• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同層數(shù)石墨烯的光熱顯微成像

    2024-07-16 00:00:00都安邦王源璠魏志弘張東旭李理楊煒青孫千璐趙麗麗徐偉高田玉璽
    物理化學(xué)學(xué)報(bào) 2024年5期
    關(guān)鍵詞:石墨烯光吸收

    摘要:二維層狀材料(石墨烯、二維過渡金屬硫族化合物等)因具有獨(dú)特的物理性質(zhì),引起了研究學(xué)者們的廣泛關(guān)注,極大促進(jìn)了化學(xué)、材料科學(xué)和凝聚態(tài)物理學(xué)的發(fā)展。開發(fā)能夠探究層狀材料中層數(shù)依賴的光學(xué)、電學(xué)、力學(xué)和熱學(xué)特性的新技術(shù)一直是二維材料領(lǐng)域最活躍的研究方向之一。光熱顯微鏡利用光激發(fā)后非輻射躍遷產(chǎn)生的熱效應(yīng),可實(shí)現(xiàn)在單個(gè)顆?;騿畏肿铀缴铣上衽c檢測(cè),并實(shí)時(shí)捕捉微觀尺度熱弛豫和熱傳輸過程。本文對(duì)比研究了石墨烯薄片在不同光熱介質(zhì)(空氣、甘油)中隨厚度變化的光熱特性,發(fā)現(xiàn)了在兩種介質(zhì)中光熱信號(hào)強(qiáng)度與樣品厚度之間均存在非線性依賴關(guān)系。相比于空氣介質(zhì),甘油介質(zhì)中光熱信號(hào)強(qiáng)度具有更高的對(duì)比度,且隨著厚度增加表現(xiàn)出非單調(diào)變化。該研究提供了不同介質(zhì)環(huán)境中不同層數(shù)石墨烯光吸收和熱弛豫特征的細(xì)節(jié)信息,相關(guān)研究結(jié)論將為層狀材料及其異質(zhì)結(jié)的熱學(xué)性質(zhì)研究提供依據(jù)。

    關(guān)鍵詞:石墨烯;光熱顯微成像;層數(shù)依賴;光吸收;非輻射弛豫

    中圖分類號(hào):O642

    Photothermal Microscopy of Graphene Flakes with Different Thicknesses

    Abstract: Two-dimensional (2D) layered materials have attracted widespreadresearch interest and have significantly promoted the development of chemistry,material science, and condensed matter physics. Since the emergence ofgraphene, 2D materials with unique mechanical, thermal, optical, and electricalproperties have been developed. In the case of graphene, its extraordinarymechanical strength, carrier mobility, thermal conductivity, and light-absorptionover the whole spectral range in UV-Vis and near infrared guarantee a wide rangeof prospective applications. The electronic structure and properties of grapheneflakes are dominated by their thickness, twist angle, and dielectric environment.Tailoring the interlayer interactions of graphene layers can provide additionalopportunities for developing optical and electrical nanodevices, resulting inpioneering outcomes, such as the magic-angle graphene. Over the past decade,one of the most active research directions in the field of 2D materials has been the development of novel techniques thatcan probe the thickness-dependent physical properties of layered materials. In contrast with the intensively studiedmechanical, electrical, and optical properties, microscopic investigations of the thermal characteristics of graphene flakesremain to be explored. Photothermal (PT) microscopy is a new all-optical microscopic imaging technique that has gainedsubstantial attention and undergone long-term development in recent years, especially in the fields of nanomaterials andlife sciences. The fundamental principle of PT microscopy is to heat the target sample based on the absorption of a heatingbeam and use a probe beam to indirectly capture information on microscale heat generation and transport. Inspired byseveral pioneering studies, we conducted a comparative study of the thickness-dependent PT properties of mechanicallyexfoliated graphene flakes in two different PT media, i.e., air and glycerol. Whereas a nonlinear relationship between thePT intensity and sample thickness was observed in both media, the PT intensities from the two media were distinct. A highcontrastand non-monotonic PT response was observed in glycerol. The PT intensity of monolayer graphene was higherthan that of bilayer graphene, and the PT intensities of graphene flakes with 2–4 layers exhibited a good linear relationshipwith the thickness. We also analyzed the relationship between the PT intensity and heating or probe power, demonstratingthat the PT intensity as well as the absorption cross-section of graphene derived from the PT signal vary linearly with thepower of both laser beams. Our study provides insights into light absorption and thermal relaxation features of grapheneflakes of different thicknesses, which can guide future studies on the thermal properties of layered materials and theirheterostructures.

    Key Words: Graphene; Photothermal microscopy; Thickness-dependence; Optical absorption;Nonradiative relaxation

    1 Introduction

    The rise of graphene 1 and other monolayer materials 2–6 hasopened up a new 2D world for exploring thickness-dependentphysical phenomena on the atomic scale 7,8. Taking graphite asan example, the variations in the number of layers affect theelectronic structure and its optical and thermal properties 9. Tobe consistent with most literature, here we use graphene flakesto represent monolayer to few-layer graphene flakes. Monolayergraphene has an amazing energy band structure with zero gap,and one of its most important properties is that its charge carriersbehave as massless relativistic particles or Dirac fermions 10. Forbilayer graphene, the band gap can be modulated by applying avertical electric field 11,12. Meanwhile, bilayer graphene ortwisted bilayer graphene exhibits abundant exotic strongcorrelation and topological effects, such as superconductivity,correlated insulating states, and quantum anomalous Hall effect,etc., which significantly contribute to the development ofcondensed matter physics 13–17. In addition, multilayer grapheneoffers unique opportunities whose importance has grown rapidlyin the past few years 18–20. On the other hand, transition metaldichalcogenides (TMDs) from bulk material to monolayer yieldan indirect-to-direct band gap evolution, which opens upabundant research interest in optoelectronics and valleytronics 21–24.

    The above examples show layer-dependent electrical andoptical properties of layered materials, and some exoticcharacteristics at the 2D limit are now being seriously consideredfor applications in optoelectronic devices. After photonabsorption, there are multiple relaxation pathways for anexcited-state electron to go back to the ground state, typical processes including fluorescence/phosphorescence emission andnonradiative pathways, such as thermal relaxation 25, carriertransport 26, graphene plasmonics 27,28, photo-acousticgeneration 29, and photochemical processes 30. Among all theabove pathways, thermal relaxation is the most basic one whichexists in almost all cases. Thus, understanding and control ofthermal relaxation is essential in a wide range of optoelectronicapplications including sensing, energy harvesting, and lighting.Recently, there are also pioneering progresses on the thermalproperties of layered materials 31,32 and their heterostructures 33.Kim’s work reported that by stacking atomically thin layers ofMoS2 randomly, the heat transfer capacity of layered materialswould vary greatly in different directions 31. Zhang et al.achieved electrical and thermal rectification simultaneously in aMoSe2/WS2 lateral heterojunction 33. However, a systematicstudy on the layer-dependent thermal relaxation properties oflayered materials is still lacking. In this regard, a technique forprecisely capturing and imaging the layer-number-dependentthermal properties of nanomaterials is essential for acceleratingthe study and exploration of graphene and related materials 34,35.

    Photothermal (PT) microscopy is a new optical microscopicimaging technique that has gained extensive attention and longtermdevelopment in recent years, especially in nanomaterialsand life sciences 36,37. The principle of PT microscopy is basedon the thermal lens effect 36,38, which detects the small additionaldivergence of the probe beam by heating-induced thermal lenses,i.e., the refractive index gradient around the heated analytes(Fig. 1, right inset). Thus, PT imaging is actually an indirectdetection of absorption, thermal relaxation, and transport for materials with neglectable fluorescence quantum yield. In thiswork, we utilized PT microscopy to gain substantial insights intothe thickness-dependent thermal properties of mechanicallyexfoliated graphene flakes. Effects on different PT media, andexcitation power have been investigated and discussed. The PTintensity shows a monotonically increasing but nonlinearrelationship with thickness in the air media, while in the glycerolmedia we found a non-monotonic PT response. This study offersinsights into the thermal relaxation characteristics of grapheneflakes with different thicknesses. Moreover, since opticalemission and thermal relaxation are two competing processes,our work will also benefit future research related to absorption,emission, and thermal generation in layered materials and theirheterostructures.

    2 Experimental

    2.1 Sample preparation

    Kish graphite crystals were purchased from CovalentMaterials Corp, Japan. We prepared mono- and multi-layergraphene flakes on glass coverslips (Fisherbrand) by a PDMSassisted(Titan) dry transfer method after mechanical exfoliation1,39,40. The coverslips were cleaned with Milli-Q water (type 1),special wash solution in turn for 40 min, blown with nitrogen (≥99.999%), and exposed to plasma for 2 min not only for highercleanliness but also for higher transferability from PDMS to thecoverslip.

    2.2 Micro-area Raman and transmittance spectroscopy

    Raman spectra and absorption spectra were measured by aconfocal micro-Raman spectrometer (HORIBA Scientific,Horiba HR Evolution, Japan). To collect the Raman spectra ofmono- and multi-layer graphene flakes, a 633 nm continuous wave laser was used as the excitation source (~5 mW whenarriving at the sample), and a 600 lines per millimeter gratingwas used to get a suitable resolution (~1 cm?1). For theabsorption spectra, we measured the micro-area transmittance ofthe sample. A 50× objective (Olympus, NA = 0.5) was appliedto excite the sample, and a 100× objective (Olympus, NA = 0.9)was used to collect the signal. We used a near-infrared light(Thorlabs, SLS201L (/M), the United States) ranging from 360nm to 2600 nm as the excitation source and a 100 lines permillimeter grating was used to obtain sufficient intensity. Thetransmittance spectra of a sample (T) and coverslip substrate (T0)were collected, and then the final micro-area transmittancespectra were obtained according to T/T0. All spectra wereprocessed in Labspec6 software.

    2.3 Optical contrast analysis

    To identify the number of layers of graphene flakes, wemeasured the greyscale values of the samples. Color opticalimages (RGB format) of few-layer graphene were converted togreyscale images. Then, we measured the greyscale values ofdifferent domains in the graphene flakes. Above data processingwas completed with ImageJ.

    2.4 Photothermal microscopy

    A schematic diagram of the optical setup and workingmechanism is shown in Fig. 1, similar to the previous work 41,42.Briefly, the PT signal arises from a slight change in the refractiveindex of the PT medium (air or glycerol) due to the thermalrelaxation after absorption of the heating beam. The refractiveindex change is measured with another probe beam with adifferent wavelength. In this work, a 532 nm laser was used asthe excitation source (heating beam), and a 1064 nm laser wasused as the probe beam. The heating beam was modulated usingan AOM (AA Opto Electronic, MT80-A1,5-VIS, France) at a repetition frequency of 5 kHz. The probe beam overlapped withthe heating beam on the sample through a high NA objective(UPlanFLN, NA = 0.6–1.3, Japan). Then, the backscattered lightof the probe beam was collected by the same objective lens anddetected by a photodiode (PD) (Femto, OE-300-IN-01-FC,Germany). The PT signal was extracted from the modulation ofthe scattered light by a lock-in amplifier at the same frequencyas the heating beam. Optical transmission images can becollected by an optical camera (Mshot, MS23). PT imagescovering a whole sample area can be obtained by scanning thesample with a motorized positioning stage (TANGO 2 Desktop,Germany).

    3 Results and discussion

    To systematically study the layer-dependent PT properties ofgraphite, graphene flakes with different thicknesses wereprepared using the mechanical exfoliation method 1. Fig. 2ashows the optical image of the few-layer graphene flakes on aglass slide substrate, where the opacity increases with increasingthickness. To confirm the number of layers of graphene, we alsoconducted a contrast profile analysis. Two greyscale valueprofiles of cross-section over the sample are shown in Fig. 2b.The substrate shows a greyscale value of ~207, the first step ismonolayer graphene, and the greyscale values exhibit a linearincrease as the number of layers increases 43. In addition, wecharacterized graphene flakes by both Raman and transmissionspectroscopy (Fig. 2c,d). Fig. 2c shows typical Raman spectra ofgraphene with 1–4 layers acquired under the same conditions.Two main peaks at ~1580 and ~2690 cm?1 are the G-band and2D-band, respectively. As we used high-quality Kish graphitecrystal for mechanical exfoliation, no D-band is observed. Theintensity of the G-band increases with the increase of graphenethickness. Meanwhile, the full width at half maximum of the 2Dpeaks gradually increases and the peak-center blue shifts as thenumber of graphene layers increases, which is in goodagreement with the Raman spectra of few-layer graphenereported in the literature 44–46. According to the transmissionspectra (Fig. 2d), the absorbance of the monolayer graphene is~2.0%, and the absorbance of graphene flake increases almostlinearly with the number of layers exhibiting the typical featuresof graphite with different thicknesses 47,48. All of the aboveresults accurately confirm the number of layers of our samples.

    Fig. 3a shows an optical microscopic image of the grapheneflake on a glass slide substrate with a weak optical contrast. Fig.3b shows a PT image of graphene in the air with a scanning areaof 40 μm × 40 μm. The PT signal has a uniform distributionwithin sample areas with the same thickness. It should be notedthat the graphene has absorption at 1064 nm which may affectthe results. To exclude the effect of the probe beam, weperformed the PT measurement without excitation of the heatingbeam and no PT signal was observed (Fig. S1, SupportingInformation). A statistical analysis of the PT intensity formonolayer, bilayer and trilayer graphene is shown in Fig. 3c. ThePT intensity is about 0.018 mV for monolayer, 0.028 mV forbilayer and 0.029 mV for trilayer, indicating a nonlinearrelationship between PT intensity and thickness differing from the absorption of graphene 49. This may be due to the limitedcapability of air as a PT medium to induce temporal and spatiallyvarying refractive index changes and hence prevent theidentification of small differences in the bilayer and trilayersamples 50.

    In this technique, a frequency-modulated heating beamexcites the absorber, which releases heat to the surroundingmedium via nonradiative relaxation pathways 51. The heat bringsabout a temperature increase in the region around the absorber,which induces a temporally and spatially modulated refractiveindex change. To enhance PT sensitivity, we further choseglycerol as the medium to conduct PT measurements. Fig. 4adisplays a PT image of the few-layer graphene flakes in theglycerol. The statistics of the PT intensity for 1–4 layers ofgraphene flakes are shown in Fig. 4b. The PT intensity is about2.2 × 10?3 mV for the monolayer, 7.6 × 10?4 mV for the bilayer,8.5 × 10?3 mV for the trilayer and 1.7 × 10?2 mV for the fourlayer.The signal to noise ratio (SNR) of graphene in differentPT media was calculated to be 8.1, 13.5, 13.9 and 14.9 for 1–4layers graphene in the air and 9.2, 3.2, 36.4 and 74.2 in theglycerol, respectively. Except for the bilayer graphene, the SNRin the glycerol is significantly higher than that in the air.Comparatively, the PT intensity in the glycerol has a nonlinearand non-monotonic relationship with thickness. If we comparethese values with the PT intensity of monolayer graphene, wecan see that the PT intensity of monolayer graphene is higherthan that of bilayer graphene. In addition, the PT intensity of 2–4 layers shows a good linear relationship with thickness. Thereason for the unusually high PT intensity of monolayergraphene could be the extremely high thermal conductivity 52,53,which eases the delivery of heat to glycerol and causes a higherPT signal as compared to bilayer graphene. In contrast, the PTintensity of bilayer graphene is lower than expected, although itshows a good linear relationship with the trilayer and four-layergraphene. It is known that the thermal conductivity can bemodulated by varying the geometric structures or foldingprocess, and the thermal conductivity of folded graphene can besignificantly decreased of its counterpart due to the phononUmklapp and normal scattering enhancement 54,55. Thus, wealso investigated the effects of folding on the PT intensity ofgraphene both in the air and glycerol (Fig. S2). Similar to fewlayergraphene flakes, the PT intensity of the folded plane regionin the air is two times that of the monolayer graphene, while theintensity of folded plane region in the glycerol is about half thatof monolayer graphene, which is consistent with the bilayergraphene.

    Then, we comprehensively analyzed the relationship betweenthe PT intensity and heating or probe power. Graphene andgraphite absorb light in a wide wavelength range, but in ourplatform, the PT response is a differential signal between theheating light on and off, so it can be assumed that the PT signalmainly originates from the absorption of the heating beam by thesample. To avoid damaging the sample, we controlled the powerof the heating and probe light within 200 and 3000 μW,respectively. The PT intensity as a function of the powers of thetwo laser beams is shown in Fig. 4c,d. The PT intensity showeda good linear power dependence for both laser beams. In detail,the slopes of the PT intensity of monolayer, bilayer, trilayer andfour-layer to the heating power are 1.1 × 10?5, 3.7 × 10?6, 4.9 ×10?5, and 10.3 × 10?5 mV?μW?1, and to the probe power are 4.5× 10?7, 2.9 × 10?7, 2.9 × 10?6 and 6.3 × 10?6 mV?μW?1,respectively.

    The PT signal comes from the heat generated by theabsorption of light. Due to the extremely low fluorescencequantum yield of graphene, almost all the absorbed light isconverted to heat. Thus the absorption cross-section can becalculated directly from the PT intensity because PT intensity isproportional to the absorption cross-section as discussed in thesupporting information. Here we used 20 nm gold nanoparticles(Zhongkeleiming Daojin Technology Co., Ltd.) as referenceswhich also have extremely low fluorescence quantum yield. Theabsorption cross-section of graphene at 532 nm is calculated tobe σabs (532 nm) ≈ 1.6 × 10?18 cm2 per C atom, as described inthe Supporting Information. This result is very close to the valueof 5 × 10?18 cm2 per C atom calculated based on the 2.3%absorption of graphene.

    4 Conclusions

    In conclusion, we have systematically investigated thethermal properties of graphene flakes with different thicknesses.We found a nonlinear relationship between PT intensity andthickness in both air and glycerol as PT media. The PT intensityof the monolayer graphene in both air and glycerol is significantly different from that of few-layer graphene flakes. Amuch clearer PT contrast and a non-monotonic PT response wereobserved in the glycerol medium. Then, we analyzed therelationship between the PT intensity and heating or probepower, demonstrating that the PT intensity exhibits a good linearrelationship with the power of both laser beams. In addition, wealso calculated the absorption cross-section of graphene by thePT signal. This study provides insights into the light absorptionand thermal relaxation features of graphene flakes with differentthicknesses, and provides a possible method to recognize thethickness by PT signals. Thanks to the various unique propertiesand new applications of few-layer graphene and moirésuperlattices, PT microscopy will provide broader informationfor both future fundamental research and practical applications.

    Author Contributions: Conceptualization, Y.T., W.X. andZ.W.; Sample Preparation, D.Z.; Methodology, W.Y. and Z.W.;Formal Analysis, Z.W., A.D., Y.W., Q.S., L.L. and Y.W.; DataCuration, A.D., Z.W. and Y.W.; Data Curation andVisualization, A.D., Y.W. and Z.W.; Writing – Original DraftPreparation, A.D., Y.W. and Z.W.; Writing – Review amp; Editing,A.D., Y.W., Z.W., Q.S. and L. Z.; Visualization andSupervision, Y.T., W.X. and Z.W.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,666. doi: 10.1126/science.1102896

    (2) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli,G.; Wang, F. Nano Lett. 2010, 10, 1271. doi: 10.1021/nl903868w

    (3) Wang, X.; Du, K.; Liu, Y. Y. F.; Hu, P.; Zhang, J.; Zhang, Q.; Owen,M. H. S.; Lu, X.; Gan, C. K.; Sengupta, P.; et al. 2D Mater. 2016, 3,031009. doi: 10.1088/2053-1583/3/3/031009

    (4) Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.;Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden,D. H.; et al. Nature 2017, 546, 270. doi: 10.1038/nature22391

    (5) Li, L. K.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi,Z.; Chen, L.; Zhang, Z.; Yang, F.; et al. Nat. Nanotechnol. 2017, 12,21. doi: 10.1038/nnano.2016.171

    (6) Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.;Liang, J.; Zhang, Z.; Zhang, Z.; et al. Nature 2019, 570, 91.doi: 10.1038/s41586-019-1226-z

    (7) Fang, S.; Duan, S.; Wang, X.; Chen, S.; Li, L.; Li, H.; Jiang, B.; Liu,C.; Wang, N.; Zhang, L.; et al. Nat. Photon. 2023, 17, 531.doi: 10.1038/s41566-023-01181-5

    (8) Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.;Fan, H.; Fan, Z.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37,2108017. [常誠(chéng), 陳偉, 陳也, 陳永華, 陳雨, 丁峰, 樊春海, 范紅金, 范戰(zhàn)西, 龔成等. 物理化學(xué)學(xué)報(bào), 2021, 37, 2108017.]doi: 10.3866/PKU.WHXB202108017

    (9) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.doi: 10.1038/nmat1849

    (10) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.doi: 10.1038/nature04235

    (11) Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.;Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.doi: 10.1038/nature08105

    (12) Ju, L.; Wang, L.; Cao, T.; Taniguchi, T.; Watanabe, K.; Louie, S. G.;Rana, F.; Park, J.; Hone, J.; Wang, F.; et al. Science 2017, 358, 907.doi: 10.1126/science.aam9175

    (13) Cai, L.; Yu, G. Adv. Mater. 2021, 33, 2004974.doi: 10.1002/adma.202004974

    (14) Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.;Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Nature 2020, 583,821. doi: 10.1038/s41586-020-2393-7

    (15) Lin, M.; Feng, M.; Wu, J.; Ran, F.; Chen, T.; Luo, W.; Wu, H.; Han,W.; Zhang, X.; Liu, X.; et al. Research 2022, 2022, 9819373.doi: 10.34133/2022/9819373

    (16) Liu, M.; Wang, L.; Yu, G. Adv. Sci. 2022, 9, 2103170.doi: 10.1002/advs.202103170

    (17) Xiao, Y.; Liu, J.; Fu, L. Matter 2020, 3, 1142.doi: 10.1016/j.matt.2020.07.001

    (18) Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D.C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev,R. Nat. Mater. 2012, 11, 764. doi: 10.1038/Nmat3386

    (19) No, Y. S.; Choi, H. K.; Kim, J. S.; Kim, H.; Yu, Y. J.; Choi, C. G.;Choi, J. S. Sci. Rep. 2018, 8, 571. doi: 10.1038/s41598-017-19084-1

    (20) Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, T.; Horn, K.;Rotenberg, E. Phys. Rev. Lett. 2007, 98, 206802.doi: 10.1103/PhysRevLett.98.206802

    (21) Lu, X.; Chen, X.; Dubey, S.; Yao, Q.; Li, W.; Wang, X.; Xiong, Q.;Srivastava, A. Nat. Nanotechnol. 2019, 14, 426.doi: 10.1038/s41565-019-0394-1

    (22) Seyler, K. L.; Rivera, P.; Yu, H.; Wilson, N. P.; Ray, E. L.; Mandrus,D. G.; Yan, J.; Yao, W.; Xu, X. Nature 2019, 567, 66.doi: 10.1038/s41586-019-0957-1

    (23) Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.;Taniguchi, T.; Kis, A. Nat. Nanotechnol. 2019, 14, 1104.doi: 10.1038/s41565-019-0559-y

    (24) Yu, H.; Wang, Y.; Tong, Q.; Xu, X.; Yao, W. Phys. Rev. Lett. 2015,115, 187002. doi: 10.1103/PhysRevLett.115.187002

    (25) Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys. -Chim. Sin. 2022,38, 2101020. [陳清, 趙健, 程虎虎, 曲良體. 物理化學(xué)學(xué)報(bào), 2022,38, 2101020.] doi: 10.3866/PKU.WHXB202101020

    (26) Chen, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2020, 36, 1904025. [陳堯,陳政. 物理化學(xué)學(xué)報(bào), 2020, 36, 1904025.]doi: 10.3866/PKU.WHXB201904025

    (27) Bandurin, D. A.; Monch, E.; Kapralov, K.; Phinney, I. Y.; Lindner, K.;Liu, S.; Edgar, J. H.; Dmitriev, I. A.; Jarillo-Herrero, P.; Svintsov, D.;et al. Nat. Phys. 2022, 18, 462. doi: 10.1038/s41567-021-01494-8

    (28) Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod,A. S.; Liu, M. K.; Keilmann, F.; Ozyilmaz, B.; Neto, A. H. C.; et al.Nat. Photon. 2016, 10, 244. doi: 10.1038/Nphoton.2016.45

    (29) Tian, Y.; Tian, H.; Wu, Y. L.; Zhu, L. L.; Tao, L. Q.; Zhang, W.; Shu,Y.; Xie, D.; Yang, Y.; Wei, Z. Y.; et al. Sci. Rep. 2015, 5, 10582.doi: 10.1038/srep10582

    (30) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H.Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589

    (31) Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray,A.; Park, C.; Fransson, E.; Zhong, Y.; et al. Nature 2021, 597, 660.doi: 10.1038/s41586-021-03867-8

    (32) Kong, Y.; Li, X.; Wang, L.; Zhang, Z.; Feng, X.; Liu, J.; Chen, C.;Tong, L.; Zhang, J. ACS Nano 2022, 16, 11338.doi: 10.1021/acsnano.2c04984

    (33) Zhang, Y.; Lv, Q.; Wang, H.; Zhao, S.; Xiong, Q.; Lv, R.; Zhang, X.Science 2022, 378, 169. doi: 10.1126/science.abq0883

    (34) Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H.S.; Jeong, H. Y.; Chhowalla, M. Nature 2022, 610, 61.doi: 10.1038/s41586-022-05134-w

    (35) Ergoktas, M. S.; Soleymani, S.; Kakenov, N.; Wang, K. Y.; Smith, T.B.; Bakan, G.; Balci, S.; Principi, A.; Novoselov, K. S.; Ozdemir, S.K.; et al. Science 2022, 376, 184. doi: 10.1126/science.abn6528

    (36) Adhikari, S.; Spaeth, P.; Kar, A.; Baaske, M. D.; Khatua, S.; Orrit, M.ACS Nano 2020, 14, 16414. doi: 10.1021/acsnano.0c07638

    (37) Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P. V.; Orrit, M. Science 2010,330, 353. doi: 10.1126/science.1195475

    (38) Yang, W.; Wei, Z.; Nie, Y.; Tian, Y. J. Phys. Chem. Lett. 2022, 13,9618. doi: 10.1021/acs.jpclett.2c02228

    (39) Xu, W.; Liu, W.; Schmidt, J. F.; Zhao, W.; Lu, X.; Raab, T.;Diederichs, C.; Gao, W.; Seletskiy, D. V.; Xiong, Q. Nature 2017,541, 62. doi: 10.1038/nature20601

    (40) Li, H.; Li, H.; Wang, X.; Nie, Y.; Liu, C.; Dai, Y.; Ling, J.; Ding, M.;Ling, X.; Xie, D.; et al. Nano Lett. 2021, 21, 6773.doi: 10.1021/acs.nanolett.1c01356

    (41) Yang, W.; Li, M.; Xie, M.; Nie, Y.; Du, A.; Tian, Y. Rev. Sci. Instrum.2021, 92, 083701. doi: 10.1063/5.0048239

    (42) Yang, W.; Li, M.; Xie, M.; Tian, Y. J. Phys. Chem. Lett. 2023, 14,3506. doi: 10.1021/acs.jpclett.3c00491

    (43) Li, H.; Wu, J. M. T.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Zhang, Q.H.; Zhang, H. ACS Nano 2013, 7, 10344. doi: 10.1021/nn4047474

    (44) Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold,C.; Wirtz, L. Nano Lett. 2007, 7, 238. doi: 10.1021/nl061702a

    (45) Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.;Shen, Z.; Thong, J. T. L. Small 2010, 6, 195.doi: 10.1002/smll.200901173

    (46) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.;Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al.Phys. Rev. Lett. 2006, 97, 187401.doi: 10.1103/PhysRevLett.97.187401

    (47) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photon. 2010,4, 611. doi: 10.1038/Nphoton.2010.186

    (48) Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Walker, A.R. H.; Gundlach, D. J.; Nguyen, N. V. Carbon 2016, 99, 348.doi: 10.1016/j.carbon.2015.12.007

    (49) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T.J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.doi: 10.1126/science.1156965

    (50) Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Chem. Sci. 2010,1, 343. doi: 10.1039/c0sc00210k

    (51) Ding, T.; Hou, L.; Meer, H. V. D.; Alivisatos, A. P.; Orrit, M. J. Phys.Chem. Lett. 2016, 7, 2524. doi: 10.1021/acs.jpclett.6b00964

    (52) Ghosh, S.; Bao, W.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C.N.; Balandin, A. A. Nat. Mater. 2010, 9, 555. doi: 10.1038/Nmat2753

    (53) Li, H.; Ying, H.; Chen, X.; Nika, D. L.; Cocemasov, A. I.; Cai, W.;Balandin, A. A.; Chen, S. Nanoscale 2014, 6, 13402.doi: 10.1039/c4nr04455j

    (54) Gao, J.; Si, C.; Yang, Y. R.; Cao, B. Y.; Wang, X. D. ECS J. SolidState Sci. Technol. 2020, 9, 093005. doi: 10.1149/2162-8777/aba7fb

    (55) Ouyang, T.; Chen, Y.; Xie, Y.; Stocks, G. M.; Zhong, J. Appl. Phys.Lett. 2011, 99, 233101. doi: 10.1063/1.3665184

    國(guó)家自然科學(xué)基金(22073046, 22173044, 62011530133), 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFA0406104), 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(020514380256,020514380278), 生命科學(xué)分析化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(SKLACL2217), 江蘇省自然科學(xué)基金(BK20220121)及江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃(KYCX22_0096)資助項(xiàng)目

    猜你喜歡
    石墨烯光吸收
    基于量子點(diǎn)太陽(yáng)電池的高效光學(xué)利用策略
    微光在大氣中的傳輸特性研究
    氧化石墨烯在純棉織物上的抗菌應(yīng)用
    石墨烯負(fù)載納米銀復(fù)合材料的制備及催化性能研究
    功率芯片表面絕緣層厚度對(duì)石墨烯散熱效果的影響
    綜合化學(xué)實(shí)驗(yàn)設(shè)計(jì):RGO/MnO復(fù)合材料的合成及其電化學(xué)性能考察
    考試周刊(2016年85期)2016-11-11 02:09:06
    鋰離子電池石墨烯復(fù)合電極材料專利分析
    單一窄波段光吸收涂層的制備及性能研究*
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    石墨烯量子電容的理論研究
    科技視界(2015年25期)2015-09-01 17:59:32
    国产亚洲av高清不卡| 欧美成狂野欧美在线观看| 国产精品女同一区二区软件 | 麻豆久久精品国产亚洲av| 99国产精品一区二区三区| 国产亚洲精品一区二区www| 国产又黄又爽又无遮挡在线| 国产精品 欧美亚洲| 美女扒开内裤让男人捅视频| 黄色丝袜av网址大全| 高潮久久久久久久久久久不卡| 91老司机精品| 黄色成人免费大全| 精品国产三级普通话版| 天天躁日日操中文字幕| 成人鲁丝片一二三区免费| 丁香六月欧美| 国产一区二区三区视频了| 九九久久精品国产亚洲av麻豆 | 欧美最黄视频在线播放免费| 18禁观看日本| 一个人免费在线观看的高清视频| 老司机午夜十八禁免费视频| 可以在线观看毛片的网站| 亚洲电影在线观看av| 亚洲美女视频黄频| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 两个人的视频大全免费| 天堂√8在线中文| 免费观看的影片在线观看| 熟女少妇亚洲综合色aaa.| 老司机深夜福利视频在线观看| 亚洲真实伦在线观看| 国产成人福利小说| 无人区码免费观看不卡| 中文资源天堂在线| 午夜福利18| 最近视频中文字幕2019在线8| 国产成人aa在线观看| 99精品在免费线老司机午夜| 婷婷精品国产亚洲av在线| 成人特级av手机在线观看| 精品一区二区三区视频在线 | av在线蜜桃| 国产又色又爽无遮挡免费看| 黄片小视频在线播放| 99国产综合亚洲精品| 午夜福利在线观看吧| 国产三级黄色录像| 久久精品国产清高在天天线| 1024香蕉在线观看| 男女做爰动态图高潮gif福利片| 18禁国产床啪视频网站| 午夜福利高清视频| 成人高潮视频无遮挡免费网站| 国产亚洲精品av在线| 久久热在线av| 日本撒尿小便嘘嘘汇集6| 国产麻豆成人av免费视频| 两人在一起打扑克的视频| 日韩欧美在线二视频| 国产成人av激情在线播放| 中文字幕av在线有码专区| 看黄色毛片网站| 国语自产精品视频在线第100页| 97碰自拍视频| 欧美日韩乱码在线| 亚洲精品乱码久久久v下载方式 | 国产熟女xx| 欧美乱色亚洲激情| 91九色精品人成在线观看| 精品免费久久久久久久清纯| 久久亚洲真实| 两人在一起打扑克的视频| 啦啦啦韩国在线观看视频| 亚洲精品在线美女| 久久这里只有精品中国| 久久久久久久午夜电影| 亚洲五月婷婷丁香| 国产成人欧美在线观看| 小蜜桃在线观看免费完整版高清| 动漫黄色视频在线观看| 久久久成人免费电影| 在线观看美女被高潮喷水网站 | 人妻久久中文字幕网| 成人一区二区视频在线观看| 亚洲国产高清在线一区二区三| 婷婷六月久久综合丁香| 欧美成人性av电影在线观看| 日本撒尿小便嘘嘘汇集6| 久久久精品大字幕| 亚洲va日本ⅴa欧美va伊人久久| 黄色 视频免费看| 一a级毛片在线观看| 极品教师在线免费播放| 悠悠久久av| 99热精品在线国产| 亚洲专区国产一区二区| 美女免费视频网站| 黄色视频,在线免费观看| 亚洲成人久久爱视频| 日韩欧美国产在线观看| 亚洲av片天天在线观看| 久久国产精品影院| 97人妻精品一区二区三区麻豆| 亚洲熟妇中文字幕五十中出| 亚洲黑人精品在线| x7x7x7水蜜桃| 啦啦啦韩国在线观看视频| 无限看片的www在线观看| 我的老师免费观看完整版| 国产精品香港三级国产av潘金莲| 在线免费观看的www视频| 精品免费久久久久久久清纯| 久99久视频精品免费| 久久久国产成人精品二区| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 美女黄网站色视频| 国产美女午夜福利| 激情在线观看视频在线高清| 国产精品,欧美在线| 18禁裸乳无遮挡免费网站照片| 亚洲avbb在线观看| 亚洲人成网站高清观看| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人精品一区久久| 国产成人精品久久二区二区免费| 国产极品精品免费视频能看的| 草草在线视频免费看| а√天堂www在线а√下载| 欧美黑人巨大hd| 91麻豆av在线| 一本久久中文字幕| 日韩欧美国产在线观看| 精品久久久久久久久久久久久| 一个人看的www免费观看视频| 国产又色又爽无遮挡免费看| 少妇裸体淫交视频免费看高清| 成人性生交大片免费视频hd| 在线播放国产精品三级| 成人国产综合亚洲| 五月伊人婷婷丁香| 精品国产美女av久久久久小说| 男女视频在线观看网站免费| 狂野欧美激情性xxxx| 中文字幕av在线有码专区| 三级国产精品欧美在线观看 | 在线观看日韩欧美| xxx96com| 99视频精品全部免费 在线 | 久久伊人香网站| 99国产精品一区二区三区| 国产男靠女视频免费网站| 国产成人福利小说| 久久九九热精品免费| 在线播放国产精品三级| 成年版毛片免费区| 中文字幕人成人乱码亚洲影| 偷拍熟女少妇极品色| 中文字幕精品亚洲无线码一区| 国产av麻豆久久久久久久| 国产99白浆流出| 宅男免费午夜| cao死你这个sao货| 欧美日韩亚洲国产一区二区在线观看| 无限看片的www在线观看| 日韩精品青青久久久久久| 国产精品爽爽va在线观看网站| 免费观看的影片在线观看| 91麻豆av在线| 国产亚洲精品av在线| 一区二区三区高清视频在线| 亚洲18禁久久av| 亚洲国产精品成人综合色| 欧美色欧美亚洲另类二区| 久久人妻av系列| 老司机在亚洲福利影院| 99在线人妻在线中文字幕| 美女 人体艺术 gogo| 757午夜福利合集在线观看| 久久这里只有精品中国| 狂野欧美激情性xxxx| 欧美日本视频| 99热只有精品国产| 色av中文字幕| 国产99白浆流出| 国产精品女同一区二区软件 | 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 亚洲午夜精品一区,二区,三区| 亚洲av免费在线观看| 很黄的视频免费| 婷婷精品国产亚洲av| 国产午夜精品久久久久久| 精品久久蜜臀av无| 国内少妇人妻偷人精品xxx网站 | 欧美一区二区精品小视频在线| 长腿黑丝高跟| 好男人在线观看高清免费视频| 亚洲第一电影网av| 久久久久免费精品人妻一区二区| 97碰自拍视频| 18禁美女被吸乳视频| 老司机福利观看| 亚洲欧美日韩东京热| 啦啦啦免费观看视频1| 午夜福利免费观看在线| 国产97色在线日韩免费| 老司机深夜福利视频在线观看| www.自偷自拍.com| 亚洲美女视频黄频| 91在线精品国自产拍蜜月 | 精品午夜福利视频在线观看一区| 亚洲最大成人中文| 美女黄网站色视频| 成人三级做爰电影| 国产爱豆传媒在线观看| 午夜免费激情av| 久久精品国产综合久久久| 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产 | 可以在线观看的亚洲视频| 国产精品国产高清国产av| 长腿黑丝高跟| 天堂影院成人在线观看| 色噜噜av男人的天堂激情| 久久久色成人| 亚洲专区国产一区二区| 一个人免费在线观看电影 | 亚洲国产精品sss在线观看| 搡老妇女老女人老熟妇| 欧美中文日本在线观看视频| 日韩国内少妇激情av| 久久久国产欧美日韩av| 国产精品久久久人人做人人爽| 大型黄色视频在线免费观看| 久久久国产精品麻豆| 国产精品日韩av在线免费观看| 日日干狠狠操夜夜爽| 一个人免费在线观看电影 | 欧美一级毛片孕妇| 在线观看午夜福利视频| 一个人观看的视频www高清免费观看 | 久久久久久久精品吃奶| 国产视频内射| 搞女人的毛片| 日韩精品中文字幕看吧| 日本 av在线| 久久久久国内视频| 国产成人福利小说| x7x7x7水蜜桃| 亚洲自偷自拍图片 自拍| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三| 欧美zozozo另类| 欧美中文综合在线视频| 亚洲欧美精品综合一区二区三区| 香蕉av资源在线| 母亲3免费完整高清在线观看| 国产成人啪精品午夜网站| 成人高潮视频无遮挡免费网站| 国产一区在线观看成人免费| 麻豆av在线久日| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久久电影 | 97超视频在线观看视频| 久久久色成人| 国产激情欧美一区二区| 黄色 视频免费看| 久久久久久国产a免费观看| 国产视频内射| 日韩免费av在线播放| 99久久无色码亚洲精品果冻| 在线国产一区二区在线| 亚洲熟妇中文字幕五十中出| 国产人伦9x9x在线观看| 五月伊人婷婷丁香| 日本黄色片子视频| 三级国产精品欧美在线观看 | 日韩欧美 国产精品| 一个人观看的视频www高清免费观看 | 男人舔奶头视频| 男人的好看免费观看在线视频| 欧美绝顶高潮抽搐喷水| 国产精品日韩av在线免费观看| 久久热在线av| 午夜免费观看网址| 色尼玛亚洲综合影院| 日韩欧美精品v在线| 女警被强在线播放| 我的老师免费观看完整版| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲美女久久久| 亚洲精品粉嫩美女一区| 亚洲在线自拍视频| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 欧美在线黄色| aaaaa片日本免费| 午夜视频精品福利| 两性夫妻黄色片| 国产精品1区2区在线观看.| 香蕉丝袜av| 日日夜夜操网爽| 国产精品一及| 亚洲av电影不卡..在线观看| 97人妻精品一区二区三区麻豆| 国内精品久久久久久久电影| 此物有八面人人有两片| 女警被强在线播放| 亚洲 国产 在线| 青草久久国产| 夜夜看夜夜爽夜夜摸| 啪啪无遮挡十八禁网站| 色老头精品视频在线观看| 久久中文字幕人妻熟女| 亚洲国产欧美网| 一区福利在线观看| 又爽又黄无遮挡网站| 此物有八面人人有两片| 国产成人一区二区三区免费视频网站| 亚洲专区中文字幕在线| 欧美日韩一级在线毛片| 不卡一级毛片| 青草久久国产| 老汉色∧v一级毛片| 又大又爽又粗| 熟女电影av网| 性色avwww在线观看| 手机成人av网站| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜亚洲福利在线播放| 国产成+人综合+亚洲专区| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 精品久久久久久久毛片微露脸| 国产高清videossex| 又粗又爽又猛毛片免费看| 狠狠狠狠99中文字幕| 伦理电影免费视频| www.自偷自拍.com| 一夜夜www| 在线播放国产精品三级| 午夜福利在线在线| 国产精品久久视频播放| 中文字幕高清在线视频| 美女大奶头视频| 国产亚洲av嫩草精品影院| 国产免费男女视频| 久久天堂一区二区三区四区| 麻豆国产av国片精品| 好看av亚洲va欧美ⅴa在| 久久99热这里只有精品18| 国产成人aa在线观看| 手机成人av网站| 麻豆国产97在线/欧美| 亚洲天堂国产精品一区在线| 日本免费一区二区三区高清不卡| 嫁个100分男人电影在线观看| 日本成人三级电影网站| 一边摸一边抽搐一进一小说| 国产视频一区二区在线看| a级毛片在线看网站| 岛国在线观看网站| 老鸭窝网址在线观看| 国产精品99久久99久久久不卡| 国产高清有码在线观看视频| 成年版毛片免费区| 中国美女看黄片| 婷婷精品国产亚洲av| 最近最新免费中文字幕在线| 黄色成人免费大全| 性色avwww在线观看| 黑人巨大精品欧美一区二区mp4| 欧美黑人巨大hd| 网址你懂的国产日韩在线| 啪啪无遮挡十八禁网站| 小说图片视频综合网站| 男人的好看免费观看在线视频| 黑人巨大精品欧美一区二区mp4| 麻豆av在线久日| 精品不卡国产一区二区三区| 毛片女人毛片| av在线蜜桃| 国产真实乱freesex| 黄色 视频免费看| 1024手机看黄色片| 999久久久国产精品视频| 亚洲人与动物交配视频| 国产三级在线视频| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 成人三级做爰电影| 免费av毛片视频| www.熟女人妻精品国产| 亚洲,欧美精品.| 制服人妻中文乱码| 男女床上黄色一级片免费看| 亚洲欧美日韩高清在线视频| 亚洲无线在线观看| 久久精品亚洲精品国产色婷小说| 少妇裸体淫交视频免费看高清| 欧美绝顶高潮抽搐喷水| 一个人观看的视频www高清免费观看 | 国产一区在线观看成人免费| 日本在线视频免费播放| 黄片小视频在线播放| 国内精品久久久久精免费| 19禁男女啪啪无遮挡网站| 看片在线看免费视频| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 精品国产乱码久久久久久男人| 国产精品乱码一区二三区的特点| 最近最新免费中文字幕在线| 亚洲精品在线美女| 在线免费观看不下载黄p国产 | 高清在线国产一区| 日本精品一区二区三区蜜桃| 可以在线观看毛片的网站| 国产精品,欧美在线| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利18| 久久久久久大精品| 成人av在线播放网站| 免费无遮挡裸体视频| 视频区欧美日本亚洲| 精品午夜福利视频在线观看一区| av在线蜜桃| 高清毛片免费观看视频网站| 激情在线观看视频在线高清| 91av网站免费观看| 精品国产乱子伦一区二区三区| 亚洲国产精品sss在线观看| 桃红色精品国产亚洲av| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 久久久精品大字幕| 男女床上黄色一级片免费看| 黑人欧美特级aaaaaa片| 国产精品免费一区二区三区在线| 99久久成人亚洲精品观看| 美女免费视频网站| 国模一区二区三区四区视频 | 欧美在线黄色| 女人被狂操c到高潮| 亚洲专区中文字幕在线| 真人一进一出gif抽搐免费| 在线观看66精品国产| 狠狠狠狠99中文字幕| 好看av亚洲va欧美ⅴa在| 久久香蕉国产精品| 国产 一区 欧美 日韩| 国产精品av视频在线免费观看| 性欧美人与动物交配| 大型黄色视频在线免费观看| 黄片大片在线免费观看| 国产精品1区2区在线观看.| 欧美黑人巨大hd| 一二三四在线观看免费中文在| 国产成人精品无人区| 欧美乱色亚洲激情| 免费看美女性在线毛片视频| 国产av麻豆久久久久久久| 19禁男女啪啪无遮挡网站| 国产高清videossex| 婷婷六月久久综合丁香| 欧美日韩亚洲国产一区二区在线观看| 巨乳人妻的诱惑在线观看| 99热6这里只有精品| 嫩草影视91久久| 久99久视频精品免费| 国产乱人视频| 精品熟女少妇八av免费久了| 999久久久精品免费观看国产| 美女cb高潮喷水在线观看 | 琪琪午夜伦伦电影理论片6080| 脱女人内裤的视频| 天堂动漫精品| 亚洲天堂国产精品一区在线| 香蕉av资源在线| 高清在线国产一区| 亚洲成人中文字幕在线播放| 又爽又黄无遮挡网站| 午夜福利在线观看吧| 欧美精品啪啪一区二区三区| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 成人三级黄色视频| 国产成人欧美在线观看| 在线视频色国产色| 国产成人欧美在线观看| 啦啦啦免费观看视频1| 特大巨黑吊av在线直播| 18禁黄网站禁片免费观看直播| 欧美3d第一页| 亚洲成人精品中文字幕电影| 美女高潮的动态| 欧美av亚洲av综合av国产av| 在线免费观看不下载黄p国产 | 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 国产精品国产高清国产av| 搡老妇女老女人老熟妇| 国产探花在线观看一区二区| 国产伦精品一区二区三区视频9 | 综合色av麻豆| 国产激情偷乱视频一区二区| АⅤ资源中文在线天堂| 亚洲在线自拍视频| 亚洲av免费在线观看| x7x7x7水蜜桃| 一进一出抽搐gif免费好疼| 俺也久久电影网| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 99热精品在线国产| 亚洲18禁久久av| 午夜久久久久精精品| 美女免费视频网站| 日本撒尿小便嘘嘘汇集6| 欧美+亚洲+日韩+国产| 欧美日韩福利视频一区二区| 国产免费福利视频在线观看| 亚洲国产最新在线播放| 欧美高清成人免费视频www| 长腿黑丝高跟| 国产精品麻豆人妻色哟哟久久 | 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 自拍偷自拍亚洲精品老妇| 国产中年淑女户外野战色| 久久久午夜欧美精品| 少妇熟女欧美另类| av在线观看视频网站免费| 麻豆乱淫一区二区| 又粗又爽又猛毛片免费看| 色视频www国产| 亚洲成人精品中文字幕电影| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 国内揄拍国产精品人妻在线| 蜜桃久久精品国产亚洲av| 亚洲怡红院男人天堂| 国产久久久一区二区三区| 亚洲国产精品专区欧美| 国产 一区 欧美 日韩| 97超视频在线观看视频| 联通29元200g的流量卡| 精品久久国产蜜桃| 日韩成人伦理影院| 精品免费久久久久久久清纯| 少妇高潮的动态图| 99久久精品国产国产毛片| av在线蜜桃| 中文乱码字字幕精品一区二区三区 | 国产成人a区在线观看| 国产av不卡久久| 赤兔流量卡办理| 国产精品日韩av在线免费观看| 色5月婷婷丁香| 99九九线精品视频在线观看视频| 青春草视频在线免费观看| 黄片wwwwww| 极品教师在线视频| 91aial.com中文字幕在线观看| 久久99热6这里只有精品| 国产真实伦视频高清在线观看| 国产v大片淫在线免费观看| 国产不卡一卡二| 晚上一个人看的免费电影| 在线观看一区二区三区| 精品久久久久久久久久久久久| 色吧在线观看| 直男gayav资源| 久久婷婷人人爽人人干人人爱| 超碰97精品在线观看| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 老司机福利观看| 久久精品国产自在天天线| 欧美另类亚洲清纯唯美| 热99在线观看视频| 老司机福利观看| 热99在线观看视频| 午夜久久久久精精品| 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院入口| 国产精品国产三级专区第一集| 亚洲av成人精品一区久久| 国产精品爽爽va在线观看网站| 91aial.com中文字幕在线观看| 国产精品久久久久久久久免| 最新中文字幕久久久久| 亚洲精品一区蜜桃| 国产精品一及| 亚洲人成网站高清观看| 色吧在线观看| 大又大粗又爽又黄少妇毛片口| 长腿黑丝高跟| 人人妻人人看人人澡| 一级毛片久久久久久久久女| 黄色一级大片看看| 97热精品久久久久久| 小说图片视频综合网站| 春色校园在线视频观看| 一区二区三区高清视频在线| 午夜爱爱视频在线播放|