blotting結(jié)果顯示,與Resistin組/Mock組比較,si-TLR4組細(xì)胞TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平明顯降低(Plt;0.05,圖2E)。
2.3 雷公藤紅素調(diào)節(jié)TLR4/MyD88/NF-κB通路改善抵抗素誘導(dǎo)的H9c2心肌細(xì)胞肥大
羅丹明-鬼筆環(huán)肽染色顯示,Celastrol/TAK-242處理能夠明顯抑制H9c2細(xì)胞肥大(Plt;0.05,圖3A)。同時(shí),RT-qPCR結(jié)果顯示,與Resistin組比較,Celastrol組、TAK-242組、Celastrol+TAK-242組細(xì)胞心肌肥厚標(biāo)志物ANP、BNP、β-MHC mRNA水平明顯降低(Plt;0.05);且Celastrol+TAK-242組效果優(yōu)于Celastrol組、TAK-242組(Plt;0.05,圖3B)。
流式細(xì)胞術(shù)結(jié)果顯示,與Resistin組比較,Celastrol組、TAK-242組、Celastrol+TAK-242組S期細(xì)胞比例明顯升高,G0/G1期細(xì)胞比例、細(xì)胞凋亡率明顯降低(Plt;0.05);且Celastrol+TAK-242組效果優(yōu)于Celastrol組、TAK-242組(Plt;0.05,圖3C和3D)。
Western blotting結(jié)果顯示,與Resistin組比較,Celastrol組、TAK-242組、Celastrol+TAK-242組細(xì)胞TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平明顯降低(Plt;0.05);且Celastrol+TAK-242組效果優(yōu)于Celastrol組、TAK-242組(Plt;0.05,圖3E)。
3 討論
DCM主要表現(xiàn)為病理性心肌肥厚,病理性心肌肥厚能夠誘導(dǎo)心功能降低,是心力衰竭等心血管疾病的獨(dú)立危險(xiǎn)因素[20]。抵抗素是由脂肪細(xì)胞、巨噬細(xì)胞、單核細(xì)胞等分泌的細(xì)胞因子,被認(rèn)為與糖尿病和胰島素抵抗的發(fā)展有關(guān)[21]。研究[22]顯示,抵抗素在糖尿病大鼠心臟中高表達(dá),并能夠誘導(dǎo)心肌肥大和心肌胰島素抵抗。敲除抵抗素基因能夠減輕心力衰竭小鼠心肌纖維化和細(xì)胞凋亡,并改善其心臟功能[23]。由此可見(jiàn),抑制抵抗素誘導(dǎo)的心肌細(xì)胞肥大可能是改善DCM的有效策略。雷公藤紅素具有廣泛的藥理學(xué)作用,與血管緊張素轉(zhuǎn)化酶抑制劑、β受體阻滯劑、鈣通道阻滯劑等藥物相比,可能具有較低的毒性和副作用,可通過(guò)多靶點(diǎn)調(diào)節(jié)與心肌肥大相關(guān)的信號(hào)通路,減少心肌細(xì)胞的炎癥反應(yīng)、肥大和纖維化[24-25]。已有研究顯示,雷公藤紅素能夠減輕野百合堿誘導(dǎo)的大鼠右心室重塑[26],并改善高糖飲食誘導(dǎo)的炎癥和胰島素抵抗[27]。然而,雷公藤紅素是否能夠改善抵抗素誘導(dǎo)的病理性心肌肥厚尚無(wú)研究報(bào)道。本研究通過(guò)抵抗素誘導(dǎo)H9c2心肌細(xì)胞肥大,研究心肌細(xì)胞肥大模型抵抗素干預(yù)最佳時(shí)間。羅丹明-鬼筆環(huán)肽染色顯示,抵抗素處理24 h以上能夠明顯誘導(dǎo)H9c2細(xì)胞肥大;同時(shí),RT-qPCR結(jié)果顯示,抵抗素處理24 h后,細(xì)胞心肌肥厚標(biāo)志物ANP、BNP、β-MHC mRNA水平明顯升高,且48、72 h時(shí)的作用效果顯著,因此,選擇抵抗素處理48 h作為最佳干預(yù)時(shí)間。進(jìn)一步通過(guò)流式細(xì)胞術(shù)檢測(cè)了抵抗素對(duì)H9c2心肌細(xì)胞周期和細(xì)胞凋亡的影響,發(fā)現(xiàn)抵抗素處理24 h后,細(xì)胞周期被阻滯,細(xì)胞凋亡率升高,說(shuō)明抵抗素能夠誘導(dǎo)H9c2心肌細(xì)胞肥大,抑制細(xì)胞增殖,并促進(jìn)細(xì)胞凋亡。經(jīng)過(guò)雷公藤紅素干預(yù)后,H9c2細(xì)胞肥大明顯改善,心肌肥厚標(biāo)志物ANP、BNP、β-MHC mRNA水平降低,細(xì)胞周期恢復(fù),細(xì)胞凋亡率降低,說(shuō)明雷公藤紅素能夠改善H9c2心肌細(xì)胞肥大,促進(jìn)細(xì)胞增殖,并抑制細(xì)胞凋亡,提示雷公藤紅素在改善抵抗素誘導(dǎo)的病理性心肌肥厚中發(fā)揮重要作用,分析原因可能是雷公藤紅素通過(guò)其蛋白酶體抑制作用和抗氧化作用,減少心肌細(xì)胞內(nèi)的氧化應(yīng)激和炎癥反應(yīng),促進(jìn)心肌細(xì)胞的正常代謝和修復(fù)過(guò)程。
TLR4是一種模式識(shí)別受體,可通過(guò)識(shí)別病原體相關(guān)分子模式,激活相關(guān)因子表達(dá),在啟動(dòng)先天免疫中發(fā)揮重要作用。TLR4/MyD88/NF-κB通路的激活在心血管疾病的發(fā)生、發(fā)展中具有廣泛的作用[28]。研究[29]顯示,TLR4相關(guān)通路介導(dǎo)的炎癥反應(yīng)和細(xì)胞凋亡是導(dǎo)致心肌肥大的主要病理生理過(guò)程。而抑制TLR4/MyD88/NF-κB通路能夠顯著改善左心室及心肌細(xì)胞肥大[30]。本研究顯示,抵抗素處理24 h后,細(xì)胞TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平明顯升高,說(shuō)明TLR4/MyD88/NF-κB通路可能在抵抗素誘導(dǎo)的H9c2心肌細(xì)胞肥大中發(fā)揮調(diào)控作用。為進(jìn)一步研究心肌細(xì)胞肥大過(guò)程中TLR4/MyD88/NF-κB通路的作用,本研究利用siRNA干擾使TLR4基因沉默,發(fā)現(xiàn)TLR4基因干擾能夠明顯抑制H9c2細(xì)胞肥大,阻滯細(xì)胞周期,并提高細(xì)胞凋亡率。此外,使用TLR4通路抑制劑TAK-242處理同樣能夠抑制H9c2細(xì)胞肥大。說(shuō)明抵抗素可能通過(guò)激活TLR4/MyD88/NF-κB通路誘導(dǎo)H9c2心肌細(xì)胞肥大。為進(jìn)一步研究雷公藤紅素減輕抵抗素誘導(dǎo)的H9c2心肌細(xì)胞肥大的相關(guān)機(jī)制,本研究觀察了雷公藤紅素作用后,抵抗素誘導(dǎo)的H9c2心肌細(xì)胞中TLR4/MyD88/NF-κB通路相關(guān)分子的表達(dá),發(fā)現(xiàn)雷公藤紅素能夠降低細(xì)胞中TLR4、MyD88、p-NF-κB p65/NF-κB p65蛋白水平,且雷公藤紅素聯(lián)合TLR4抑制劑作用效果更顯著。說(shuō)明雷公藤紅素改善抵抗素誘導(dǎo)的H9c2心肌細(xì)胞肥大,可能與調(diào)節(jié)TLR4/MyD88/NF-κB通路有關(guān),分析原因可能是雷公藤紅素可能通過(guò)抑制TLR4受體的活化,進(jìn)而減少M(fèi)yD88的募集和NF-κB的活化,從而減輕心肌細(xì)胞的炎癥反應(yīng),這種抑制作用有助于減少促炎性細(xì)胞因子的產(chǎn)生,降低心肌細(xì)胞的損傷和肥大程度。見(jiàn)圖4。
綜上所述,雷公藤紅素通過(guò)調(diào)節(jié)TLR4/MyD88/NF-κB通路改善抵抗素誘導(dǎo)的H9c2心肌細(xì)胞肥大,這為完善并優(yōu)化糖尿病病理性心肌肥厚的防治策略奠定了理論和實(shí)驗(yàn)基礎(chǔ),并提供了一種潛在的治療措施。然而,本研究結(jié)果僅在體外水平得到證實(shí),接下來(lái)仍需進(jìn)行進(jìn)一步的體內(nèi)(大鼠/小鼠)實(shí)驗(yàn),以驗(yàn)證雷公藤紅素對(duì)治療DCM心肌肥厚的應(yīng)用潛力。
參 考 文 獻(xiàn)
[1]Lorenzo-Almorós A,Cepeda-Rodrigo JM,Lorenzo ó.Diabetic cardiomyopathy[J].Rev Clin Esp(Barc),2022,222(2):100-111.
[2]Rajbhandari J,F(xiàn)ernandez CJ,Agarwal M,et al.Diabetic heart disease:a clinical update[J].World J Diabetes,2021,12(4):383-406.
[3]Zhang SN,Liu Q,Li XZ,et al.Cardioprotection of Eucommiae Folium:the extract and pharmaceutically active compounds attenuate hyperglycemia,mitochondrial dysfunction,calcium dyshomeostasis,insulin resistance,and oxidative stress in diabetic cardiomyopathy db/db mice[J].J Pharm Pharmacol,2023,75(12):1509-1520.
[4]Wang C,Huang X,Tian S,et al.High plasma resistin levels portend the insulin resistance-associated susceptibility to early cognitive decline in patients with type 2 diabetes mellitus[J].J Alzheimers Dis,2020,75(3):807-815.
[5]Jayaraman S,Devarajan N,Rajagopal P,et al.β-sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats[J].Molecules,2021,26(7):2101.
[6]Cai X,Allison MA,Ambale-Venkatesh B,et al.Resistin and risks of incident heart failure subtypes and cardiac fibrosis:the Multi-Ethnic Study of Atherosclerosis[J].ESC Heart Fail,2022,9(5):3452-3460.
[7]Luo JW,Zheng X,Cheng GC,et al.Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes[J].Biomed Rep,2016,5(4):473-478.
[8]Chen H,Liu Y,Yu S,et al.Cannabidiol attenuates periodontal inflammation through inhibiting TLR4/NF-κB pathway[J].J Periodontal Res,2023,58(4):697-707.
[9]Huang L,Li Y,Cheng Z,et al.PCSK9 promotes endothelial dysfunction during sepsis via the TLR4/MyD88/NF-κB and NLRP3 pathways[J].Inflammation,2023,46(1):115-128.
[10]Shi H,Zhou P,Ni YQ,et al.In vivo and in vitro studies of Danzhi Jiangtang capsules against diabetic cardiomyopathy via TLR4/MyD88/NF-κB signaling pathway[J].Saudi Pharm J,2021,29(12):1432-1440.
[11]Amine H,Benomar Y,Taouis M.Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma[J].Sci Rep,2021,11(1):5427.
[12]Feren?i? A,Cuculi? D,Stemberga V,et al.Left ventricular hypertrophy is associated with overexpression of HSP60,TLR2,and TLR4 in the myocardium[J].Scand J Clin Lab Invest,2020,80(3):236-246.
[13]Qing TL,Jiang XY,Li JF,et al.Celastrol reduces lung inflammation induced by multiwalled carbon nanotubes in mice via NF-κb-signaling pathway[J].Inhal Toxicol,2024,36(4):275-281.
[14]Zhao X,Huang B,Zhang J,et al.Celastrol attenuates streptozotocin-induced diabetic cardiomyopathy in mice by inhibiting the ACE/Ang Ⅱ/AGTR1 signaling pathway[J].Diabetol Metab Syndr,2023,15(1):186.
[15]Zhang X,Wang Y,Ge HY,et al.Celastrol reverses palmitic acid(PA)-caused TLR4-MD2 activation-dependent insulin resistance via disrupting MD2-related cellular binding to PA[J].J Cell Physiol,2018,233(10):6814-6824.
[16]Ye S,Luo W,Khan ZA,et al.Celastrol attenuates angiotensin Ⅱ-induced cardiac remodeling by targeting STAT3[J].Circ Res,2020,126(8):1007-1023.
[17]Yan X,Wu L,Gao M,et al.Omentin inhibits the resistin-induced hypertrophy of H9c2 cardiomyoblasts by inhibiting the TLR4/MyD88/NF-κB signaling pathway[J].Exp Ther Med,2022,23(4):292.
[18]Ma L,Cao Y,Zhang L,et al.Celastrol mitigates high glucose-induced inflammation and apoptosis in rat H9c2 cardiomyocytes via miR-345-5p/growth arrest-specific 6[J].J Gene Med,2020,22(9):e3201.
[19]Chen D,Geng Y,Deng Z,et al.Inhibition of TLR4 alleviates heat stroke-induced cardiomyocyte injury by down-regulating inflammation and ferroptosis[J].Molecules,2023,28(5):2297.
[20]Lu QB,Ding Y,Liu Y,et al.Metrnl ameliorates diabetic cardiomyopathy via inactivation of cGAS/STING signaling dependent on LKB1/AMPK/ULK1-mediated autophagy[J].J Adv Res,2023,51:161-179.
[21]楊坤,鄧勇志.lncRNA HOTAIR增強(qiáng)自噬拮抗抵抗素誘導(dǎo)的心肌細(xì)胞肥大[J].山西醫(yī)科大學(xué)學(xué)報(bào),2023,54(8):1055-1060.
[22]Kang S,Chemaly ER,Hajjar RJ,et al.Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin(AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1(JNK/IRS1) pathways[J].J Biol Chem,2011,286(21):18465-18473.
[23]Zhao B,Bouchareb R,Lebeche D.Resistin deletion protects against heart failure injury by targeting DNA damage response[J].Cardiovasc Res,2022,118(8):1947-1963.
[24]Lu Y,Zeng Z,Bao X,et al.Pristimerin protects against pathological cardiac hypertrophy through improvement of PPARα pathway[J].Toxicol Appl Pharmacol,2023,473:116572.
[25]Cheng M,Wu G,Song Y,et al.Celastrol-induced suppression of the MiR-21/ERK signalling pathway attenuates cardiac fibrosis and dysfunction[J].Cell Physiol Biochem,2016,38(5):1928-1938.
[26]Li H,Liu Q,Yue Y,et al.Celastrol attenuates the remodeling of pulmonary vascular and right ventricular in monocrotaline-induced pulmonary arterial hypertension in rats[J].Cardiovasc Diagn Ther,2022,12(1):88-102.
[27]Abu Bakar MH,Mohamad Khalid MSF,Nor Shahril NS,et al.Celastrol attenuates high-fructose diet-induced inflammation and insulin resistance via inhibition of 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose tissues[J].Biofactors,2022,48(1):111-134.
[28]Chen F,Chen ZQ,Zhong GL,et al.Nicorandil inhibits TLR4/MyD88/NF-κB/NLRP3 signaling pathway to reduce pyroptosis in rats with myocardial infarction[J].Exp Biol Med (Maywood),2021,246(17):1938-1947.
[29]Li D,Guo YY,Cen XF,et al.Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-κB pathways[J].Acta Pharmacol Sin,2022,43(8):1989-2002.
[30]刁愛(ài)芹,韓梅,李菁,等.雌激素調(diào)控TLR4/MyD88/NF-κB信號(hào)通路減緩心肌肥大作用的研究[J].中國(guó)病理生理雜志,2010,26(10):1994.
收稿日期:2024-07-23