• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同層數(shù)石墨烯的光熱顯微成像

    2024-07-16 00:00:00都安邦王源璠魏志弘張東旭李理楊煒青孫千璐趙麗麗徐偉高田玉璽
    物理化學(xué)學(xué)報(bào) 2024年5期
    關(guān)鍵詞:石墨烯光吸收

    摘要:二維層狀材料(石墨烯、二維過渡金屬硫族化合物等)因具有獨(dú)特的物理性質(zhì),引起了研究學(xué)者們的廣泛關(guān)注,極大促進(jìn)了化學(xué)、材料科學(xué)和凝聚態(tài)物理學(xué)的發(fā)展。開發(fā)能夠探究層狀材料中層數(shù)依賴的光學(xué)、電學(xué)、力學(xué)和熱學(xué)特性的新技術(shù)一直是二維材料領(lǐng)域最活躍的研究方向之一。光熱顯微鏡利用光激發(fā)后非輻射躍遷產(chǎn)生的熱效應(yīng),可實(shí)現(xiàn)在單個(gè)顆?;騿畏肿铀缴铣上衽c檢測(cè),并實(shí)時(shí)捕捉微觀尺度熱弛豫和熱傳輸過程。本文對(duì)比研究了石墨烯薄片在不同光熱介質(zhì)(空氣、甘油)中隨厚度變化的光熱特性,發(fā)現(xiàn)了在兩種介質(zhì)中光熱信號(hào)強(qiáng)度與樣品厚度之間均存在非線性依賴關(guān)系。相比于空氣介質(zhì),甘油介質(zhì)中光熱信號(hào)強(qiáng)度具有更高的對(duì)比度,且隨著厚度增加表現(xiàn)出非單調(diào)變化。該研究提供了不同介質(zhì)環(huán)境中不同層數(shù)石墨烯光吸收和熱弛豫特征的細(xì)節(jié)信息,相關(guān)研究結(jié)論將為層狀材料及其異質(zhì)結(jié)的熱學(xué)性質(zhì)研究提供依據(jù)。

    關(guān)鍵詞:石墨烯;光熱顯微成像;層數(shù)依賴;光吸收;非輻射弛豫

    中圖分類號(hào):O642

    Photothermal Microscopy of Graphene Flakes with Different Thicknesses

    Abstract: Two-dimensional (2D) layered materials have attracted widespreadresearch interest and have significantly promoted the development of chemistry,material science, and condensed matter physics. Since the emergence ofgraphene, 2D materials with unique mechanical, thermal, optical, and electricalproperties have been developed. In the case of graphene, its extraordinarymechanical strength, carrier mobility, thermal conductivity, and light-absorptionover the whole spectral range in UV-Vis and near infrared guarantee a wide rangeof prospective applications. The electronic structure and properties of grapheneflakes are dominated by their thickness, twist angle, and dielectric environment.Tailoring the interlayer interactions of graphene layers can provide additionalopportunities for developing optical and electrical nanodevices, resulting inpioneering outcomes, such as the magic-angle graphene. Over the past decade,one of the most active research directions in the field of 2D materials has been the development of novel techniques thatcan probe the thickness-dependent physical properties of layered materials. In contrast with the intensively studiedmechanical, electrical, and optical properties, microscopic investigations of the thermal characteristics of graphene flakesremain to be explored. Photothermal (PT) microscopy is a new all-optical microscopic imaging technique that has gainedsubstantial attention and undergone long-term development in recent years, especially in the fields of nanomaterials andlife sciences. The fundamental principle of PT microscopy is to heat the target sample based on the absorption of a heatingbeam and use a probe beam to indirectly capture information on microscale heat generation and transport. Inspired byseveral pioneering studies, we conducted a comparative study of the thickness-dependent PT properties of mechanicallyexfoliated graphene flakes in two different PT media, i.e., air and glycerol. Whereas a nonlinear relationship between thePT intensity and sample thickness was observed in both media, the PT intensities from the two media were distinct. A highcontrastand non-monotonic PT response was observed in glycerol. The PT intensity of monolayer graphene was higherthan that of bilayer graphene, and the PT intensities of graphene flakes with 2–4 layers exhibited a good linear relationshipwith the thickness. We also analyzed the relationship between the PT intensity and heating or probe power, demonstratingthat the PT intensity as well as the absorption cross-section of graphene derived from the PT signal vary linearly with thepower of both laser beams. Our study provides insights into light absorption and thermal relaxation features of grapheneflakes of different thicknesses, which can guide future studies on the thermal properties of layered materials and theirheterostructures.

    Key Words: Graphene; Photothermal microscopy; Thickness-dependence; Optical absorption;Nonradiative relaxation

    1 Introduction

    The rise of graphene 1 and other monolayer materials 2–6 hasopened up a new 2D world for exploring thickness-dependentphysical phenomena on the atomic scale 7,8. Taking graphite asan example, the variations in the number of layers affect theelectronic structure and its optical and thermal properties 9. Tobe consistent with most literature, here we use graphene flakesto represent monolayer to few-layer graphene flakes. Monolayergraphene has an amazing energy band structure with zero gap,and one of its most important properties is that its charge carriersbehave as massless relativistic particles or Dirac fermions 10. Forbilayer graphene, the band gap can be modulated by applying avertical electric field 11,12. Meanwhile, bilayer graphene ortwisted bilayer graphene exhibits abundant exotic strongcorrelation and topological effects, such as superconductivity,correlated insulating states, and quantum anomalous Hall effect,etc., which significantly contribute to the development ofcondensed matter physics 13–17. In addition, multilayer grapheneoffers unique opportunities whose importance has grown rapidlyin the past few years 18–20. On the other hand, transition metaldichalcogenides (TMDs) from bulk material to monolayer yieldan indirect-to-direct band gap evolution, which opens upabundant research interest in optoelectronics and valleytronics 21–24.

    The above examples show layer-dependent electrical andoptical properties of layered materials, and some exoticcharacteristics at the 2D limit are now being seriously consideredfor applications in optoelectronic devices. After photonabsorption, there are multiple relaxation pathways for anexcited-state electron to go back to the ground state, typical processes including fluorescence/phosphorescence emission andnonradiative pathways, such as thermal relaxation 25, carriertransport 26, graphene plasmonics 27,28, photo-acousticgeneration 29, and photochemical processes 30. Among all theabove pathways, thermal relaxation is the most basic one whichexists in almost all cases. Thus, understanding and control ofthermal relaxation is essential in a wide range of optoelectronicapplications including sensing, energy harvesting, and lighting.Recently, there are also pioneering progresses on the thermalproperties of layered materials 31,32 and their heterostructures 33.Kim’s work reported that by stacking atomically thin layers ofMoS2 randomly, the heat transfer capacity of layered materialswould vary greatly in different directions 31. Zhang et al.achieved electrical and thermal rectification simultaneously in aMoSe2/WS2 lateral heterojunction 33. However, a systematicstudy on the layer-dependent thermal relaxation properties oflayered materials is still lacking. In this regard, a technique forprecisely capturing and imaging the layer-number-dependentthermal properties of nanomaterials is essential for acceleratingthe study and exploration of graphene and related materials 34,35.

    Photothermal (PT) microscopy is a new optical microscopicimaging technique that has gained extensive attention and longtermdevelopment in recent years, especially in nanomaterialsand life sciences 36,37. The principle of PT microscopy is basedon the thermal lens effect 36,38, which detects the small additionaldivergence of the probe beam by heating-induced thermal lenses,i.e., the refractive index gradient around the heated analytes(Fig. 1, right inset). Thus, PT imaging is actually an indirectdetection of absorption, thermal relaxation, and transport for materials with neglectable fluorescence quantum yield. In thiswork, we utilized PT microscopy to gain substantial insights intothe thickness-dependent thermal properties of mechanicallyexfoliated graphene flakes. Effects on different PT media, andexcitation power have been investigated and discussed. The PTintensity shows a monotonically increasing but nonlinearrelationship with thickness in the air media, while in the glycerolmedia we found a non-monotonic PT response. This study offersinsights into the thermal relaxation characteristics of grapheneflakes with different thicknesses. Moreover, since opticalemission and thermal relaxation are two competing processes,our work will also benefit future research related to absorption,emission, and thermal generation in layered materials and theirheterostructures.

    2 Experimental

    2.1 Sample preparation

    Kish graphite crystals were purchased from CovalentMaterials Corp, Japan. We prepared mono- and multi-layergraphene flakes on glass coverslips (Fisherbrand) by a PDMSassisted(Titan) dry transfer method after mechanical exfoliation1,39,40. The coverslips were cleaned with Milli-Q water (type 1),special wash solution in turn for 40 min, blown with nitrogen (≥99.999%), and exposed to plasma for 2 min not only for highercleanliness but also for higher transferability from PDMS to thecoverslip.

    2.2 Micro-area Raman and transmittance spectroscopy

    Raman spectra and absorption spectra were measured by aconfocal micro-Raman spectrometer (HORIBA Scientific,Horiba HR Evolution, Japan). To collect the Raman spectra ofmono- and multi-layer graphene flakes, a 633 nm continuous wave laser was used as the excitation source (~5 mW whenarriving at the sample), and a 600 lines per millimeter gratingwas used to get a suitable resolution (~1 cm?1). For theabsorption spectra, we measured the micro-area transmittance ofthe sample. A 50× objective (Olympus, NA = 0.5) was appliedto excite the sample, and a 100× objective (Olympus, NA = 0.9)was used to collect the signal. We used a near-infrared light(Thorlabs, SLS201L (/M), the United States) ranging from 360nm to 2600 nm as the excitation source and a 100 lines permillimeter grating was used to obtain sufficient intensity. Thetransmittance spectra of a sample (T) and coverslip substrate (T0)were collected, and then the final micro-area transmittancespectra were obtained according to T/T0. All spectra wereprocessed in Labspec6 software.

    2.3 Optical contrast analysis

    To identify the number of layers of graphene flakes, wemeasured the greyscale values of the samples. Color opticalimages (RGB format) of few-layer graphene were converted togreyscale images. Then, we measured the greyscale values ofdifferent domains in the graphene flakes. Above data processingwas completed with ImageJ.

    2.4 Photothermal microscopy

    A schematic diagram of the optical setup and workingmechanism is shown in Fig. 1, similar to the previous work 41,42.Briefly, the PT signal arises from a slight change in the refractiveindex of the PT medium (air or glycerol) due to the thermalrelaxation after absorption of the heating beam. The refractiveindex change is measured with another probe beam with adifferent wavelength. In this work, a 532 nm laser was used asthe excitation source (heating beam), and a 1064 nm laser wasused as the probe beam. The heating beam was modulated usingan AOM (AA Opto Electronic, MT80-A1,5-VIS, France) at a repetition frequency of 5 kHz. The probe beam overlapped withthe heating beam on the sample through a high NA objective(UPlanFLN, NA = 0.6–1.3, Japan). Then, the backscattered lightof the probe beam was collected by the same objective lens anddetected by a photodiode (PD) (Femto, OE-300-IN-01-FC,Germany). The PT signal was extracted from the modulation ofthe scattered light by a lock-in amplifier at the same frequencyas the heating beam. Optical transmission images can becollected by an optical camera (Mshot, MS23). PT imagescovering a whole sample area can be obtained by scanning thesample with a motorized positioning stage (TANGO 2 Desktop,Germany).

    3 Results and discussion

    To systematically study the layer-dependent PT properties ofgraphite, graphene flakes with different thicknesses wereprepared using the mechanical exfoliation method 1. Fig. 2ashows the optical image of the few-layer graphene flakes on aglass slide substrate, where the opacity increases with increasingthickness. To confirm the number of layers of graphene, we alsoconducted a contrast profile analysis. Two greyscale valueprofiles of cross-section over the sample are shown in Fig. 2b.The substrate shows a greyscale value of ~207, the first step ismonolayer graphene, and the greyscale values exhibit a linearincrease as the number of layers increases 43. In addition, wecharacterized graphene flakes by both Raman and transmissionspectroscopy (Fig. 2c,d). Fig. 2c shows typical Raman spectra ofgraphene with 1–4 layers acquired under the same conditions.Two main peaks at ~1580 and ~2690 cm?1 are the G-band and2D-band, respectively. As we used high-quality Kish graphitecrystal for mechanical exfoliation, no D-band is observed. Theintensity of the G-band increases with the increase of graphenethickness. Meanwhile, the full width at half maximum of the 2Dpeaks gradually increases and the peak-center blue shifts as thenumber of graphene layers increases, which is in goodagreement with the Raman spectra of few-layer graphenereported in the literature 44–46. According to the transmissionspectra (Fig. 2d), the absorbance of the monolayer graphene is~2.0%, and the absorbance of graphene flake increases almostlinearly with the number of layers exhibiting the typical featuresof graphite with different thicknesses 47,48. All of the aboveresults accurately confirm the number of layers of our samples.

    Fig. 3a shows an optical microscopic image of the grapheneflake on a glass slide substrate with a weak optical contrast. Fig.3b shows a PT image of graphene in the air with a scanning areaof 40 μm × 40 μm. The PT signal has a uniform distributionwithin sample areas with the same thickness. It should be notedthat the graphene has absorption at 1064 nm which may affectthe results. To exclude the effect of the probe beam, weperformed the PT measurement without excitation of the heatingbeam and no PT signal was observed (Fig. S1, SupportingInformation). A statistical analysis of the PT intensity formonolayer, bilayer and trilayer graphene is shown in Fig. 3c. ThePT intensity is about 0.018 mV for monolayer, 0.028 mV forbilayer and 0.029 mV for trilayer, indicating a nonlinearrelationship between PT intensity and thickness differing from the absorption of graphene 49. This may be due to the limitedcapability of air as a PT medium to induce temporal and spatiallyvarying refractive index changes and hence prevent theidentification of small differences in the bilayer and trilayersamples 50.

    In this technique, a frequency-modulated heating beamexcites the absorber, which releases heat to the surroundingmedium via nonradiative relaxation pathways 51. The heat bringsabout a temperature increase in the region around the absorber,which induces a temporally and spatially modulated refractiveindex change. To enhance PT sensitivity, we further choseglycerol as the medium to conduct PT measurements. Fig. 4adisplays a PT image of the few-layer graphene flakes in theglycerol. The statistics of the PT intensity for 1–4 layers ofgraphene flakes are shown in Fig. 4b. The PT intensity is about2.2 × 10?3 mV for the monolayer, 7.6 × 10?4 mV for the bilayer,8.5 × 10?3 mV for the trilayer and 1.7 × 10?2 mV for the fourlayer.The signal to noise ratio (SNR) of graphene in differentPT media was calculated to be 8.1, 13.5, 13.9 and 14.9 for 1–4layers graphene in the air and 9.2, 3.2, 36.4 and 74.2 in theglycerol, respectively. Except for the bilayer graphene, the SNRin the glycerol is significantly higher than that in the air.Comparatively, the PT intensity in the glycerol has a nonlinearand non-monotonic relationship with thickness. If we comparethese values with the PT intensity of monolayer graphene, wecan see that the PT intensity of monolayer graphene is higherthan that of bilayer graphene. In addition, the PT intensity of 2–4 layers shows a good linear relationship with thickness. Thereason for the unusually high PT intensity of monolayergraphene could be the extremely high thermal conductivity 52,53,which eases the delivery of heat to glycerol and causes a higherPT signal as compared to bilayer graphene. In contrast, the PTintensity of bilayer graphene is lower than expected, although itshows a good linear relationship with the trilayer and four-layergraphene. It is known that the thermal conductivity can bemodulated by varying the geometric structures or foldingprocess, and the thermal conductivity of folded graphene can besignificantly decreased of its counterpart due to the phononUmklapp and normal scattering enhancement 54,55. Thus, wealso investigated the effects of folding on the PT intensity ofgraphene both in the air and glycerol (Fig. S2). Similar to fewlayergraphene flakes, the PT intensity of the folded plane regionin the air is two times that of the monolayer graphene, while theintensity of folded plane region in the glycerol is about half thatof monolayer graphene, which is consistent with the bilayergraphene.

    Then, we comprehensively analyzed the relationship betweenthe PT intensity and heating or probe power. Graphene andgraphite absorb light in a wide wavelength range, but in ourplatform, the PT response is a differential signal between theheating light on and off, so it can be assumed that the PT signalmainly originates from the absorption of the heating beam by thesample. To avoid damaging the sample, we controlled the powerof the heating and probe light within 200 and 3000 μW,respectively. The PT intensity as a function of the powers of thetwo laser beams is shown in Fig. 4c,d. The PT intensity showeda good linear power dependence for both laser beams. In detail,the slopes of the PT intensity of monolayer, bilayer, trilayer andfour-layer to the heating power are 1.1 × 10?5, 3.7 × 10?6, 4.9 ×10?5, and 10.3 × 10?5 mV?μW?1, and to the probe power are 4.5× 10?7, 2.9 × 10?7, 2.9 × 10?6 and 6.3 × 10?6 mV?μW?1,respectively.

    The PT signal comes from the heat generated by theabsorption of light. Due to the extremely low fluorescencequantum yield of graphene, almost all the absorbed light isconverted to heat. Thus the absorption cross-section can becalculated directly from the PT intensity because PT intensity isproportional to the absorption cross-section as discussed in thesupporting information. Here we used 20 nm gold nanoparticles(Zhongkeleiming Daojin Technology Co., Ltd.) as referenceswhich also have extremely low fluorescence quantum yield. Theabsorption cross-section of graphene at 532 nm is calculated tobe σabs (532 nm) ≈ 1.6 × 10?18 cm2 per C atom, as described inthe Supporting Information. This result is very close to the valueof 5 × 10?18 cm2 per C atom calculated based on the 2.3%absorption of graphene.

    4 Conclusions

    In conclusion, we have systematically investigated thethermal properties of graphene flakes with different thicknesses.We found a nonlinear relationship between PT intensity andthickness in both air and glycerol as PT media. The PT intensityof the monolayer graphene in both air and glycerol is significantly different from that of few-layer graphene flakes. Amuch clearer PT contrast and a non-monotonic PT response wereobserved in the glycerol medium. Then, we analyzed therelationship between the PT intensity and heating or probepower, demonstrating that the PT intensity exhibits a good linearrelationship with the power of both laser beams. In addition, wealso calculated the absorption cross-section of graphene by thePT signal. This study provides insights into the light absorptionand thermal relaxation features of graphene flakes with differentthicknesses, and provides a possible method to recognize thethickness by PT signals. Thanks to the various unique propertiesand new applications of few-layer graphene and moirésuperlattices, PT microscopy will provide broader informationfor both future fundamental research and practical applications.

    Author Contributions: Conceptualization, Y.T., W.X. andZ.W.; Sample Preparation, D.Z.; Methodology, W.Y. and Z.W.;Formal Analysis, Z.W., A.D., Y.W., Q.S., L.L. and Y.W.; DataCuration, A.D., Z.W. and Y.W.; Data Curation andVisualization, A.D., Y.W. and Z.W.; Writing – Original DraftPreparation, A.D., Y.W. and Z.W.; Writing – Review amp; Editing,A.D., Y.W., Z.W., Q.S. and L. Z.; Visualization andSupervision, Y.T., W.X. and Z.W.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. E.; Zhang,Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,666. doi: 10.1126/science.1102896

    (2) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli,G.; Wang, F. Nano Lett. 2010, 10, 1271. doi: 10.1021/nl903868w

    (3) Wang, X.; Du, K.; Liu, Y. Y. F.; Hu, P.; Zhang, J.; Zhang, Q.; Owen,M. H. S.; Lu, X.; Gan, C. K.; Sengupta, P.; et al. 2D Mater. 2016, 3,031009. doi: 10.1088/2053-1583/3/3/031009

    (4) Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.;Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden,D. H.; et al. Nature 2017, 546, 270. doi: 10.1038/nature22391

    (5) Li, L. K.; Kim, J.; Jin, C.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi,Z.; Chen, L.; Zhang, Z.; Yang, F.; et al. Nat. Nanotechnol. 2017, 12,21. doi: 10.1038/nnano.2016.171

    (6) Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.;Liang, J.; Zhang, Z.; Zhang, Z.; et al. Nature 2019, 570, 91.doi: 10.1038/s41586-019-1226-z

    (7) Fang, S.; Duan, S.; Wang, X.; Chen, S.; Li, L.; Li, H.; Jiang, B.; Liu,C.; Wang, N.; Zhang, L.; et al. Nat. Photon. 2023, 17, 531.doi: 10.1038/s41566-023-01181-5

    (8) Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.;Fan, H.; Fan, Z.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37,2108017. [常誠(chéng), 陳偉, 陳也, 陳永華, 陳雨, 丁峰, 樊春海, 范紅金, 范戰(zhàn)西, 龔成等. 物理化學(xué)學(xué)報(bào), 2021, 37, 2108017.]doi: 10.3866/PKU.WHXB202108017

    (9) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.doi: 10.1038/nmat1849

    (10) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.doi: 10.1038/nature04235

    (11) Zhang, Y.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.;Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.doi: 10.1038/nature08105

    (12) Ju, L.; Wang, L.; Cao, T.; Taniguchi, T.; Watanabe, K.; Louie, S. G.;Rana, F.; Park, J.; Hone, J.; Wang, F.; et al. Science 2017, 358, 907.doi: 10.1126/science.aam9175

    (13) Cai, L.; Yu, G. Adv. Mater. 2021, 33, 2004974.doi: 10.1002/adma.202004974

    (14) Cao, Y.; Rodan-Legrain, D.; Rubies-Bigorda, O.; Park, J. M.;Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Nature 2020, 583,821. doi: 10.1038/s41586-020-2393-7

    (15) Lin, M.; Feng, M.; Wu, J.; Ran, F.; Chen, T.; Luo, W.; Wu, H.; Han,W.; Zhang, X.; Liu, X.; et al. Research 2022, 2022, 9819373.doi: 10.34133/2022/9819373

    (16) Liu, M.; Wang, L.; Yu, G. Adv. Sci. 2022, 9, 2103170.doi: 10.1002/advs.202103170

    (17) Xiao, Y.; Liu, J.; Fu, L. Matter 2020, 3, 1142.doi: 10.1016/j.matt.2020.07.001

    (18) Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D.C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev,R. Nat. Mater. 2012, 11, 764. doi: 10.1038/Nmat3386

    (19) No, Y. S.; Choi, H. K.; Kim, J. S.; Kim, H.; Yu, Y. J.; Choi, C. G.;Choi, J. S. Sci. Rep. 2018, 8, 571. doi: 10.1038/s41598-017-19084-1

    (20) Ohta, T.; Bostwick, A.; McChesney, J. L.; Seyller, T.; Horn, K.;Rotenberg, E. Phys. Rev. Lett. 2007, 98, 206802.doi: 10.1103/PhysRevLett.98.206802

    (21) Lu, X.; Chen, X.; Dubey, S.; Yao, Q.; Li, W.; Wang, X.; Xiong, Q.;Srivastava, A. Nat. Nanotechnol. 2019, 14, 426.doi: 10.1038/s41565-019-0394-1

    (22) Seyler, K. L.; Rivera, P.; Yu, H.; Wilson, N. P.; Ray, E. L.; Mandrus,D. G.; Yan, J.; Yao, W.; Xu, X. Nature 2019, 567, 66.doi: 10.1038/s41586-019-0957-1

    (23) Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.;Taniguchi, T.; Kis, A. Nat. Nanotechnol. 2019, 14, 1104.doi: 10.1038/s41565-019-0559-y

    (24) Yu, H.; Wang, Y.; Tong, Q.; Xu, X.; Yao, W. Phys. Rev. Lett. 2015,115, 187002. doi: 10.1103/PhysRevLett.115.187002

    (25) Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys. -Chim. Sin. 2022,38, 2101020. [陳清, 趙健, 程虎虎, 曲良體. 物理化學(xué)學(xué)報(bào), 2022,38, 2101020.] doi: 10.3866/PKU.WHXB202101020

    (26) Chen, Y.; Chen, Z. Acta Phys. -Chim. Sin. 2020, 36, 1904025. [陳堯,陳政. 物理化學(xué)學(xué)報(bào), 2020, 36, 1904025.]doi: 10.3866/PKU.WHXB201904025

    (27) Bandurin, D. A.; Monch, E.; Kapralov, K.; Phinney, I. Y.; Lindner, K.;Liu, S.; Edgar, J. H.; Dmitriev, I. A.; Jarillo-Herrero, P.; Svintsov, D.;et al. Nat. Phys. 2022, 18, 462. doi: 10.1038/s41567-021-01494-8

    (28) Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod,A. S.; Liu, M. K.; Keilmann, F.; Ozyilmaz, B.; Neto, A. H. C.; et al.Nat. Photon. 2016, 10, 244. doi: 10.1038/Nphoton.2016.45

    (29) Tian, Y.; Tian, H.; Wu, Y. L.; Zhu, L. L.; Tao, L. Q.; Zhang, W.; Shu,Y.; Xie, D.; Yang, Y.; Wei, Z. Y.; et al. Sci. Rep. 2015, 5, 10582.doi: 10.1038/srep10582

    (30) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H.Nat. Chem. 2013, 5, 263. doi: 10.1038/nchem.1589

    (31) Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray,A.; Park, C.; Fransson, E.; Zhong, Y.; et al. Nature 2021, 597, 660.doi: 10.1038/s41586-021-03867-8

    (32) Kong, Y.; Li, X.; Wang, L.; Zhang, Z.; Feng, X.; Liu, J.; Chen, C.;Tong, L.; Zhang, J. ACS Nano 2022, 16, 11338.doi: 10.1021/acsnano.2c04984

    (33) Zhang, Y.; Lv, Q.; Wang, H.; Zhao, S.; Xiong, Q.; Lv, R.; Zhang, X.Science 2022, 378, 169. doi: 10.1126/science.abq0883

    (34) Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H.S.; Jeong, H. Y.; Chhowalla, M. Nature 2022, 610, 61.doi: 10.1038/s41586-022-05134-w

    (35) Ergoktas, M. S.; Soleymani, S.; Kakenov, N.; Wang, K. Y.; Smith, T.B.; Bakan, G.; Balci, S.; Principi, A.; Novoselov, K. S.; Ozdemir, S.K.; et al. Science 2022, 376, 184. doi: 10.1126/science.abn6528

    (36) Adhikari, S.; Spaeth, P.; Kar, A.; Baaske, M. D.; Khatua, S.; Orrit, M.ACS Nano 2020, 14, 16414. doi: 10.1021/acsnano.0c07638

    (37) Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P. V.; Orrit, M. Science 2010,330, 353. doi: 10.1126/science.1195475

    (38) Yang, W.; Wei, Z.; Nie, Y.; Tian, Y. J. Phys. Chem. Lett. 2022, 13,9618. doi: 10.1021/acs.jpclett.2c02228

    (39) Xu, W.; Liu, W.; Schmidt, J. F.; Zhao, W.; Lu, X.; Raab, T.;Diederichs, C.; Gao, W.; Seletskiy, D. V.; Xiong, Q. Nature 2017,541, 62. doi: 10.1038/nature20601

    (40) Li, H.; Li, H.; Wang, X.; Nie, Y.; Liu, C.; Dai, Y.; Ling, J.; Ding, M.;Ling, X.; Xie, D.; et al. Nano Lett. 2021, 21, 6773.doi: 10.1021/acs.nanolett.1c01356

    (41) Yang, W.; Li, M.; Xie, M.; Nie, Y.; Du, A.; Tian, Y. Rev. Sci. Instrum.2021, 92, 083701. doi: 10.1063/5.0048239

    (42) Yang, W.; Li, M.; Xie, M.; Tian, Y. J. Phys. Chem. Lett. 2023, 14,3506. doi: 10.1021/acs.jpclett.3c00491

    (43) Li, H.; Wu, J. M. T.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Zhang, Q.H.; Zhang, H. ACS Nano 2013, 7, 10344. doi: 10.1021/nn4047474

    (44) Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold,C.; Wirtz, L. Nano Lett. 2007, 7, 238. doi: 10.1021/nl061702a

    (45) Hao, Y.; Wang, Y.; Wang, L.; Ni, Z.; Wang, Z.; Wang, R.; Koo, C. K.;Shen, Z.; Thong, J. T. L. Small 2010, 6, 195.doi: 10.1002/smll.200901173

    (46) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.;Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al.Phys. Rev. Lett. 2006, 97, 187401.doi: 10.1103/PhysRevLett.97.187401

    (47) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photon. 2010,4, 611. doi: 10.1038/Nphoton.2010.186

    (48) Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Walker, A.R. H.; Gundlach, D. J.; Nguyen, N. V. Carbon 2016, 99, 348.doi: 10.1016/j.carbon.2015.12.007

    (49) Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T.J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308.doi: 10.1126/science.1156965

    (50) Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Chem. Sci. 2010,1, 343. doi: 10.1039/c0sc00210k

    (51) Ding, T.; Hou, L.; Meer, H. V. D.; Alivisatos, A. P.; Orrit, M. J. Phys.Chem. Lett. 2016, 7, 2524. doi: 10.1021/acs.jpclett.6b00964

    (52) Ghosh, S.; Bao, W.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C.N.; Balandin, A. A. Nat. Mater. 2010, 9, 555. doi: 10.1038/Nmat2753

    (53) Li, H.; Ying, H.; Chen, X.; Nika, D. L.; Cocemasov, A. I.; Cai, W.;Balandin, A. A.; Chen, S. Nanoscale 2014, 6, 13402.doi: 10.1039/c4nr04455j

    (54) Gao, J.; Si, C.; Yang, Y. R.; Cao, B. Y.; Wang, X. D. ECS J. SolidState Sci. Technol. 2020, 9, 093005. doi: 10.1149/2162-8777/aba7fb

    (55) Ouyang, T.; Chen, Y.; Xie, Y.; Stocks, G. M.; Zhong, J. Appl. Phys.Lett. 2011, 99, 233101. doi: 10.1063/1.3665184

    國(guó)家自然科學(xué)基金(22073046, 22173044, 62011530133), 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFA0406104), 中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(020514380256,020514380278), 生命科學(xué)分析化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(SKLACL2217), 江蘇省自然科學(xué)基金(BK20220121)及江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃(KYCX22_0096)資助項(xiàng)目

    猜你喜歡
    石墨烯光吸收
    基于量子點(diǎn)太陽(yáng)電池的高效光學(xué)利用策略
    微光在大氣中的傳輸特性研究
    氧化石墨烯在純棉織物上的抗菌應(yīng)用
    石墨烯負(fù)載納米銀復(fù)合材料的制備及催化性能研究
    功率芯片表面絕緣層厚度對(duì)石墨烯散熱效果的影響
    綜合化學(xué)實(shí)驗(yàn)設(shè)計(jì):RGO/MnO復(fù)合材料的合成及其電化學(xué)性能考察
    考試周刊(2016年85期)2016-11-11 02:09:06
    鋰離子電池石墨烯復(fù)合電極材料專利分析
    單一窄波段光吸收涂層的制備及性能研究*
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    石墨烯量子電容的理論研究
    科技視界(2015年25期)2015-09-01 17:59:32
    精品亚洲乱码少妇综合久久| 国产野战对白在线观看| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久男人| 一区二区三区精品91| 久久久久视频综合| av国产久精品久网站免费入址| 麻豆乱淫一区二区| 91麻豆精品激情在线观看国产 | 母亲3免费完整高清在线观看| 女人精品久久久久毛片| 午夜福利影视在线免费观看| 巨乳人妻的诱惑在线观看| 99精国产麻豆久久婷婷| 国产成人免费观看mmmm| 亚洲欧美清纯卡通| 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 国产成人免费观看mmmm| 夜夜骑夜夜射夜夜干| 国产精品一国产av| 国产99久久九九免费精品| 建设人人有责人人尽责人人享有的| 午夜免费观看性视频| 国产免费福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲成人手机| 极品少妇高潮喷水抽搐| 欧美xxⅹ黑人| 一级毛片 在线播放| 好男人视频免费观看在线| 999久久久国产精品视频| 十八禁网站网址无遮挡| 欧美日韩视频精品一区| 高清不卡的av网站| 老熟女久久久| 人人妻人人澡人人爽人人夜夜| 欧美成狂野欧美在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 91麻豆精品激情在线观看国产 | 久久久久精品国产欧美久久久 | 国产高清视频在线播放一区 | 波多野结衣一区麻豆| 丰满迷人的少妇在线观看| 一边摸一边做爽爽视频免费| 国产不卡av网站在线观看| 电影成人av| 日韩av免费高清视频| 久久精品亚洲熟妇少妇任你| 人妻 亚洲 视频| 99国产精品一区二区蜜桃av | 亚洲成av片中文字幕在线观看| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 午夜激情av网站| 一区福利在线观看| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 晚上一个人看的免费电影| 中文字幕人妻丝袜一区二区| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 激情视频va一区二区三区| 亚洲国产精品999| 超色免费av| 青春草亚洲视频在线观看| 秋霞在线观看毛片| 在线天堂中文资源库| 欧美亚洲 丝袜 人妻 在线| 中国国产av一级| 热re99久久精品国产66热6| 久久av网站| 丝袜人妻中文字幕| 啦啦啦中文免费视频观看日本| 国产一级毛片在线| 成人免费观看视频高清| 亚洲欧美成人综合另类久久久| 国产1区2区3区精品| 狠狠精品人妻久久久久久综合| www.av在线官网国产| 精品国产乱码久久久久久小说| 亚洲,一卡二卡三卡| 成人国产一区最新在线观看 | 欧美精品亚洲一区二区| 久久亚洲国产成人精品v| 只有这里有精品99| 99久久99久久久精品蜜桃| 国产亚洲精品第一综合不卡| 伊人亚洲综合成人网| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 男男h啪啪无遮挡| 乱人伦中国视频| 老司机影院毛片| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲 | 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 丝袜美腿诱惑在线| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 欧美黑人欧美精品刺激| 色婷婷av一区二区三区视频| 精品福利观看| 欧美人与善性xxx| 日本午夜av视频| 精品高清国产在线一区| 久久精品aⅴ一区二区三区四区| 最近最新中文字幕大全免费视频 | 黄色视频不卡| 日韩中文字幕视频在线看片| 精品福利观看| 女性生殖器流出的白浆| av片东京热男人的天堂| 九色亚洲精品在线播放| 九草在线视频观看| 成人三级做爰电影| 亚洲精品国产区一区二| 香蕉丝袜av| 啦啦啦在线观看免费高清www| 下体分泌物呈黄色| 99re6热这里在线精品视频| 99香蕉大伊视频| 好男人视频免费观看在线| 搡老岳熟女国产| 久久天躁狠狠躁夜夜2o2o | 欧美日韩综合久久久久久| 首页视频小说图片口味搜索 | 一区在线观看完整版| 精品少妇内射三级| 久热这里只有精品99| 日韩大码丰满熟妇| 中文字幕av电影在线播放| 新久久久久国产一级毛片| 国产女主播在线喷水免费视频网站| 一级毛片电影观看| 自线自在国产av| 女性生殖器流出的白浆| 免费看十八禁软件| 欧美日韩一级在线毛片| 亚洲综合色网址| 五月天丁香电影| 蜜桃在线观看..| 69精品国产乱码久久久| 国产成人av激情在线播放| 男人舔女人的私密视频| 国产精品av久久久久免费| 777米奇影视久久| 久久久久国产精品人妻一区二区| 国产男女超爽视频在线观看| 国产精品三级大全| 国产高清视频在线播放一区 | 久久久久视频综合| 飞空精品影院首页| 中文字幕另类日韩欧美亚洲嫩草| 黄色怎么调成土黄色| 国产在线一区二区三区精| 国产伦人伦偷精品视频| 国产高清videossex| 国产一级毛片在线| 老鸭窝网址在线观看| 91老司机精品| 精品亚洲成国产av| 久久性视频一级片| 中文乱码字字幕精品一区二区三区| 亚洲,欧美精品.| 又大又黄又爽视频免费| 国产精品99久久99久久久不卡| 亚洲男人天堂网一区| 亚洲伊人久久精品综合| 日韩中文字幕欧美一区二区 | 国产精品久久久久久精品电影小说| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 日韩一区二区三区影片| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| 亚洲精品中文字幕在线视频| 99国产综合亚洲精品| www.熟女人妻精品国产| 精品亚洲成a人片在线观看| 一级片免费观看大全| 一级毛片女人18水好多 | 国产一区二区 视频在线| 亚洲图色成人| 一区二区三区精品91| 99九九在线精品视频| 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 色视频在线一区二区三区| 97在线人人人人妻| 国产精品一国产av| 一级a爱视频在线免费观看| 九草在线视频观看| 亚洲精品国产色婷婷电影| 亚洲av成人不卡在线观看播放网 | 伦理电影免费视频| 午夜福利视频在线观看免费| 69精品国产乱码久久久| 亚洲精品成人av观看孕妇| 免费高清在线观看日韩| xxxhd国产人妻xxx| 国产精品香港三级国产av潘金莲 | 欧美97在线视频| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看 | 成年人黄色毛片网站| 人妻人人澡人人爽人人| 国产在线视频一区二区| 亚洲欧洲精品一区二区精品久久久| 男人舔女人的私密视频| 亚洲五月婷婷丁香| 777久久人妻少妇嫩草av网站| 国产欧美亚洲国产| 国产视频首页在线观看| 日韩 欧美 亚洲 中文字幕| 免费观看a级毛片全部| 久久久久网色| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 成年动漫av网址| 一区二区av电影网| 亚洲精品在线美女| 亚洲精品自拍成人| 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| 真人做人爱边吃奶动态| 国产伦理片在线播放av一区| 久久久国产一区二区| 纯流量卡能插随身wifi吗| 亚洲av欧美aⅴ国产| 一区二区三区四区激情视频| 国产不卡av网站在线观看| 亚洲免费av在线视频| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久5区| 9色porny在线观看| 久久精品aⅴ一区二区三区四区| 精品久久久久久电影网| 天堂俺去俺来也www色官网| 黑丝袜美女国产一区| 精品第一国产精品| 成人午夜精彩视频在线观看| 少妇的丰满在线观看| 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 午夜福利视频精品| 一二三四社区在线视频社区8| 2018国产大陆天天弄谢| 精品亚洲成国产av| 欧美成狂野欧美在线观看| 中国国产av一级| 欧美亚洲日本最大视频资源| 国产精品一区二区在线观看99| 免费av中文字幕在线| 亚洲av在线观看美女高潮| 一区二区三区精品91| 老司机影院成人| 国产三级黄色录像| 色视频在线一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲欧美成人综合另类久久久| 日韩一区二区三区影片| 日韩人妻精品一区2区三区| 美国免费a级毛片| 男女床上黄色一级片免费看| 一级毛片电影观看| 午夜福利乱码中文字幕| av网站在线播放免费| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 久热爱精品视频在线9| 肉色欧美久久久久久久蜜桃| 久久精品国产综合久久久| 亚洲视频免费观看视频| 欧美精品一区二区免费开放| 亚洲国产最新在线播放| 深夜精品福利| 欧美日韩一级在线毛片| 国产成人a∨麻豆精品| 精品亚洲乱码少妇综合久久| 男女免费视频国产| xxxhd国产人妻xxx| 亚洲 国产 在线| 国产成人精品在线电影| 久久久久视频综合| 九色亚洲精品在线播放| 国产日韩欧美在线精品| 国产伦人伦偷精品视频| 人人澡人人妻人| 亚洲少妇的诱惑av| 久久精品亚洲av国产电影网| 国产在视频线精品| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 中文字幕精品免费在线观看视频| 久久精品aⅴ一区二区三区四区| 亚洲av国产av综合av卡| 亚洲精品国产区一区二| 黑丝袜美女国产一区| 国产高清国产精品国产三级| 日韩制服丝袜自拍偷拍| 超色免费av| 亚洲欧美清纯卡通| www.999成人在线观看| 在线av久久热| 亚洲专区国产一区二区| 精品国产一区二区三区久久久樱花| 黑人欧美特级aaaaaa片| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| 咕卡用的链子| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 国产黄色视频一区二区在线观看| 久久女婷五月综合色啪小说| av天堂久久9| 伊人久久大香线蕉亚洲五| 精品免费久久久久久久清纯 | 国产精品久久久久久精品电影小说| 色网站视频免费| 久久国产亚洲av麻豆专区| 99国产精品免费福利视频| 在线观看国产h片| 国产av一区二区精品久久| 国产男人的电影天堂91| 波多野结衣av一区二区av| 亚洲伊人久久精品综合| 好男人电影高清在线观看| 日本色播在线视频| 在线观看www视频免费| 伊人亚洲综合成人网| 男人爽女人下面视频在线观看| 少妇裸体淫交视频免费看高清 | 国产亚洲一区二区精品| 中文欧美无线码| 亚洲欧美激情在线| 母亲3免费完整高清在线观看| 在线 av 中文字幕| 美女大奶头黄色视频| 久久久久网色| 亚洲国产欧美一区二区综合| 亚洲欧美日韩另类电影网站| 大香蕉久久成人网| 美女视频免费永久观看网站| 操出白浆在线播放| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| 精品人妻1区二区| 国产国语露脸激情在线看| 三上悠亚av全集在线观看| 亚洲天堂av无毛| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 精品国产超薄肉色丝袜足j| 超色免费av| 黄网站色视频无遮挡免费观看| 最新的欧美精品一区二区| 日韩 亚洲 欧美在线| 久久免费观看电影| 日韩中文字幕欧美一区二区 | 精品人妻一区二区三区麻豆| 少妇的丰满在线观看| 一个人免费看片子| 高清av免费在线| 美女午夜性视频免费| 国产一区亚洲一区在线观看| avwww免费| 国产成人啪精品午夜网站| 欧美黑人精品巨大| 成人18禁高潮啪啪吃奶动态图| 亚洲成人国产一区在线观看 | 欧美日韩综合久久久久久| 久久精品国产综合久久久| 欧美日韩综合久久久久久| 咕卡用的链子| 亚洲国产精品一区二区三区在线| 国产片特级美女逼逼视频| 亚洲一码二码三码区别大吗| 欧美日韩精品网址| 一区二区三区精品91| 久久久久久免费高清国产稀缺| 香蕉国产在线看| 黄色 视频免费看| 一区在线观看完整版| 欧美 日韩 精品 国产| 精品熟女少妇八av免费久了| 亚洲精品一区蜜桃| av又黄又爽大尺度在线免费看| 欧美在线黄色| 国产视频首页在线观看| www.999成人在线观看| 亚洲,一卡二卡三卡| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 满18在线观看网站| 久久人人爽人人片av| 久久性视频一级片| 999久久久国产精品视频| 国产麻豆69| 国产亚洲精品第一综合不卡| 高清av免费在线| 考比视频在线观看| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 午夜91福利影院| 免费女性裸体啪啪无遮挡网站| 在线 av 中文字幕| 汤姆久久久久久久影院中文字幕| 每晚都被弄得嗷嗷叫到高潮| 色婷婷av一区二区三区视频| 青春草视频在线免费观看| 美女扒开内裤让男人捅视频| kizo精华| 啦啦啦视频在线资源免费观看| 夫妻性生交免费视频一级片| 女性被躁到高潮视频| 久久久亚洲精品成人影院| 亚洲精品第二区| 成年人黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 少妇的丰满在线观看| 精品一品国产午夜福利视频| 久久久久久久久免费视频了| 午夜福利免费观看在线| 老司机亚洲免费影院| 日韩人妻精品一区2区三区| 亚洲熟女毛片儿| 日本午夜av视频| 黑人巨大精品欧美一区二区蜜桃| 久久久久国产一级毛片高清牌| 国产主播在线观看一区二区 | 黑丝袜美女国产一区| 不卡av一区二区三区| 美女大奶头黄色视频| 久久久精品区二区三区| 国产成人一区二区三区免费视频网站 | 精品一品国产午夜福利视频| 久久国产精品人妻蜜桃| 久久久国产精品麻豆| 欧美人与性动交α欧美软件| 1024视频免费在线观看| 飞空精品影院首页| 成人国语在线视频| 国产欧美日韩一区二区三 | 一区二区三区乱码不卡18| 精品免费久久久久久久清纯 | 又大又黄又爽视频免费| 搡老岳熟女国产| 亚洲av电影在线观看一区二区三区| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩精品亚洲av| 国产免费一区二区三区四区乱码| 国产成人精品无人区| 一级黄片播放器| av网站免费在线观看视频| 在线 av 中文字幕| 国产日韩欧美亚洲二区| 十八禁网站网址无遮挡| av一本久久久久| 免费少妇av软件| 十分钟在线观看高清视频www| 精品亚洲成a人片在线观看| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 日本午夜av视频| 国产成人欧美| 69精品国产乱码久久久| 亚洲欧美一区二区三区国产| 美女大奶头黄色视频| 欧美国产精品va在线观看不卡| 黄频高清免费视频| 啦啦啦视频在线资源免费观看| 欧美人与善性xxx| 欧美日韩视频高清一区二区三区二| h视频一区二区三区| 最新在线观看一区二区三区 | 国产免费又黄又爽又色| 99久久精品国产亚洲精品| 亚洲 国产 在线| 别揉我奶头~嗯~啊~动态视频 | av电影中文网址| 亚洲,欧美,日韩| 各种免费的搞黄视频| 国产在线一区二区三区精| 99精品久久久久人妻精品| 久热爱精品视频在线9| 久久人妻熟女aⅴ| 黄色毛片三级朝国网站| 亚洲精品一二三| av网站在线播放免费| 日韩制服丝袜自拍偷拍| 青草久久国产| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o | 国产在线视频一区二区| 亚洲欧洲日产国产| 十八禁高潮呻吟视频| 两性夫妻黄色片| a 毛片基地| 母亲3免费完整高清在线观看| 午夜福利影视在线免费观看| 欧美人与善性xxx| 国产精品欧美亚洲77777| 国产野战对白在线观看| 波多野结衣一区麻豆| 亚洲三区欧美一区| 亚洲人成电影观看| 老司机影院成人| 夫妻性生交免费视频一级片| 国产一区二区 视频在线| 日韩欧美一区视频在线观看| 一边亲一边摸免费视频| 日本91视频免费播放| 别揉我奶头~嗯~啊~动态视频 | 一本大道久久a久久精品| 大香蕉久久网| 9色porny在线观看| 深夜精品福利| 精品第一国产精品| 久久亚洲精品不卡| 亚洲成国产人片在线观看| 日本91视频免费播放| av网站在线播放免费| 男人添女人高潮全过程视频| 一边亲一边摸免费视频| 另类亚洲欧美激情| 欧美大码av| 日本黄色日本黄色录像| 真人做人爱边吃奶动态| 亚洲av电影在线进入| 91九色精品人成在线观看| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 国产福利在线免费观看视频| 一二三四在线观看免费中文在| 婷婷色麻豆天堂久久| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 日本欧美国产在线视频| 性色av乱码一区二区三区2| 手机成人av网站| 男女边摸边吃奶| 狂野欧美激情性bbbbbb| 这个男人来自地球电影免费观看| 亚洲三区欧美一区| 欧美精品一区二区免费开放| 97在线人人人人妻| 久久久久久久久免费视频了| 国产成人精品久久久久久| 妹子高潮喷水视频| 又粗又硬又长又爽又黄的视频| 19禁男女啪啪无遮挡网站| a 毛片基地| 精品一区二区三区四区五区乱码 | 亚洲免费av在线视频| 国产成人一区二区在线| 免费在线观看视频国产中文字幕亚洲 | 嫁个100分男人电影在线观看 | 久久热在线av| 欧美xxⅹ黑人| 18禁观看日本| 搡老乐熟女国产| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美日韩在线播放| www.精华液| 天天添夜夜摸| 建设人人有责人人尽责人人享有的| 18禁裸乳无遮挡动漫免费视频| 一二三四社区在线视频社区8| 下体分泌物呈黄色| 少妇人妻久久综合中文| 亚洲成av片中文字幕在线观看| 国产片特级美女逼逼视频| 人人妻人人澡人人看| 18禁国产床啪视频网站| 在现免费观看毛片| 视频区图区小说| kizo精华| 免费日韩欧美在线观看| 在线观看免费午夜福利视频| 国产又色又爽无遮挡免| 免费在线观看视频国产中文字幕亚洲 | 亚洲av成人精品一二三区| 1024香蕉在线观看| 在现免费观看毛片| 国产成人一区二区三区免费视频网站 | a级毛片在线看网站| 精品人妻一区二区三区麻豆| 亚洲欧美日韩高清在线视频 | 黄频高清免费视频| 久久久久久久国产电影| 欧美大码av| 久久99一区二区三区| 久久精品国产a三级三级三级| 久久人人爽av亚洲精品天堂| 欧美精品一区二区大全| 女人高潮潮喷娇喘18禁视频| 亚洲精品久久午夜乱码| 亚洲激情五月婷婷啪啪| 国产精品麻豆人妻色哟哟久久| 久久精品久久精品一区二区三区| 亚洲激情五月婷婷啪啪| 欧美精品高潮呻吟av久久| 少妇猛男粗大的猛烈进出视频| 久久99精品国语久久久| 免费少妇av软件| 大片免费播放器 马上看| 制服诱惑二区| 80岁老熟妇乱子伦牲交| 欧美 亚洲 国产 日韩一|