[摘要]"肝纖維化是一個(gè)逐步進(jìn)展的慢性過程,其顯著特征在于細(xì)胞外基質(zhì)的過度積累及結(jié)締組織的異常增長(zhǎng)。在這一過程中,肝星狀細(xì)胞(hepatic"stellate"cell,HSC)的活化扮演著至關(guān)重要的角色,它們不僅是纖維化的主要來源,而且在肝硬化的演變中發(fā)揮核心作用。盡管HSC活化所涉及的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制尚未完全闡明,但這一領(lǐng)域已成為近年來的研究焦點(diǎn)。本文旨在闡述近年來關(guān)于HSC活化導(dǎo)致肝纖維化的關(guān)鍵通路的研究進(jìn)展,以期為該領(lǐng)域的深入研究提供參考。
[關(guān)鍵詞]"肝纖維化;肝星狀細(xì)胞;信號(hào)通路
[中圖分類號(hào)]"R575""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.31.022
肝纖維化是眾多慢性肝病的典型病理表現(xiàn),它給全世界人民帶來沉重的健康負(fù)擔(dān)。據(jù)統(tǒng)計(jì),因酗酒、不良飲食習(xí)慣及其他多種因素導(dǎo)致的肝纖維化造成全球每年超過200萬人死亡[1]。肝纖維化源于持續(xù)受損后的異常創(chuàng)傷修復(fù)機(jī)制,主要表現(xiàn)為彌漫性細(xì)胞外基質(zhì)的過度沉積,這也是肝纖維化的核心特征。如果在肝纖維化早期階段積極消除危險(xiǎn)因素,則有可能將肝臟逆轉(zhuǎn)至正常狀態(tài)。一旦進(jìn)展至肝硬化階段,則無法逆轉(zhuǎn)。因此有效控制此階段對(duì)預(yù)防肝硬化的發(fā)生發(fā)展具有重大意義。近年來,肝纖維化的代謝重編程機(jī)制已成為國(guó)內(nèi)外的熱點(diǎn)話題[2]。
盡管有關(guān)肝纖維化的研究已相當(dāng)廣泛,但目前仍缺乏有效的治療方法改善患者預(yù)后。肝星狀細(xì)胞(hepatic"stellate"cell,HSC)在肝損傷過程中具有重要地位:當(dāng)肝臟受到損傷時(shí),HSC首先被激活,隨后分化為肌成纖維細(xì)胞,因此它是肝臟中合成細(xì)胞外基質(zhì)和結(jié)締組織的主要細(xì)胞群體。鑒于HSC在纖維化發(fā)病機(jī)制中可能發(fā)揮的重要作用,深入探究HSC活化的具體機(jī)制對(duì)逆轉(zhuǎn)肝纖維化過程具有至關(guān)重要的意義[3]。因此,本文旨在闡述HSC與肝纖維化之間的相關(guān)信號(hào)機(jī)制,希望能為治療肝纖維化帶來新的進(jìn)展與突破。
1""HSC的起源與活化
HSC作為獨(dú)特的非實(shí)質(zhì)肝細(xì)胞群體,位于肝細(xì)胞與肝竇內(nèi)皮細(xì)胞之間,其根源可追溯至間充質(zhì)細(xì)胞及其衍生細(xì)胞。這些細(xì)胞在胚胎肝的發(fā)育過程中,從表面向內(nèi)遷移,發(fā)揮著不可或缺的作用[2]。既往研究認(rèn)為HSC源自神經(jīng)外胚層,但最新研究揭示HSC源于中胚層,具備多能間充質(zhì)祖細(xì)胞的分化潛能,可轉(zhuǎn)化為神經(jīng)細(xì)胞和其他間充質(zhì)細(xì)胞[4]。在正常肝臟狀態(tài)下,HSC呈靜止形態(tài),它們含有豐富的維生素A脂滴,增殖活性低,主要產(chǎn)生Ⅳ型膠原。當(dāng)肝臟損傷時(shí),HSC發(fā)生轉(zhuǎn)變。HSC轉(zhuǎn)化為肌成纖維細(xì)胞前先活化α-平滑肌肌動(dòng)蛋白,活化后產(chǎn)生Ⅰ型膠原,這也是與纖維化最為相關(guān)的膠原類型。同時(shí),HSC中的維生素A含量顯著減少,而增殖活性則顯著增強(qiáng)。這種活化過程在肝纖維化的發(fā)生和發(fā)展中起著核心作用[5]。當(dāng)肝臟受損時(shí),與HSC相鄰的細(xì)胞如Kupffer細(xì)胞、巨噬細(xì)胞、樹突狀細(xì)胞、自然殺傷細(xì)胞等迅速反應(yīng),通過旁分泌機(jī)制釋放多種細(xì)胞因子,如血小板衍生生長(zhǎng)因子(platelet-derived"growth"factor,PDGF)、腫瘤壞死因子-α(tumor"necrosis"factorα,TNF-α)、轉(zhuǎn)化生長(zhǎng)因子-β(transforming"growth"factor-β,TGF-β)、結(jié)締組織生長(zhǎng)因子、胰島素樣生長(zhǎng)因子1等[6],這些細(xì)胞因子與HSC膜上的受體結(jié)合,觸發(fā)細(xì)胞信號(hào)轉(zhuǎn)導(dǎo),激活復(fù)制、轉(zhuǎn)錄及翻譯等生物過程,使HSC由靜止?fàn)顟B(tài)活化,轉(zhuǎn)化為具有增殖能力的肌成纖維細(xì)胞,在肝損傷部位黏附、遷移,并通過自分泌和旁分泌機(jī)制釋放更多炎癥因子,加劇炎癥反應(yīng),導(dǎo)致肝內(nèi)細(xì)胞外基質(zhì)過度沉積,最終形成肝纖維化[7]。
2""肝纖維化中HSC活化的相關(guān)機(jī)制
2.1""TGF-β/PD-L1信號(hào)通路
作為一種分泌性多肽信號(hào)分子,TGF-β在細(xì)胞新陳代謝中起著非常重要的調(diào)節(jié)作用。在急、慢性肝損傷過程中,TGF-β存在于細(xì)胞外基質(zhì),激活后通過各種細(xì)胞類型表達(dá)和釋放。在這一特定的生理過程中,TGF-β的一個(gè)核心目標(biāo)就是激活并誘導(dǎo)HSC向肌成纖維細(xì)胞轉(zhuǎn)化。此過程中HSC會(huì)經(jīng)歷一系列變化,包括細(xì)胞內(nèi)維生素A脂滴的缺失、形態(tài)上向成纖維細(xì)胞的轉(zhuǎn)變及表達(dá)出收縮性、增殖性和遷移性等新表型。因此,TGF-β在肝損傷修復(fù)和纖維化進(jìn)程中發(fā)揮至關(guān)重要的作用[8]。程序性死亡蛋白配體1(programmed"death-ligand"1,PD-L1)是一種免疫檢查點(diǎn)蛋白,在細(xì)胞表面與程序性死亡蛋白1(programmed"death-1,PD-1)相結(jié)合后激活細(xì)胞內(nèi)的信號(hào)調(diào)節(jié)細(xì)胞凋亡、糖代謝等生理過程,其也在HSC表面表達(dá)[9]。Sun等[10]發(fā)現(xiàn)PD-L1在HSC的肌成纖維細(xì)胞激活中發(fā)揮關(guān)鍵作用。TGF-β受體Ⅰ和Ⅱ的激活依賴于PD-L1,其可促進(jìn)HSC在TGF-β刺激下轉(zhuǎn)化為肌成纖維細(xì)胞。另外,Gu等[11]發(fā)現(xiàn)抗PD-1抗體增強(qiáng)己糖胺途徑基因表達(dá),促進(jìn)透明質(zhì)酸合成。同時(shí),氯沙坦與抗PD-1抗體聯(lián)合使用時(shí),可提升肝細(xì)胞肝癌的治療效果,這與其增加CD8+"T細(xì)胞在肝臟的浸潤(rùn)、減少Ⅰ型膠原蛋白產(chǎn)生及下調(diào)TGF-β信號(hào)有關(guān)。綜上,TGF-β與肝纖維化有著密不可分的關(guān)系。
2.2""PDGF信號(hào)通路
PDGF在肝臟內(nèi)也扮演著關(guān)鍵角色,作為重要的有絲分裂原和化學(xué)誘導(dǎo)物,它顯著促進(jìn)HSC的增殖和遷移。血小板衍生生長(zhǎng)因子受體(platelet-derived"growth"factor"receptor,PDGFR)主要存在于血管內(nèi)皮細(xì)胞、成纖維細(xì)胞和Kupffer細(xì)胞中,這些細(xì)胞對(duì)肝臟生理病理過程至關(guān)重要[12]。PDGF具有兩種受體類型,分別是PDGFR-α和PDGFR-β。已有研究揭示PDGFR-β所介導(dǎo)的PDGF信號(hào)通路是肝纖維化發(fā)展過程中最為關(guān)鍵的增殖信號(hào)通路。在四氯化碳和膽管結(jié)扎所誘導(dǎo)的小鼠纖維化肝病模型中,PDGF-β和PDGFR-β的表達(dá)均呈現(xiàn)出明顯增加的趨勢(shì),進(jìn)而誘導(dǎo)HSC的激活。與此相反,當(dāng)缺乏PDGFR-β基因時(shí),肝臟損傷和纖維化的程度均有所減輕。這些發(fā)現(xiàn)可為深入理解PDGF及其受體在肝纖維化過程中的作用機(jī)制提供重要依據(jù)[13]。此外,PDGFR-β的兩種不同位點(diǎn)突變對(duì)小鼠的肝纖維化產(chǎn)生顯著影響。V536A位點(diǎn)突變使轉(zhuǎn)基因小鼠的肝纖維化在四氯化碳刺激下顯著加??;而D849N位點(diǎn)突變則提高小鼠基礎(chǔ)磷酸化水平,誘發(fā)急性肝損傷,進(jìn)而加劇肝細(xì)胞活化與增殖,最終致使肝纖維化程度進(jìn)一步惡化[14]。在探討PDGF的調(diào)控機(jī)制時(shí),已明確其涉及多條關(guān)鍵信號(hào)通路,包括Ras/胞外信號(hào)調(diào)節(jié)激酶信號(hào)通路、磷脂酰肌醇3激酶(phosphoinositide"3-kinase,PI3K)/蛋白激酶B(protein"kinase"B,AKT)信號(hào)通路及JAK激酶(Janus"kinase,JAK)/信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活蛋白(signal"transducer"and"activator"of"transcription,STAT)信號(hào)通路。這些信號(hào)通路不僅參與調(diào)節(jié)PDGF的生物學(xué)效應(yīng),還顯著影響其對(duì)化學(xué)損傷引起的炎癥反應(yīng)和纖維化反應(yīng)的增強(qiáng)作用[15]。Wang等[16]首次報(bào)道Ninjurin2作為一種細(xì)胞表面黏附蛋白,通過調(diào)節(jié)肝細(xì)胞中胰島素樣生長(zhǎng)因子1受體/PI3K/AKT/EGR1通路來調(diào)節(jié)PDGF-BB的表達(dá)和分泌,且PDGF-BB可通過旁分泌方式促進(jìn)HSC的活化和肝纖維化。此外,胸腺素β4、microRNA-26b-5p和TNF凋亡相關(guān)誘導(dǎo)配體靶向PDGFR-β,阻斷PDGFR-β信號(hào)傳導(dǎo),可減輕肝纖維化[17]。因此,抑制HSC的PDGFR-β信號(hào)傳導(dǎo)有助于減緩肝纖維化,暗示PDGFR-β是一個(gè)潛在的治療靶點(diǎn)。
2.3""Wnt/β-catenin信號(hào)通路
Wnt這一名稱源于Wg(wingless)與Int(integrated)的聯(lián)合命名。Wg基因最開始在果蠅研究中被揭示,它的關(guān)鍵作用體現(xiàn)在胚胎發(fā)育及成年動(dòng)物肢體形成的調(diào)控中[18]。Wnt信號(hào)通路作為一種保守的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制,在調(diào)節(jié)細(xì)胞功能及控制發(fā)展進(jìn)程中起著關(guān)鍵作用,且該信號(hào)通路的激活與HSC的激活及纖維生成過程緊密相關(guān)。此外,Wnt信號(hào)通路還與加強(qiáng)細(xì)胞外基質(zhì)的合成相關(guān),并促進(jìn)上皮細(xì)胞的轉(zhuǎn)化,特別是上皮到間充質(zhì)過渡這一關(guān)鍵過程[19]。現(xiàn)已明確存在3種Wnt信號(hào)通路:經(jīng)典Wnt通路、非經(jīng)典Wnt/平面細(xì)胞極化通路及非經(jīng)典Wnt/鈣離子通路。經(jīng)典Wnt通路因其獨(dú)特的機(jī)制而備受關(guān)注。當(dāng)Wnt蛋白與Frizzled受體結(jié)合時(shí),激活Dishevelled(DSH)受體家族成員,進(jìn)而干擾Axin/GSK-3/APC復(fù)合體的功能。通常這一復(fù)合體在β-catenin降解過程中發(fā)揮作用,但在經(jīng)典Wnt通路的調(diào)控下,β-catenin的穩(wěn)定性得以增強(qiáng)。當(dāng)該復(fù)合體受抑制時(shí),β-catenin得以穩(wěn)定存在,并隨后轉(zhuǎn)移至細(xì)胞核內(nèi),與T細(xì)胞因子/淋巴增強(qiáng)因子轉(zhuǎn)錄因子家族成員相互作用后促進(jìn)特定基因的表達(dá),從而影響細(xì)胞增殖、分化和遷移等。在非經(jīng)典Wnt信號(hào)/鈣離子通路中,情況則有所不同,Wnt5與Frizzled受體結(jié)合后激活PLC,促進(jìn)鈣離子產(chǎn)生,進(jìn)而影響CAMKII、CaN及PKC等分子。其中,CaN通過去磷酸化作用影響活化T細(xì)胞核因子,進(jìn)而影響DNA轉(zhuǎn)錄。研究還發(fā)現(xiàn)通過抑制Wnt信號(hào)通路,特別是阻斷β-catenin與cAMP應(yīng)答元件結(jié)合蛋白的相互作用可逆轉(zhuǎn)HSC活化,減緩肝纖維化進(jìn)程,為纖維化相關(guān)疾病的治療提供新思路[20]。
2.4""Hedgehog信號(hào)通路
Hedgehog信號(hào)通路是一個(gè)由Hedgehog配體、PTC(Patched)和SMO(Smoothened)兩個(gè)跨膜受體及多種轉(zhuǎn)錄因子組成的復(fù)雜系統(tǒng),其活性與HSC的活化密切相關(guān),同時(shí)它也是肝細(xì)胞損傷、修復(fù)和纖維化的重要調(diào)節(jié)因子[21]。當(dāng)Hedgehog配體與PTC結(jié)合時(shí),SMO被激活,啟動(dòng)信號(hào)傳導(dǎo),從而控制細(xì)胞的存活、增殖、遷移和分化。抑制Hedgehog信號(hào)通路可減少HSC的活化和肝纖維化。研究表明在SMO基因缺失而同時(shí)細(xì)胞又表達(dá)平滑肌激動(dòng)蛋白基因的小鼠中,肝纖維化的過程是減弱的[22]。Fan等[23]研究發(fā)現(xiàn)在四氯化碳誘導(dǎo)或DDC飲食喂養(yǎng)的模型中,與SMO結(jié)合的蛋白激酶CK2是Hedgehog信號(hào)通路的關(guān)鍵正向調(diào)節(jié)劑,即CK2通過防止SMO的泛素化和蛋白酶體降解,穩(wěn)定SMO的表達(dá)。這一發(fā)現(xiàn)對(duì)理解HSC的激活和纖維化表型的維持具有重要意義,因?yàn)镾MO的穩(wěn)定對(duì)HSC的激活狀態(tài)及其纖維化的進(jìn)展至關(guān)重要。因此,F(xiàn)an等[23]的研究進(jìn)一步說明阻斷CK2能通過抑制Hedgehog通路來減少HSC的激活。Li等[24]設(shè)計(jì)并構(gòu)建一種對(duì)活化HSC的高爾基體具有級(jí)聯(lián)靶向功能的多功能納米粒,結(jié)果表明包載Hh抑制劑vismodegib的納米粒一方面通過靶向抑制Hedgehog信號(hào)通路抑制HSC的活化,另一方面通過破壞活化HSC的高爾基體,抑制細(xì)胞外基質(zhì)的過量分泌,從而有效緩解四氯化碳誘導(dǎo)的小鼠肝纖維化,該研究也為肝纖維化的藥物聯(lián)合治療提供新思路。此外,PAX6、Gant61及藍(lán)藻產(chǎn)生的微囊素-亮氨酸-精氨酸(MC-LR)均能通過激活HSC中的Hedgehog信號(hào)通路誘導(dǎo)肝纖維化[25-27]。
2.5""ARRB1/MASP1信號(hào)通路
ARRB1(arrestin"beta"1)又稱為β-arrestin"1,是一種蛋白質(zhì),屬于β-arrestin家族成員。β-arrestins在細(xì)胞信號(hào)傳導(dǎo)、受體內(nèi)化、信號(hào)適應(yīng)和細(xì)胞反應(yīng)調(diào)控等多個(gè)生物學(xué)過程中發(fā)揮關(guān)鍵作用。有研究檢查肝纖維化患者肝組織中微RNA和靶基因的表達(dá),結(jié)果發(fā)現(xiàn)ARRB1表達(dá)在肝纖維化中上調(diào)[28]。Liu等[29]在肝纖維化研究領(lǐng)域取得突破性進(jìn)展。他們通過精心構(gòu)建ARRB1基因敲除鼠的多種肝纖維化模型,并借助轉(zhuǎn)錄組學(xué)和蛋白組學(xué)的綜合分析技術(shù),揭示肝纖維化進(jìn)程中肝細(xì)胞釋放的細(xì)胞外囊泡。此外,研究團(tuán)隊(duì)還注意到細(xì)胞外囊泡中的MASP1(recombinant"mannose"associated"serine"protease"1)蛋白的表達(dá)和分泌在肝細(xì)胞內(nèi)受ARRB1的精確調(diào)控。這一發(fā)現(xiàn)可為理解肝纖維化的分子機(jī)制提供新的視角。當(dāng)MASP1被細(xì)胞外囊泡輸送到細(xì)胞外間隙后,它被HSC所吞噬,然后激活細(xì)胞內(nèi)的p38絲裂原激活的蛋白激酶/轉(zhuǎn)錄激活因子2信號(hào)通路,而這一信號(hào)通路恰好能夠促進(jìn)HSC的活化和增殖,最終推動(dòng)肝纖維化發(fā)展。這一發(fā)現(xiàn)不僅可為深入理解肝纖維化的發(fā)病機(jī)制提供新的視角,也為開發(fā)針對(duì)肝纖維化的新型治療策略提供潛在靶點(diǎn)。通過調(diào)控MASP1或與之相關(guān)的信號(hào)通路,或許能夠找到一種更為有效的治療肝纖維化的方法。綜上,ARRB1/MASP1信號(hào)通路及其血清標(biāo)志物在肝纖維化的臨床診斷和療效評(píng)估中展現(xiàn)出重要價(jià)值。此外,它們還有望成為肝纖維化防治領(lǐng)域的潛在藥物靶點(diǎn),為相關(guān)治療策略的開發(fā)提供新的方向。
3""結(jié)論與展望
綜上所述,HSC的活化過程是一個(gè)高度復(fù)雜的生物學(xué)過程,涉及眾多信號(hào)分子和信號(hào)通路的交織與互動(dòng)。這些信號(hào)通路不僅各自獨(dú)立地發(fā)揮作用,同時(shí)也在細(xì)胞內(nèi)形成復(fù)雜的調(diào)控網(wǎng)絡(luò),共同影響HSC的激活。當(dāng)這些信號(hào)通路紊亂時(shí),極有可能引發(fā)肝纖維化。除了先前提及的TGF-β/PD-L1、PDGF、Wnt信號(hào)通路、Hedgehog信號(hào)通路及ARRB1/MASP1信號(hào)通路的相互作用等機(jī)制外,近年來研究還發(fā)現(xiàn)HSC的活化與Notch、TEM1/"GAS6/AXL、JAK/STAT及整合素等信號(hào)通路也存在密切的關(guān)聯(lián)。這些新發(fā)現(xiàn)的信號(hào)通路可為肝纖維化的治療提供新的潛在靶點(diǎn),同時(shí)深化對(duì)肝纖維化發(fā)病機(jī)制的理解。未來,隨著研究的深入,希望能夠找到更多治療靶點(diǎn),為肝纖維化的防治工作作出更大貢獻(xiàn)。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] TAN"Z,"SUN"H,"XUE"T,"et"al."Liver"fibrosis:"Therapeutic"targets"and"advances"in"drug"therapy[J]."Front"Cell"Dev"Biol,"2021,"9:"730176.
[2] TRIVEDI"P,"WANG"S,"FRIEDMAN"S"L."The"power"of"plasticity-metabolic"regulation"of"hepatic"stellate"cells[J]."Cell"Metabolism,"2021,"33(2):"242–257.
[3] HAMANAKA"R"B,"MUTLU"G"M."Metabolic"requirements"of"pulmonary"fibrosis:"Role"of"fibroblast"metabolism[J]."FEBS"J,"2021,"288(22):"6331–6352.
[4] ASAHINA"K."Hepatic"stellate"cell"progenitor"cells[J]."J"Gastroenterol"Hepatol,"2012,"27(Suppl"2):"80–84.
[5] RANI"R,"GANDHI"C"R."Stellatenbsp;cell"in"hepatic"inflammation"and"acute"injury[J]."J"Cell"Physiol,"2023,"238(6):"1226–1236.
[6] RAMACHANDRAN"P,"IREDALE"J"P."Macrophages:"Central"regulators"of"hepatic"fibrogenesis"and"fibrosis"resolution[J]."Jnbsp;Hepatol,"2012,"56(6):"1417–1419.
[7] WEI"W,"LIN"C,"HU"R,"et"al."LOC102553417"silencing"facilitates"the"apoptosis"of"hepatic"stellate"cells"via"the"miR?30e/MTDH"axis[J]."Mol"Med"Rep,"2022,"26(5):"349.
[8] DEWIDAR"B,"MEYER"C,"DOOLEY"S,"et"al."TGF-β"in"hepatic"stellate"cell"activation"and"liver"fibrogenesis-updated"2019[J]."Cells,"2019,"8(11):"1419.
[9] LOEUILLARD"E,"YANG"J,"BUCKARMA"E,"et"al."Targeting"tumor-associated"macrophages"and"granulocytic"myeloid-derived"suppressor"cells"augments"PD-1"blockade"in"cholangiocarcinoma[J]."J"Clin"Invest,"2020,"130(10):"5380–5396.
[10] SUN"L,"WANG"Y,"WANG"X,"et"al."PD-L1"promotes"myofibroblastic"activation"of"hepatic"stellate"cells"by"distinct"mechanisms"selective"for"TGF-β"receptor"Ⅰ"versus"Ⅱ[J]."Cell"Rep,"2022,"38(6):"110349.
[11] GU"L,"ZHU"Y,"LEE"M,"et"al."Angiotensin"Ⅱ"receptor"inhibition"ameliorates"liver"fibrosis"and"enhances"hepatocellular"carcinoma"infiltration"by"effector"T"cells[J]."Proc"Natl"Acad"Sci"USA,"2023,"120(19):"e2300706120.
[12] LIU"C,"LI"J,"XIANG"X,"et"al."PDGF"receptor-α"promotes"TGF-β"signaling"in"hepatic"stellate"cells"via"transcriptional"and"posttranscriptional"regulation"of"TGF-β"receptors[J]."Am"J"Physiol"Gastrointest"Liver"Physiol,"2014,"307(7):"G749–G759.
[13] GAO"J,"WEI"B,"DE"ASSUNCAO"T"M,nbsp;et"al."Hepatic"stellate"cell"autophagy"inhibits"extracellular"vesicle"release"to"attenuate"liver"fibrosis[J]."J"Hepatol,"2020,"73(5):"1144–1154.
[14] KOCABAYOGLU"P,"LADE"A,"LEE"Y"A,"et"al."β-PDGF"receptor"expressed"by"hepatic"stellate"cells"regulates"fibrosis"in"murine"liver"injury,"but"not"carcinogenesis[J]."J"Hepatol,"2015,"63(1):"141–147.
[15] KENDALL"T"J,"DUFF"C"M,"BOULTER"L,"et"al."Embryonic"mesothelial-derived"hepatic"lineage"of"quiescent"and"heterogenous"scar-orchestrating"cells"defined"but"suppressed"by"WT1[J]."Nature"Communications,"2019,"10(1):"4688.
[16] WANG"Y,"WANG"P,"YU"Y,"et"al."Hepatocyte"ninjurin2"promotes"hepatic"stellate"cell"activation"and"liver"fibrosis"through"the"IGF1R/EGR1/PDGF-BB"signaling"pathway"[J]."Metabolism,"2023,"140:"155380.
[17] LI"R,"LI"Z,"FENG"Y,"et"al."PDGFRβ-targeted"trail"specifically"induces"apoptosis"of"activated"hepatic"stellate"cells"and"ameliorates"liver"fibrosis[J]."Apoptosis,"2020,"25(1–2):"105–119.
[18] NG"L"F,"KAUR"P,"BUNNAG"N,"et"al."Wnt"signaling"in"disease[J]."Cells,"2019,"8(8):826.
[19] HU"H"H,"CAO"G,"WU"X"Q,"et"al."Wnt"signaling"pathway"in"aging-related"tissue"fibrosis"and"therapies[J]."Ageing"Res"Rev,"2020,"60:"101063.
[20] DUSPARA"K,"BOJANIC"K,"PEJIC"J"I,"et"al."Targeting"thenbsp;Wnt"signaling"pathway"in"liver"fibrosis"for"drug"options:"An"update[J]."J"Clin"Transl"Hepatol,"2021,"9(6):"960–971.
[21] OMENETTI"A,"CHOI"S,"MICHELOTTI"G,"et"al."Hedgehog"signaling"in"the"liver[J]."J"Hepatol,"2011,"54(2):"366–373.
[22] MICHELOTTI"G"A,"XIE"G,"SWIDERSKA"M,"et"al."Smoothened"is"a"master"regulator"of"adult"liver"repair[J]."J"Clin"Invest,"2013,"123(6):"2380–2394.
[23] FAN"J,"TONG"G,"CHEN"X,"et"al."CK2"blockade"alleviates"liver"fibrosis"by"suppressing"activation"of"hepatic"stellate"cells"via"the"Hedgehog"pathway[J]."Br"J"Pharmacol,"2023,"180(1):"44–61.
[24] LI"Y,"ZHANG"T,"ZHANG"J,"et"al."Dually"fibronectin/"CD44-mediated"nanoparticles"targeted"disrupt"the"Golgi"apparatus"and"inhibit"the"Hedgehog"signaling"in"activated"hepatic"stellate"cells"to"alleviate"liver"fibrosis[J]."Biomaterials,"2023,"301:"122232.
[25] JIAYUAN"S,"JUNYAN"Y,"XIANGZHEN"W,"et"al."Gant61"ameliorates"CCl(4)-induced"liver"fibrosis"by"inhibition"of"Hedgehog"signaling"activity[J]."Toxicol"Appl"Pharmacol,"2020,"387:"114853.
[26] LI"C,"TAN"Y"H,"SUN"J,"et"al."PAX6"contributes"to"the"activation"and"proliferation"of"hepatic"stellate"cells"via"activating"Hedgehog/GLI1"pathway[J]."Biochem"Biophys"Res"Commun,"2020,"526(2):"314–320.
[27] GU"S,"YAN"M,"WANG"C,"et"al."Microcystin-"leucine-arginine"induces"liver"fibrosis"by"activating"the"Hedgehog"pathway"in"hepatic"stellate"cells[J]."Biochem"Biophys"Res"Commun,"2020,"533(4):"770–778.
[28] BU"X,"DING"W,"GUO"S,"et"al."Differential"expression"ofnbsp;microRNAs"in"bile"duct"obstruction-induced"liver"fibrosis"and"the"identification"of"a"novel"liver"fibrosis"marker"miR-1295b-3p[J]."Ann"Transl"Med,"2023,"11(1):"22.
[29] LIU"X,"TAN"S,"LIU"H,"et"al."Hepatocyte-derived"MASP1-enriched"small"extracellular"vesicles"activate"HSCs"to"promote"liver"fibrosis[J]."Hepatology"(Baltimore,"Md),"2023,"77(4):"1181–1197.
(收稿日期:2024–05–02)
(修回日期:2024–10–16)