• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超薄2D/2D NiPS3/C3N5 異質(zhì)結(jié)的界面工程促進(jìn)光催化產(chǎn)氫

    2024-07-16 00:00:00胡佳偉夏楷楊?yuàn)W張志豪肖雯劉超張勤芳
    物理化學(xué)學(xué)報(bào) 2024年5期
    關(guān)鍵詞:產(chǎn)氫光催化

    摘要:探索高效水分解光催化劑具有獲得氫能源的巨大潛力。調(diào)控異質(zhì)結(jié)界面可以有效地促進(jìn)電荷載流子的分離和太陽能的利用,從而提高光催化活性。本工作使用了一種機(jī)械混合輔助自組裝方法來構(gòu)建NiPS3 (NPS)納米片(NSs)/C3N5(CN) NSs (NPS/CN)異質(zhì)結(jié),即在二維(2D) CN NSs表面緊密沉積2D NPS NSs以形成2D/2D異質(zhì)結(jié)構(gòu)。在可見光下,通過在去離子水和海水中分解水生成氫氣來評價(jià)樣品的光催化性能。與CN NSs和NPS NSs相比,NPS/CN復(fù)合材料顯示出較高的光催化產(chǎn)氫(PHE)活性,這是由于光捕獲能力增加和異質(zhì)結(jié)形成的協(xié)同作用所致。然而,過量的NPS NSs沉積在CN NSs表面會(huì)降低NPS/CN中CN NSs組分的光吸收,從而降低NPS/CN復(fù)合材料的PHE活性。這表明,NPS/CN復(fù)合材料要獲得良好的光催化活性,需要兩個(gè)組分之間適當(dāng)?shù)馁|(zhì)量比。優(yōu)化后的光催化劑(3-NPS/CN)具有良好的結(jié)構(gòu)穩(wěn)定性,在可見光下PHE效率最高,為47.71 μmol?h?1,是CN NSs的2385.50倍。此外,3-NPS/CN在海水中也表現(xiàn)出良好的PHE活性,反應(yīng)速率為8.99 μmol?h?1。采用光電化學(xué)、穩(wěn)態(tài)光致發(fā)光(PL)、時(shí)間分辨光致發(fā)光(TR-PL)、穩(wěn)態(tài)表面光電壓(SPV)和時(shí)間分辨表面光電壓(TPV)技術(shù)研究了不同光催化劑上的電荷分離和遷移。根據(jù)表征結(jié)果提出了一種可能的PHE機(jī)理。在NPS/CN光催化劑中,由于CN NSs和NPS NSs之間的電位差和強(qiáng)的界面電子耦合,光生電子從CN NSs的導(dǎo)帶迅速遷移到NPS NSs的導(dǎo)帶。然后,聚積在NPS NSs組份導(dǎo)帶上的光生電子可以有效地還原質(zhì)子生成氫氣分子。同時(shí),在三乙醇胺(TEOA)分子存在下,CN NSs和NPS NSs的價(jià)帶上的光生空穴被消耗。本研究提供了一種簡單的2D/2D異質(zhì)結(jié)構(gòu)光催化劑制備方法,該方法對于構(gòu)建高效二維異質(zhì)結(jié)光催化劑在能源領(lǐng)域中的應(yīng)用具有重要價(jià)值。

    關(guān)鍵詞:C3N5納米片;NiPS3納米片;光催化;產(chǎn)氫;異質(zhì)結(jié)

    中圖分類號:O643

    Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution

    Abstract: This study focuses on exploring efficientphotocatalysts for water splitting, which holds great potentialfor harnessing hydrogen (H2) as a renewable energy source.Modulating the heterojunction interface is known to enhancecharge carrier separation and solar energy utilization,thereby boosting photocatalytic activity. In this work, amechanical mixing-assisted self-assembly approach wasdeveloped to construct a heterojunction between NiPS3(NPS) nanosheets (NSs) and C3N5 (CN) NSs. Specifically,two-dimensional (2D) NPS NSs were tightly deposited on 2DCN NSs surface to gain a 2D/2D heterostructure. The photocatalytic performance of the synthesized photocatalysts wasdetermined by their ability to generate H2 through water splitting, both in deionized (DI) water and seawater, under visiblelight. The resulting NPS NSs/CN NSs (NPS/CN) composites possessed boosted photocatalytic hydrogen evolution (PHE)activity related to CN NSs and NPS NSs. This improvement was assigned to the synergistic effect of increased lightharvestingcapacity and heterojunction formation. Nevertheless, an excessive amount of deposited NPS NSs on thesurface of CN NSs was found to reduce the light absorption of the CN NSs component in the NPS/CN composites, resultingin decreased PHE activity. Therefore, it was determined that an appropriate mass ratio between the two components isnecessary to achieve excellent photocatalytic activity for the NPS/CN composites. The optimized photocatalyst, referredto as 3-NPS/CN, demonstrated the highest visible-light-driven PHE efficiency of 47.71 μmol?h?1, which was 2385.50 timeshigher than that of CN NSs. Moreover, 3-NPS/CN also exhibited excellent PHE activity in seawater, with a rate of 8.99μmol?h?1. The photoelectrochemical, steady-state photoluminescence (PL), time-resolved PL (TR-PL), steady-state surfacephotovoltage (SPV) and time-resolved surface photovoltage (TPV) techniques were performed to investigate the chargeseparation and migration behaviors of various photocatalysts. Based on the characterization results, our group proposeda reasonable PHE mechanism. In the NPS/CN photocatalysts, photo-induced electrons rapidly migrated from theconduction band (CB) of CN NSs to the CB of NPS NSs due to the potential difference and strong interfacial electroniccoupling between the two materials. The photogenerated electrons accumulated on the CB of the NPS NSs componentefficiently reduced protons to generate H2 molecules. Concurrently, photogenerated holes on the valence band (VB) of CNNSs and NPS NSs were consumed with the assistance of triethanolamine (TEOA) molecules. This study presents a facilemethod for fabricating 2D/2D heterostructured photocatalysts, which hold promise for efficient and robust implementationin energy applications.

    Key Words: C3N5 nanosheets; NiPS3 nanosheets; Photocatalysis; Hydrogen production; Heterojunction

    1 Introduction

    Recently, the escalating energy and environmental challengeshave become crucial global issues. Solar-driven hydrogen (H2)evolution using semiconductor photocatalysts has emerged asa promising approach to harness solar energy 1,2. Titaniumdioxide (TiO2) is a well-known photocatalyst, first reported in1972, and has been commonly used because of its non-toxicity,chemical resistance, abundance and low cost 3–5. However, itswide bandgap restricts its excitation to UV-light only, and itsrapid charge carrier recombination hinders its practicalapplications 4. Therefore, there is a pressing need to developnovel photocatalysts for the effective utilization of the solarenergy 6.

    Graphitic carbon nitride photocatalysts, as typical polymersemiconductors, have garnered increasing attention inphotocatalytic fields. They possess nonmetal characteristics,are environmentally friendly, stable, and have tunablebandgaps 7–9. Among them, C3N5 (CN), with the higher nitrogencontent, shows great potential for visible-light-drivenphotocatalytic water splitting due to its improved sunlightabsorption and more negative CB potential compared tographitic carbon nitride (g-C3N4). However, pristine CN suffersfrom severe charge carrier recombination and limited lightharvesting ability, mainly attributed to its intrinsic band energystructure 10. To overcome these drawbacks, different modification approaches have been explored, includingmorphology control 11,12, cocatalyst deposition 13, elementaldoping 14,15 and heterojunction formation 16,17. Heterojunctionconstruction, in particular, has been widely employed to designnovel CN-based photocatalysts for efficient hydrogenproduction. Examples include NH2-UiO-66/CN 18,LaCoO3/CN 17, C3N4/rGO/CN 19, CdS/CN 20, and CN/poly(triazine imide) 21. Despite the impressive performanceachieved by CN-based heterostructured photocatalysts, thedevelopment of high-efficiency CN-based photocatalysts withefficient charge separation and transfer remains a challengingissue.

    Two-dimensional (2D) transition metal phosphoruschalcogenides (MPCx), such as NiPS3 (NPS), have garneredsignificant interest in the fields of catalysis 22–28,optoelectronics 29,30 and sensing 31 due to their abundantavailability, unique structure, excellent activity, and tunableproperties 32. NPS can be exfoliated into nanosheets (NSs),offering a multifunctional platform for enhancing photocatalytichydrogen evolution (PHE) efficiency 33. The thin thickness ofNPS NSs facilitates charge carrier separation and transport,while the large surface area promotes interfacial electroniccoupling and provides abundant surface reactive sites forcatalysis. Considering the properties of NPS and CN, it isreasonable to expect that constructing heterostructured photocatalysts by combining CN NSs with NPS NSs is expectedto promote visible light-driven PHE performance. Notably, noprevious reports have focused on designing composites based onCN NSs and NPS NSs for PHE.

    In this context, a self-assembly method was employed tocombine NPS NSs with CN NSs. The incorporation of NPS NSsoffers two significant advantages: increased light harvesting andenhanced charge separation. The photocatalytic performance ofthe synthesized NPS/CN composites was determined by visiblelight-driven PHE reaction. The optimal loading amount of NPSNSs in the composites proved crucial in prolonging lifetimes andfacilitating the charge carrier separation, ultimately resulting inenhanced PHE performance. A reasonable PHE mechanism waspresented based on the experimental results.

    2 Experimental section

    The characterization details of the synthesized samples are displayed in the Supporting Information.

    2.1 Materials

    Sodium hydroxide (NaOH, ≥ 96%), sodium sulfite anhydrous(Na2SO3, ≥ 98%), ethanol (C2H5OH, ≥ 99.7%), triethanolamine(TEOA, ≥ 99.9%), 3-amino-1,2,4-triazole (C2H4N4, ≥ 96%),potassium ferricyanide (K3FeN6C6, ≥ 99.5%), potassiumferrocyanide trihydrate (K4FeN6C6?3H2O, ≥ 99%), sodiumsulfate anhydrous (Na2SO4, ≥ 99%) and L-lactic acid (C3H6O3,90%) were purchased from Aladdin Reagent Co., LTD.,Shanghai, China. Bulk NiPS3 (BNPS) with a high purity(≥ 99.999%) were directly bought from Shenzhen Six CarbonTechnology Co., LTD. Methanol (CH3OH, ≥ 99.5%) waspurchased from Jiangsu Tongsheng Chemical Reagent Co., LTD.Sodium sulfite nonahydrate (Na2S·9H2O, ≥ 98%) were providedby Macklin. Potassium bromide (KBr, ≥ 99%), magnesiumchloride hexahydrate (MgCl2?6H2O, ≥ 98%), potassium chloride(KCl, ≥ 99.5%), calcium chloride anhydrous (CaCl2, ≥ 96%) andsodium chloride (NaCl, ≥ 99.5%) were bought from SinopharmChemical Reagent Co., LTD., Shanghai, China.

    2.2 Preparation of C3N5 (CN) nanosheets (NSs)

    To synthesize bulk C3N5 (BCN) 34, 10.0 g of 3-amino-1,2,4-triazole was placed in a covered crucible for the next heating at 550 °C with a rate of 5.0 °C?min?1 for 3 h.

    To obtain C3N5 (CN) nanosheets (NSs), 1.0 g of BCN and 0.36g of NaOH were separately added to 80 mL of deionized (DI)water. The mixture was stirred for 0.5 h and then transferred to aTeflon-lined autoclave. After heating at 120 °C for 12 h, theresulting sediment was collected by centrifugation and washedwith DI water several times until the pH of the suspensionreached approximately 7. The collected solid was dried undervacuum at 60 °C overnight and subsequently calcined in air at500 °C for 2 h with a rate of 5.0 °C?min?1 to obtain CN NSs.

    2.3 Preparation of NiPS3 (NPS) NSs

    A liquid exfoliation method was employed to prepare nickelphosphorus sulfide NiPS3 (NPS) NSs. Initially, 0.1 g of bulkNiPS3 (BNPS) was added into 40 mL of absolute ethanol. The mixture was subjected to magnetic stirring for 0.5 h, resulting ina homogeneous suspension. Subsequently, continuousultrasonication was carried out for 10 h using a sonicatoroperating at 120 W output power, while maintaining an ice-waterbath. Afterward, the suspension containing BNPS wascentrifuged at a speed of 3000 r?min?1 for 8 min. The resultingsupernatant was collected to obtain a suspension of NPSnanosheets (NPS NSs). It is worth noting that the unexfoliatedBNPS was carefully collected and dried under vacuum at 80 °Covernight. The concentration of the NPS NSs suspension wasestimated to be 23.5 μg?mL?1.

    2.4 Synthesis of NPS NSs/CN NSs (NPS/CN)composites

    To fabricate composites of nickel phosphorus sulfidenanosheets/carbon nitride nanosheets (NPS NSs/CN NSs), 0.6 gof CN NSs and a specific amount of NPS NSs suspension (23.5μg?mL?1) were added to an agate mortar. The mixed suspensionswere continuously ground while being exposed to infrared lightirradiation until the absolute ethanol was evaporated completely.The resulting products were designated as x-NPS/CN (where x =1, 3, 5), representing the mass ratio of NPS NSs to CN NSs. Forcomparison, two additional samples, 3-BNPS/CN NSs (3-BNPS/CN) and 3-NPS NSs/BCN (3-NPS/BCN) were preparedusing the same method as for 3-NPS/CN, with the exception ofincorporating BNPS and BCN, respectively.

    2.5 Synthesis of NPS NSs/g-C3N4 NSs composites

    Two types of graphitic carbon nitride nanosheets (g-C3N4NSs) were prepared using melamine and urea as raw materials,respectively. The g-C3N4 NSs derived from melamine weresynthesized based on a previously reported method 9. In a typicalsynthesis, 10.0 g of melamine was placed in a covered crucibleand directly calcined at 550 °C for 2 h in air with a rate of2.3 °C?min?1. Subsequently, 3.0 g of the obtained powder wassubjected to further calcination at 500 °C for 2 h while exposedto air. The resulting powder was collected and labeled as CNMNSs for subsequent use.

    Besides that, g-C3N4 NSs were fabricated using urea as thestarting material 8. Typically, 10.0 g of urea was added to acovered ceramic crucible and subjected to a heating treatment at550 °C (heating rate: 2.5 °C?min?1) for 4 h under ambientatmosphere. The resulting solid sample was ground into apowder. Then, 1.5 g of the obtained powder was uniformly addedto a boat crucible and heated at 500 °C for 4 h. The resultingsample was designated as CNU NSs.

    Two composites, 3-NPS NSs/CNM NSs (3-NPS/CNM) and 3-NPS NSs/CNU NSs (3-NPS/CNU), were synthesized using thesame procedure as described for 3-NPS/CN, but with theincorporation of CNM NSs and CNU NSs, respectively.

    2.6 Photocatalytic H2 evolution measurement

    Photocatalytic hydrogen evolution (PHE) tests of sampleswere conducted in a photocatalytic online reaction andevaluation system (OLPCRS-3, Shanghai Boyi ScientificInstrument Co., China) equipped with a quartz side irradiation reactor (refer to Fig. S1). A 300 W Xenon lamp (Ceaulight, CELHXF300,China) was used as the visible light source, along witha 420 nm cut-off filter. Typically, 40.0 mg photocatalyst, 20 mLTEOA (hole sacrificial regent) and 180 mL DI water wereindividually added to the quartz reactor, and then sonicated for2 min to obtain a uniform suspension. To remove any remainingair, the PHE system was evacuated and purged with argon gasfor several cycles. The amount of produced H2 was measuredusing online gas chromatography (Shimadzu, GC-2014, Japan),equipped with a thermal conductivity detector (TCD). The PHEexperiments with 3-NPS/CN were performed over five cycles toevaluate the photocatalytic stability. Furthermore, PHEexperiments in seawater were conducted using the sameprocedure as described above, with the addition of naturalseawater sourced from Qingdao, Shandong, China.

    The apparent quantum yield (AQY) values of 3-NPS/CN weremeasured under the same experimental conditions as the PHEexperiments, but with the use of monochromatic light sources(λ = 400, 420, 450, 500 nm). The corresponding averageirradiation intensities were measured and are presented in TableS1. The AQY values were achieved based on the followingequation 35:

    where nH2 was the molar mass of generated H2 molecules, h wasthe Planck constant, NA was Avogadro constant, c was the speedof light, P was the intensity of irradiation light, S meant theirradiation area, t was the photocatalysis time, and λ representedthe wavelength of monochromatic light.

    2.7 Photoelectrochemical measurements

    Photoelectrochemical measurements were carried out on aCHI660E electrochemical workstation (Shanghai Chenhua,China) in a standard three-electrode system. Pt foil served as thecounter electrode, while Ag/AgCl (saturated KCl) was used asthe reference electrode. The working electrode was preparedthrough the following steps: 1.0 mg photocatalyst was mixedwith 1 mL Nafion reagent (0.5 wt%, mass fraction) and treatedwith ultrasonication. The resulting slurry (40 μL) was coatedonto the conductive surface of an FTO (Fluorine Tin Oxide)glass plate, with an approximate area of 1 cm2 (1 cm × 1 cm).Linear sweep voltammetry (LSV) measurements wereconducted to study overpotential, and transient photocurrentresponses were recorded in a 0.2 mol?L?1 Na2SO4 aqueoussolution. Mott-Schottky plots were determined in a 0.5 mol?L?1Na2SO4 solution (pH = 2, H2SO4) at a frequency of 1 kHz. Forelectrochemical impedance spectroscopy (EIS) tests, the electrolyteused was a mixed solution of K3[Fe(CN)6]/K4[Fe(CN)6]/KCl (0.01mol?L?1/0.01 mol?L?1/0.5 mol?L?1). The potential measuredusing Ag/AgCl (saturated KCl) was converted to the normalhydrogen electrode (NHE) scale according to the Nernstequation as follows 36:

    ENHE = EAg/AgCl - 0.197 + 0.059 × PH

    3 Results and discussion

    The synthesis process of NPS NSs/CN NSs (NPS/CN)composites is depicted in Fig. 1. Initially, 3-amino-1,2,4-triazolewas heated to release ammonia-based gas during pyrolysis,leading to the formation of bulk C3N5 (BCN). The obtained BCNunderwent alkali-assisted hydrothermal treatment andsubsequent calcination to achieve the thermal oxidative etchingof BCN, resulting in the formation of CN NSs 18. Meanwhile,NPS NSs were obtained through the liquid exfoliation methodassisted by ultrasonic treatment, taking advantage of their lowinterlayer force 33. Finally, the mixed suspension containing NPSNSs and CN NSs was continuously ground to establish a strongconnection between these two components through Van derWaals forces.

    The field emission scanning electron microscopy (FESEM)image of BCN displays a layered structure with curved sheetaccumulation (see Fig. S2). Following the two-stephydrothermal and calcination treatments, the resulting CN NSsexhibits an irregular granular distribution and smaller particlesize compared to BCN. Agglomeration of CN NSs is observeddue to the thermal etching effect (Fig. 2a,b).

    Commercial BNPS displays a two-dimensional (2D) structurewith granular sizes in the micrometer range (Fig. 2c,d). Uponcombining NPS NSs with CN NSs, the morphology of 3-NPS/CNremains almost unchanged compared to CN NSs (Fig. 2e,f). Thiscan be attributed to the low loading amount and uniform dispersion of NPS NSs. Additionally, the textures of 1-NPS/CNand 5-NPS/CN are similar to those of CN NSs and 3-NPS/CN(Fig. S3). It implies that the introduction of NPS NSs with asmall loading amount (lt; 5 wt%) has no significant effect on themicrostructure of CN NSs.

    The morphologies of CN NSs, NPS NSs and 3-NPS/CN werealso investigated using transmission electron microscopy(TEM). CN NSs exhibit a 2D microstructure with stacked sheets(Fig. 3a). The absence of clear lattice fringes in the highresolutionTEM (HRTEM) image confirms their amorphousnature 37 (Fig. 3b). The TEM image of NPS NSs shows distinctnanosheets with a smooth surface (Fig. 3c). The HRTEM imageof NPS NSs reveals lattice fringes with a spacing of 0.17 nm,corresponding to the (060) crystal plane of NiPS3 (Fig. 3d) 32.

    Upon coupling NPS NSs with CN NSs, the morphology of 3-NPS/CN remains similar to that of CN NSs, confirming theminimal impact of NPS NSs loading on the microstructure of CN NSs (Fig. 3e). The HRTEM image of 3-NPS/CN displays a clearlattice boundary at the junction, indicating the formation of a2D/2D heterostructure between NPS NSs and CN NSs (Fig. 3f).The observed lattice fringes of 0.17 nm in the enlarged HRTEMimage of 3-NPS/CN is attributed to the crystal plane of NiPS3(060). Moreover, the absence of lattice fringes on one side of theimage indicates the presence of amorphous CN NSs. Thissuggests that 2D NPS NSs are closely decorated on the surfaceof 2D CN NSs to produce 2D/2D heterostructure between thesetwo components.

    The STEM-HAADF and corresponding elemental mappingimages (Fig. 3g–l) clearly demonstrate the uniform spatialdistribution of carbon (C), nitrogen (N), nickel (Ni), phosphorus(P) and sulfur (S). This confirms the successful integration ofNPS NSs with CN NSs, forming a 2D/2D NPS/CNheterojunction. This structure enables efficient charge carrierseparation.

    The crystal structures of BNPS, CN NSs and x-NPS/CN (x =1, 3, 5) composites were confirmed through X-ray diffraction(XRD) patterns. For CN NSs and BCN (Fig. S4), two diffractionpeaks at 2θ = 13.1°, 27.7°, corresponding to the (100) and (002)planes, respectively. These peaks are associated with in-planestructural ordering and interlayer stacking of the aromaticsystem in graphite materials, respectively 38,39. Compared toBCN, CN NSs exhibit relatively low peak intensities at 2θ =13.1°, 27.7°, indicating a reduced in-plane periodicity andincreased interlayer spacing, confirming the successfulexfoliation from BCN to CN NSs 40. The XRD pattern of BNPS(Fig. 4a) matches well with monoclinic NiPS3 (PDF card No.33-0952), with three prominent peaks at 14.0°, 28.2° and58.1° due to the (001), (002) and (004) planes, respectively24,41. With the increase in NPS NSs loading content, the peakintensities at 14.0°, associated with the (001) plane of NPS,gradually increase in the x-NPS/CN (x = 1, 3, 5) composites.Importantly, the XRD patterns of x-NPS/CN (x = 1, 3, 5)composites contain the characteristic peaks of both NPS and CNNSs, demonstrating the successful preparation of the NPS/CNcomposites.

    Fourier transform infrared (FT-IR) spectra were measured forCN NSs and x-NPS/CN (x = 1, 3, 5) composites to identify theirchemical bonds (Fig. 4b). In the spectrum of CN NSs, a sharpsignal at ~811 cm?1 is related to bending vibrations of N―H 42.Several characteristic peaks observed at 1244, 1323, 1410, 1461,and 1639 cm?1 are assigned to triazine ring stretching, while a prominent signal at 3172 cm?1 originates from N―H stretchingvibration 38,43. The x-NPS/CN (x = 1, 3, 5) composites displaysimilar peak positions to CN NSs, with no significant signalsderived from NPS, indicating the small deposition amount andhigh dispersion of NPS NSs in the x-NPS/CN (x = 1, 3, 5)composites. These results manifest that NPS NSs loading inNPS/CN composites has a negligible effect on the chemicalstates of CN NSs.

    The Brunauer-Emmett-Teller (BET) surface area and poresize distribution of BCN, CN NSs and 3-NPS/CN were recordedand shown in Fig. 5a. The BCN, CN NSs and 3-NPS/CN exhibitsimilar type IV isothermal curves, with hysteresis loop shapesresembling the H3 type at relatively high pressures (P/P0 = 0.5–1.0) 44. The pore size distribution curves (Fig. 5b) indicate astructure for 3-NPS/CN, attributed to the restacking ofnanosheets 6,45. The BET surface areas of BCN, CN NSs and 3-NPS/CN are measured to be 8.9, 37.1 and 31.8 m2?g?1,respectively. Compared to BCN, the significantly increased BETsurface area of CN NSs indicates the successful exfoliation intoCN NSs. The BET surface area of 3-NPS/CN is slightlydecreased compared to CN NSs due to the presence of NPS NSs,which can block existing pores in CN NSs. The high BETsurface area and mesoporous structure of 3-NPS/CN arebeneficial to PHE reaction as they provide abundant activesites 35.

    X-ray photoelectron spectroscopy (XPS) analysis wasconducted to verify the elemental composition and chemical states of the samples. The XPS survey spectrum of 3-NPS/CN(Fig. 6a) reveals the presence of Ni, P, S, O, C and N elements,indicating the combination of NPS NSs with CN NSs in 3-NPS/CN. However, weak signals of Ni, P, and S are detected in3-NPS/CN due to the low loading amount of NPS NSs. The XPSsurvey spectrum of NPS NSs shows additional peaks of C andO, likely originating from adventitious carbon and adsorbedgaseous molecules, respectively. The C 1s XPS spectrum of CNNSs (Fig. 6b) exhibits two prominent peaks at 284.8 and 287.9eV, corresponding to adventitious carbon (C―C) and N=C―Ngroups, respectively 46. In the XPS N 1s spectrum of CN NSs(Fig. 6c), three characteristic peaks are observed at 398.4, 400.2and 404.0 eV, corresponding to C = N―C, C―N =N―C/C―NH2, and π electron delocalization, respectively47. XPS C 1s and N 1s peaks of 3-NPS/CN show slight shiftstoward higher binding energies compared to those of bare CNNSs, confirming the strong interaction between NPS NSs andCN NSs 48.

    Furthermore, the XPS Ni 2p spectrum of NPS NSs (Fig. 6d)exhibits two sets of peaks. One of the triplet peaks at lowerenergies corresponds to the Ni 2p3/2 spin-orbit, with an apparentsignal at 855.0 eV, while the other two weak peaks around 859.7and 864.9 eV are attributed to the satellite peaks of Ni 2p3/2 49.Similarly, the triplet peaks at 872.4, 876.7 and 882.2 eV areassociated with the Ni 2p1/2 spin-orbit 32. The binding energiesof Ni 2p in 3-NPS/CN shift to lower values compared to NPSNSs, suggesting the presence of Ni2+ state in NPS NSs and 3-NPS/CN. The multiple satellite peaks indicate the shake-uptransitions of ligand-to-metal charge transfer 49.

    The high-resolution XPS P 2p spectrum of NPS NSs showstwo divided peaks at 132.0 and 132.9 eV, corresponding to the2p3/2 and 2p1/2 states, respectively (Fig. 6e) 50. Similarly, the XPSS 2p spectrum of NPS NSs exhibits two characteristic peakslocated at 162.5 eV for the S 2p1/2 state and 163.7 eV for the S 2p3/2 state (Fig. 6f), which can be attributed to the ―PS3 group 50.Importantly, compared to NPS NSs, the binding energies ofNi 2p, P 2p and S 2p in 3-NPS/CN shift to lower values,indicating a strong interaction between CN NSs and NPS NSs.These negative shifts in the XPS Ni 2p, P 2p and S 2p bindingenergies of 3-NPS/CN also imply an increased electron densityfor the NPS NSs component, confirming the efficient transportof photo-induced electrons from CN NSs to NPS NSs across thestrong interfaces.

    Visible-light-driven PHE experiments were performed toassess photocatalytic performance of samples, with each sampletested three times for error estimation. The time course of H2generation using triethanolamine (TEOA) as a hole scavenger isshown in Fig. 7a. CN NSs and NPS NSs exhibit negligible H2generation owing to their quick recombination rates of photoinducedcharge carriers (Figs. 7a and S5). However, thecomposites of 1-NPS/CN, 3-NPS/CN and 5-NPS/CN show alinear increase in H2 production with light irradiation time,indicating stable H2 production. However, a slight decreasetendency in PHE activity can be observed for all samples in thefifth hour due to the consumption of the sacrificial agent.

    Among all samples, 3-NPS/CN exhibits the highest PHEefficiency of 47.71 μmol·h?1, which is 2385.50, 13.04 and 1.72times higher than CN NSs, 1-NPS/CN and 5-NPS/CN,respectively (Fig. 7b). The improved PHE activity of 3-NPS/CNis mainly due to the combined effects of widened lightabsorption region and efficient charge carrier separation through the deposition of NPS NSs. However, excessive loading amountof NPS NSs in 5-NPS/CN restrains the light harvesting of theCN NSs component, resulting in reduced charge carriergeneration and decreased PHE activity 8. Therefore, theappropriate loading amount of NPS NSs in NPS/CN compositesis crucial to strike a balance between light harvesting and chargecarrier separation, thereby enhancing the solar energy utilizationand improving PHE activity. Moreover, the PHE activity of 3-NPS/CN surpasses that of most reported materials, assummarized in Table S2.

    The wavelength-dependent AQY values over 3-NPS/CN wererecorded under various monochromatic light sources (Fig. 7c).The measured AQY values over 3-NPS/CN are 8.33% at 400 nm,3.22% at 420 nm, 0.50% at 450 nm and 0.08% at 500 nm, whichare consistent with its optical absorption spectrum. Thisdemonstrates the close relationship between PHE performanceand light-harvesting capacity.

    The selection of a suitable hole scavenger is essential for aneffective evaluation of PHE activity. Taking the optimal sampleof 3-NPS/CN as an example, no significant H2 generation isobserved in the absence of hole scavengers because of the rapidrecombination of photogenerated electrons (Fig. S6). Besides,PHE experiments were conducted using different holescavengers. The corresponding PHE efficiencies measured usingNa2S/Na2SO3, triethanolamine (TEOA), ethanol (EtOH),methanol (MeOH) and lactic acid (LA) as hole scavengers are0.27, 47.71, 0.51, 0.63, and 0.33 μmol·h?1, respectively. These results indicate that TEOA is the suitable hole scavenger for thePHE reaction in the NPS/CN system.

    For comparison, the PHE performance of 3-NPS/BCN and 3-BNPS/CN composites was also investigated. It is evident that thePHE efficiency of 3-NPS/CN is higher than that of 3-NPS/BCNand 3-BNPS/CN (Fig. S7). Generally, the BET surface area ofthe nanosheets-based materials is larger than that ofcorresponding bulk materials, leading to the higher BET surfacearea value for NPS NSs and CN NSs. After coupling NPS NSswith CN NSs, the resulted 3-NPS/CN exhibits the increased BETsurface area, which can provide more reactive sites forenhancing PHE activity compared to 3-NPS/BCN and 3-BNPS/CN. Furthermore, the uniform distribution of NPS NSson the CN NSs surface, forming a 2D/2D heterojunction in 3-NPS/CN, contributes to improved PHE activity compared tocomposites based on their bulk materials.

    To emphasize the superiority of CN NSs, g-C3N4 nanosheetswere used as starting materials to synthesize 3-NPS/CNU and 3-NPS/CNM under the same conditions as 3-NPS/CN. The PHEefficiency of 3-NPS/CN (47.71 μmol·h?1) is found to be 11.1 and16.8 times higher than that of 3-NPS/CNU (4.29 μmol·h?1) and3-NPS/CNM (2.85 μmol·h?1), respectively (Fig. S8). The lightharvesting capacity of 3-NPS/CN in the visible-light region isalso higher than that of 3-NPS/CNU and 3-NPS/CNM (Fig. S9).These results, combined with previous works 46,51, suggest thatC3N5 materials, such as CN NSs, offer significant potential forimproving PHE performance.

    The stability of 3-NPS/CN during the PHE cyclingexperiment was evaluated, as shown in Fig. 7d. The PHE rate of3-NPS/CN remains at 89% efficiency compared to the first cycleafter five cycles, with a rate of 42.76 μmol·h?1. The slightdecrease in PHE rate is mainly attributed to the consumption ofthe sacrificial agent 52. The structural stability of 3-NPS/CNduring the PHE reaction was confirmed by XRD patterns, FT-IRspectra and XPS measurements (Figs. S10 and S11). Nosignificant changes in the crystal structure or surface functionalgroups are observed before and after the PHE reaction for fivecycles, indicating the good structural stability of 3-NPS/CN. Itdemonstrates that the integration of NPS NSs with CN NSs in 3-NPS/CN composites leads to improved PHE efficiency,excellent stability, and efficient charge separation, making it apromising photocatalyst for practical applications.

    The practical value of PHE experiments in seawater was alsodemonstrated (Fig. 7e). While CN NSs shows negligible H2generation due to rapid charge carrier recombination, theincorporation of NPS NSs with CN NSs in the composites of 1-NPS/CN, 3-NPS/CN and 5-NPS/CN results in stable H2production in seawater. This indicates that NPS NSs caneffectively enhance the hydrogen production activity of CN NSseven in seawater. The PHE efficiencies measured in both DIwater and seawater follows the same order: CN NSs lt; 1-NPS/CNlt; 5-NPS/CN lt; 3-NPS/CN. However, the PHE efficiencies in DIwater are higher than those in seawater (Fig. 7f). To investigate the reasons for the reduced PHE activity in seawater, comparablePHE experiments were conducted with the addition of variouscompounds present in natural seawater, such as NaCl, KCl, KBr,CaCl2, MgCl2 and Na2SO4 53. The results show that the presenceof these salts significantly reduced the PHE rates compared tofreshwater conditions (Fig. S12). This suggests that thecompetitive adsorption of salts on active sites hinders the PHEreaction over 3-NPS/CN 54. Thus, an appropriate loading massof NPS NSs in NPS/CN composites can effectively boost PHEactivity in both seawater and freshwater, making it promising forpractical applications.

    To further investigate the charge separation and migrationbehaviors, electrochemical impedance spectra (EIS) andtransient photocurrent response (TPR) measurements wereperformed on various photocatalysts. Smaller arc radii in theNyquist plot indicate higher charge transfer efficiency and lowerinterfacial resistance 55,56. The arc radiuses of x-NPS/CN (x = 1,3, 5) composites are found to be smaller than those of CN NSsand NPS NSs (Fig. 8a), indicating that the heterojunctionformation between NPS NSs and CN NSs facilitates reducedresistance for interfacial charge transfer 57,58. Among all thesamples, 3-NPS/CN exhibits the smallest arc radius, indicatingexcellent charge carrier transfer efficiency. The transientphotocurrent response (TPR) intensities of x-NPS/CN (x = 1, 3,5) composites are also higher than those of CN NSs and NPSNSs (Fig. 8b), reflecting their good separation rates ofphotogenerated charge carriers 59,60. Notably, the optimal sampleof 3-NPS/CN possesses the largest photocurrent intensity(~0.035 μA?cm?2), which is 3.5 times higher than CN NSs (~0.01μA?cm?2), further confirming the most efficient charge carrierseparation in 3-NPS/CN.

    To further confirm the charge transfer property, steady-statephotoluminescence (PL) and time-resolved PL (TR-PL) spectrawere recorded with an emission peak at 457 nm. In the PLspectra (Fig. 8c), CN NSs exhibit the strongest emission signal,indicating rapid charge carrier recombination 61. On the otherhand, BNPS shows only weak PL signals when excited at 272nm (Fig. 8c) and 501 nm (Fig. S13). After the introduction ofNPS NSs, the PL intensities of x-NPS/CN (x = 1, 3, 5)composites are significantly reduced with the lowest signalobserved for 3-NPS/CN. This suggests that the formation of aheterojunction between NPS NSs and CN NSs promotes theseparation of photo-induced electrons and holes, leading toreduced recombination rates 62.

    The results from time-resolved PL (TR-PL) measurementsfurther support these findings (Fig. 8d). The average emissionlifetime (τ) can be determined using the following equation,based on our previous works 63.

    τ =A1τ12 + A2τ22/A1τ1 + A2τ2

    where A1 and A2 mean the weight factors, and τ represents thefluorescence lifetime 64. Obviously, the average lifetime of 3-NPS/CN (3.74 ns) is longer than that of CN NSs (2.88 ns).

    The surface photovoltage (SPV) technique, which includessteady-state SPV and time-resolved surface photovoltage (TPV)responses, is a highly sensitive and non-destructive method forinvestigating the photo-physics of photogenerated charges insemiconductor photocatalysts 65,66. In the case of 3-NPS/CN, itexhibits a higher SPV response compared to CN NSs (Fig. 8e),indicating enhanced photogenerated charge separation. Thisconfirms that the heterojunction formation between NPS NSsand CN NSs greatly enhances the photogenerated chargeseparation.

    Furthermore, TPV spectra were tested to validate thephotogenerated charge separation and transfer mechanism (Fig.8f). The heterojunction formation between NPS NSs and CNNSs in 3-NPS/CN accelerates the charge transport, as evidencedby the quicker charge extraction time (t2) compared to CN NSs(t1) 67. This, combined with the results from EIS, TPR, PL andTR-PL, suggests that the formed heterojunction between NPSNSs and CN NSs prolongs charge carrier lifetimes, promotescharge separation, and enhances PHE activity 68.

    The effect of NPS NSs deposition on hydrogen evolutionkinetics in x-NPS/CN (x = 1, 3, 5) composites was studied usinglinear sweep voltammetry (Fig. 9a) 69. The current density of thesamples follows the order of CN NSs lt; 1-NPS/CN lt; 5-NPS/CNlt; 3-NPS/CN, indicating that the loading of NPS NSs reduces theoverpotential and favors hydrogen production 70.

    Ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) spectra of samples are displayed in Fig. 9b. CN NSs andNPS/CN composites exhibit strong light absorption in both theultraviolet and visible regions. The absorption edges of CN NSsand BNPS are observed around 487 and 967 nm, respectively(Fig. S14). With an increase in the proportion of NPS NSs in theNPS/CN composites, the color of the composites darkens,indicating enhanced light harvesting. The band gap values of CNNSs and NPS NSs, as indirect semiconductors, are determinedto be 2.20 and 1.38 eV, respectively, based on previous works 18.

    Electron spin resonance (ESR) spectra were recorded todetermine the active species during PHE reactions (Fig. 9d).Under visible light, characteristic peaks of DMPO-·O2? areobserved, indicating the positive contribution of ·O2? radicals tothe PHE reaction. Additionally, characteristic signals ofTEMPO-h+ are detected both in the dark and under visible light.After visible light irradiation for 3 min, the reduced intensity ofTEMPO-h+ signals means the formation of h+ (Fig. 9e). TheseESR results confirm the presence of photo-generated h+ and ·O2?radicals during PHE reactions over 3-NPS/CN. It is proposedthat photogenerated electrons react with protons to generate H2,while the remaining h+ is eliminated using a hole scavenger suchas TEOA 45.

    The electronic band structures of CN NSs and NPS NSs aredetermined using Mott-Schottky plots to gain deeper insight intothe PHE mechanism of NPS/CN composites (Fig. 9f,g). Theslopes of both CN NSs and NPS NSs indicate that they are n-type semiconductors. The flat band potentials (Efb) of CN NSsand NPS NSs are estimated to be ?0.73 and ?0.57 V (vs.Ag/AgCl, pH ≈ 2), respectively, based on the tangent interceptsof the plots. By applying the Nernst equation, the Efb values ofCN NSs and NPS NSs can be converted to ?0.81 and ?0.65 V(vs. NHE), respectively. Generally, the conduction band (CB)potential (ECB) of an n-type semiconductor is approximately 0.1–0.3 V more negative than its flat band potential (Efb) 71. Thus, theECB positions are calculated to be ?1.01 V (vs. NHE) for CN NSsand ?0.85 V (vs. NHE) for NPS NSs by assuming a voltagedifference of 0.2 V between ECB and Efb. Accordingly, thevalence band potentials (EVB) of CN NSs and NPS NSs aredetermined to be +1.19 eV and +0.53 eV (vs. NHE), respectively,using the formula (EVB = ECB + Eg), where Eg is the band gapenergy.

    According to the above discussion, we propose a possiblePHE mechanism over NPS/CN heterojunctions (Fig. 9h). Undervisible light irradiation (λ ≥ 420 nm), both CN NSs and NPS NSsin the NPS/CN composite are excited, generating electrons andholes that reside on the conduction band (CB) and valence band(VB) positions of the respective components. Due to thepotential difference and strong interfacial electronic couplingbetween CN NSs and NPS NSs, the photogenerated electronsquickly migrate from the CB of CN NSs to the CB of NPS NSs.Subsequently, the accumulated photogenerated electrons on theCB of NPS NSs can efficiently reduce protons to generate H2molecules. Meanwhile, the photogenerated holes on the VB ofCN NSs and NPS NSs are consumed in the presence of TEOAmolecules, producing oxidation products 33. Thus, the NPS/CNheterojunction facilitates the efficient charge carrier dissociationand migration, leading to enhanced PHE efficiency.

    4 Conclusions

    In conclusion, a mechanical mixing-assisted self-assembly approach was successfully employed to fabricate a 2D/2DNPS/CN heterostructured photocatalyst for visible light-drivenPHE. The deposition of NPS NSs onto CN NSs led to thebroadening of the light response region and tuning of the energyband structure in the NPS/CN heterojunctions. The experimentalresults, including photo-electrochemical measurements,photoluminescence, time-resolved photoluminescence andsurface photovoltage, demonstrated that the formation of the2D/2D heterostructure between NPS NSs and CN NSs improvedthe lifetimes of charge carriers and their separation rates. Theenhanced light-harvesting capacity and efficient charge carrierseparation synergistically contributed to the enhanced PHEactivity of CN NSs upon NPS NSs loading. Among the samplestested, the optimized 3-NPS/CN composite exhibited the highestPHE efficiency of 47.71 μmol·h?1 and an AQY value of 8.33%at 400 nm. However, excessive loading of NPS NSs hindered thelight absorption of the CN NSs component, leading to a decreasein PHE efficiency. Therefore, achieving an appropriate massratio of NPS NSs to CN NSs is crucial for balancing lightabsorption and charge separation. Moreover, the PHEefficiencies measured in DI water were higher than those inseawater for all samples, indicating the influence of competitiveadsorption between salts and sacrificial agents on the activesites. Based on the characterization results, a plausible PHEmechanism was proposed for the 3-NPS/CN composite.Considering the excellent PHE activity and good stability ofNPS/CN composites, it is anticipated that these composites holdsignificant potential for PHE applications in both DI water andseawater environments.

    Author Contributions: Conceptualization, C.L. and Q.Z.;Methodology, J.H., K.X., A.Y. and Z.Z.; Software, J.H.;Validation, W.X., C.L. and Q.Z.; Formal Analysis, C.L.;Investigation, C.L.; Resources, C.L.; Data Curation, J.H.;Writing-Original Draft Preparation, J.H.; Writing-Review amp;Editing, C.L.; Visualization, J.H.; Supervision, C.L.; ProjectAdministration, Q.Z.; Funding Acquisition, C.L.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Gao, Y.; Xu, B.; Cherif, M.; Yu, H.; Zhang, Q.; Vidal, F.; Wang, X.;Ding, F.; Sun, Y.; Ma, D.; et al. Appl. Catal. B: Environ. 2020, 279,119403. doi: 10.1016/j.apcatb.2020.119403

    (2) Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167.doi: 10.1016/j.jmst.2022.08.030

    (3) Fujishima, A.; Honda, K. Nature 1972, 238, 37.doi: 10.1038/238037a0

    (4) Tong, Z.; Yang, D.; Xiao, T.; Tian, Y.; Jiang, Z. Chem. Eng. J. 2015,260, 117. doi: 10.1016/j.cej.2014.08.072

    (5) Fu, C.; Wu, T.; Sun, G.; Yin, G.; Wang, C.; Ran, G.; Song, Q. Appl.Catal. B: Environ. 2023, 323, 122196.doi: 10.1016/j.apcatb.2022.122196

    (6) Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z.J. Mater. Sci. Technol. 2022, 114, 81.doi: 10.1016/j.jmst.2021.12.003

    (7) Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Appl. Catal.B: Environ. 2020, 268, 118462. doi: 10.1016/j.apcatb.2019.118462

    (8) Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng,M. Appl. Catal. B: Environ. 2020, 277, 119254.doi: 10.1016/j.apcatb.2020.119254

    (9) Lin, B.; Li, H.; An, H.; Hao, W.; Wei, J.; Dai, Y.; Ma, C.; Yang, G.Appl. Catal. B: Environ. 2018, 220, 542.doi: 10.1016/j.apcatb.2017.08.071

    (10) Yin, H.; Yuan, C.; Lv, H.; Zhang, K.; Chen, X.; Zhang, Y.; Zhang, Y.Powder Technol. 2023, 413, 118083.doi: 10.1016/j.powtec.2022.118083

    (11) Wang, H.; Li, M.; Lu, Q.; Cen, Y.; Zhang, Y.; Yao, S. ACS Sustain.Chem. Eng. 2019, 7, 625. doi: 10.1021/acssuschemeng.8b04182

    (12) Huang, L.; Liu, Z.; Chen, W.; Cao, D.; Zheng, A. J. Mater. Chem. A2018, 6, 7168. doi: 10.1039/c8ta01458b

    (13) Teng, M.; Shi, J.; Qi, H.; Shi, C.; Wang, W.; Kang, F.; Eqi, M.;Huang, Z. J. Colloid Interface Sci. 2022, 609, 592.doi: 10.1016/j.jcis.2021.11.060

    (14) Sun, D.; Zhang, X.; Shi, A.; Quan, C.; Xiao, S.; Ji, S.; Zhou, Z.; Li,X.; Chi, F.; Niu, X. Appl. Surf. Sci. 2022, 601, 154186.doi: 10.1016/j.apsusc.2022.154186

    (15) Li, K.; Cai, W.; Zhang, Z.; Xie, H.; Zhong, Q.; Qu, H. Chem. Eng. J.2022, 435, 135017. doi: 10.1016/j.cej.2022.135017

    (16) Meng, Q.; Yang, X.; Wu, L.; Chen, T.; Li, Y.; He, R.; Zhu, W.; Zhu,L.; Duan, T. J. Hazard. Mater. 2022, 422, 126912.doi: 10.1016/j.jhazmat.2021.126912

    (17) Wang, R.; Zhang, K.; Zhong, X.; Jiang, F. RSC Adv. 2022, 12, 24026.doi: 10.1039/d2ra03874a

    (18) Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. ACSAppl. Mater. Interfaces 2022, 14, 26742.doi: 10.1021/acsami.2c04729

    (19) Liu, D.; Yao, J.; Chen, S.; Zhang, J.; Li, R.; Peng, T. Appl. Catal. B:Environ. 2022, 318, 121822. doi: 10.1016/j.apcatb.2022.121822

    (20) Shi, J.; Wang, W.; Teng, M.; Kang, F.; E’qi, M.; Huang, Z. J. ColloidInterface Sci. 2022, 608, 954. doi: 10.1016/j.jcis.2021.10.027

    (21) Xiong, Z.; Liang, Y.; Yang, J.; Yang, G.; Jia, J.; Sa, K.; Zhang, X.;Zeng, Z. Sep. Purif. Technol. 2023, 306, 122522.doi: 10.1016/j.seppur.2022.122522

    (22) Zhang, X.; Zhao, X.; Wu, D.; Jing, Y.; Zhou, Z. Adv. Sci. 2016, 3,1600062. doi: 10.1002/advs.201600062

    (23) Wang, J.; Li, X.; Wei, B.; Sun, R.; Yu, W.; Hoh, H. Y.; Xu, H.; Li, J.;Ge, X.; Chen, Z.; et al. Adv. Funct. Mater. 2020, 30, 1908708.doi: 10.1002/adfm.201908708

    (24) Wang, F.; Shifa, T. A.; He, P.; Cheng, Z.; Chu, J.; Liu, Y.; Wang, Z.;Wang, F.; Wen, Y.; Liang, L.; et al. Nano Energy 2017, 40, 673.doi: 10.1016/j.nanoen.2017.09.017

    (25) Shifa, T. A.; Wang, F.; Cheng, Z.; He, P.; Liu, Y.; Jiang, C.; Wang,Z.; He, J. Adv. Funct. Mater. 2018, 28, 1800548.doi: 10.1002/adfm.201800548

    (26) Gusmao, R.; Sofer, Z.; Sedmidubsky, D.; Huber, S.; Pumera, M. ACSCatal. 2017, 7, 8159. doi: 10.1021/acscatal.7b02134

    (27) Cheng, Z.; Shifa, T. A.; Wang, F.; Gao, Y.; He, P.; Zhang, K.; Jiang,C.; Liu, Q.; He, J. Adv. Mater. 2018, 30, 1707433.doi: 10.1002/adma.201707433

    (28) Barua, M.; Ayyub, M. M.; Vishnoi, P.; Pramoda, K.; Rao, C. N. R.J. Mater. Chem. A 2019, 7, 22500. doi: 10.1039/c9ta06044h

    (29) Jenjeti, R. N.; Kumar, R.; Austeria, M. P.; Sampath, S. Sci. Rep.2018, 8, 8586. doi: 10.1038/s41598-018-26522-1

    (30) Chittari, B. L.; Park, Y.; Lee, D.; Han, M.; MacDonald, A. H.;Hwang, E.; Jung, J. Phys. Rev. B 2016, 94, 184428.doi: 10.1103/PhysRevB.94.184428

    (31) Chu, J.; Wang, F.; Yin, L.; Lei, L.; Yan, C.; Wang, F.; Wen, Y.;Wang, Z.; Jiang, C.; Feng, L.; et al. Adv. Funct. Mater. 2017, 27,1701342. doi: 10.1002/adfm.201701342

    (32) Fang, L.; Xie, Y.; Guo, P.; Zhu, J.; Xiao, S.; Sun, S.; Zi, W.; Zhao, H.Sustain. Energy Fuels 2021, 5, 2537. doi: 10.1039/d1se00110h

    (33) Ran, J.; Zhang, H.; Fu, S.; Jaroniec, M.; Shan, J.; Xia, B.; Qu, Y.; Qu,J.; Chen, S.; Song, L.; et al. Nat. Commun. 2022, 13, 4600.doi: 10.1038/s41467-022-32256-6

    (34) Li, S.; Cai, M.; Liu, Y.; Zhang, J.; Wang, C.; Zang, S.; Li, Y.; Zhang,P.; Li, X. Org. Chem. Front. 2022, 9, 2479.doi: 10.1039/D2QI00317A

    (35) Zhang, Q.; Gu, H.; Wang, X.; Li, L.; Zhang, J.; Zhang, H.; Li, Y.-F.;Dai, W.-L. Appl. Catal. B: Environ. 2021, 298, 120632.doi: 10.1016/j.apcatb.2021.120632

    (36) Liu, C.; Xiao, W.; Yu, G.; Wang, Q.; Hu, J.; Xu, C.; Du, X.; Xu, J.;Zhang, Q.; Zou, Z. J. Colloid Interface Sci. 2023, 640, 851.doi: 10.1016/j.jcis.2023.02.137

    (37) Han, L.; Peng, C.; Huang, J.; Wang, S.; Zhang, X.; Chen, H.; Yang,Y. Rsc Adv. 2021, 11, 36166. doi: 10.1039/d1ra07275g

    (38) Zhang, J.; Jing, B.; Tang, Z.; Ao, Z.; Xia, D.; Zhu, M.; Wang, S.Appl. Catal. B: Environ. 2021, 289, 120023.doi: 10.1016/j.apcatb.2021.120023

    (39) Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.;Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K.;et al. J. Am. Chem. Soc. 2019, 141, 5415.doi: 10.1021/jacs.9b00144

    (40) Sun, Z.; Luo, E.; Meng, Q.; Wang, X.; Ge, J.; Liu, C.; Xing, W. ActaPhys. -Chim. Sin. 2022, 38, 2003035. [孫志聰, 羅二桂, 孟慶磊, 王顯, 葛君杰, 劉長鵬, 邢巍. 物理化學(xué)學(xué)報(bào), 2022, 38, 2003035.]doi: 10.3866/PKU.WHXB202003035

    (41) Wang, J.; Wang, T.; Shi, X.; Wu, J.; Xu, Y.; Ding, X.; Yu, Q.; Zhang,K.; Zhou, P.; Jiang, Z. J. Mater. Chem. C 2019, 7, 14625.doi: 10.1039/c9tc04722k

    (42) Zhang, J.; Tao, H.; Wu, S.; Yang, J.; Zhu, M. Appl. Catal. B:Environ. 2021, 296, 120372. doi: 10.1016/j.apcatb.2021.120372

    (43) Li, S.; Wang, C.; Cai, M.; Liu, Y.; Dong, K.; Zhang, J. J. ColloidInterface Sci. 2022, 624, 219. doi: 10.1016/j.jcis.2022.05.151

    (44) Zhang, G.; Wang, Z.; He, T.; Wu, J.; Zhang, J.; Wu, J. Chem. Eng. J.2022, 442, 136309. doi: 10.1016/j.cej.2022.136309

    (45) Liu, C.; Han, Z.; Feng, Y.; Dai, H.; Zhao, Y.; Han, N.; Zhang, Q.;Zou, Z. J. Colloid Interface Sci. 2021, 583, 58.doi: 10.1016/j.jcis.2020.09.018

    (46) Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023,39, 2212009. [孫濤, 李晨曦, 鮑鈺鵬, 樊君, 劉恩周. 物理化學(xué)學(xué)報(bào), 2023, 39, 2212009.] doi: 10.3866/PKU.WHXB202212009

    (47) Che, H.; Wang, J.; Gao, X.; Chen, J.; Wang, P.; Liu, B.; Ao, Y. J.Colloid Interface Sci. 2022, 627, 739.doi: 10.1016/j.jcis.2022.07.080

    (48) Zhan, X.; Zheng, Y.; Li, B.; Fang, Z.; Yang, H.; Zhang, H.; Xu, L.;Shao, G.; Hou, H.; Yang, W. Chem. Eng. J. 2022, 431, 134053.doi: 10.1016/j.cej.2021.134053

    (49) Zhao, L.; Lei, S.; Tang, C.; Tu, Q.; Rao, L.; Liao, H.; Zeng, W.; Xiao,Y.; Cheng, B. J. Colloid Interface Sci. 2022, 616, 401.doi: 10.1016/j.jcis.2022.02.089

    (50) Vedhanarayanan, B.; Chiu, C.-C.; Regner, J.; Sofer, Z.; SeethaLakshmi, K. C.; Lin, J.-Y.; Lin, T.-W. Chem. Eng. J. 2022, 430,132649. doi: 10.1016/j.cej.2021.132649

    (51) Mane, G. P.; Talapaneni, S. N.; Lakhi, K. S.; Ilbeygi, H.; Ravon, U.;Al-Bahily, K.; Mori, T.; Park, D.-H.; Vinu, A. Angew. Chem. Int. Ed.2017, 56, 8481. doi: 10.1002/anie.201702386

    (52) Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem.Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488

    (53) Sun, H.; Shi, Y.; Shi, W.; Guo, F. Appl. Surf. Sci. 2022, 593, 153281.doi: 10.1016/j.apsusc.2022.153281

    (54) Chen, K.; Shi, Y.; Shu, P.; Luo, Z.; Shi, W.; Guo, F. Chem. Eng. J.2023, 454, 140053. doi: 10.1016/j.cej.2022.140053

    (55) Yu, G.; Zhang, Y.; Du, X.; Wu, J.; Liu, C.; Zou, Z. J. ColloidInterface Sci. 2022, 623, 205. doi: 10.1016/j.jcis.2022.05.040

    (56) Xiong, Z; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W. J.; Wang, S. ActaPhys. -Chim. Sin. 2022, 38, 2111021. [熊壯, 侯乙東, 員汝勝, 丁正新, 王偉俊, 汪思波. 物理化學(xué)學(xué)報(bào), 2022, 38, 2111021.]doi: 10.3866/PKU.WHXB202111021

    (57) Yu, G.; Hu, F.; Cheng, W.; Han, Z.; Liu, C.; Dai, Y. Acta Phys. -Chim. Sin. 2020, 36, 1911016. [郁桂云, 胡豐獻(xiàn), 程偉偉, 韓字童,劉超, 戴勇. 物理化學(xué)學(xué)報(bào), 2020, 36, 1911016.]doi: 10.3866/PKU.WHXB201911016

    (58) Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. [蔡曉燕, 杜家豪, 鐘光明, 張一鳴,毛梁, 婁在祝. 物理化學(xué)學(xué)報(bào), 2023, 39, 2302017.]doi: 10.3866/PKU.WHXB202302017

    (59) Cai, M.; Liu, Y.; Wang, C.; Lin, W.; Li, S. Sep. Purif. Technol. 2023,304, 122401. doi: 10.1016/j.seppur.2022.122401

    (60) Liu, C.; Xu, Q.; Zhang, Q.; Zhu, Y.; Ji, M.; Tong, Z.; Hou, W.;Zhang, Y.; Xu, J. J. Mater. Sci. 2019, 54, 2458.doi: 10.1007/s10853-018-2990-0

    (61) Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z.; Su, C. Acta Phys. -Chim. Sin.2023, 39, 2301001. [謝垚, 張啟濤, 孫宏麗, 滕鎮(zhèn)遠(yuǎn), 蘇陳良.物理化學(xué)學(xué)報(bào), 2023, 39, 2301001.]doi: 10.3866/PKU.WHXB202301001

    (62) Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.;Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123.doi: 10.1016/j.jmst.2023.04.007

    (63) Liu, C.; Feng, Y.; Han, Z.; Sun, Y.; Wang, X.; Zhang, Q.; Zou, Z.Chin. J. Catal. 2021, 42, 164. doi: 10.1016/S1872-2067(20)63608-7

    (64) Dang, X.; Xie, M.; Dai, F.; Guo, J.; Liu, J.; Lu, X. J. Mater. Chem. A2021, 9, 14888. doi: 10.1039/D1TA02052H

    (65) Zhang, X.; Hu, K.; Zhang, X.; Ali, W.; Li, Z.; Qu, Y.; Wang, H.;Zhang, Q.; Jing, L. Appl. Surf. Sci. 2019, 492, 125.doi: 10.1016/j.apsusc.2019.06.189

    (66) Wang, J.; Qin, C.; Wang, H.; Chu, M.; Zada, A.; Zhang, X.; Li, J.;Raziq, F.; Qu, Y.; Jing, L. Appl. Catal. B: Environ. 2018, 221, 459.doi: 10.1016/j.apcatb.2017.09.042

    (67) Li, L.; Zhang, R.; Lin, Y.; Wang, D.; Xie, T. Chem. Eng. J. 2023,453, 139970. doi: 10.1016/j.cej.2022.139970

    (68) Liu, S.; Wang, K.; Yang, M.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38,2109023. [劉珊池, 王凱, 楊夢雪, 靳治良. 物理化學(xué)學(xué)報(bào), 2022,38, 2109023.] doi: 10.3866/PKU.WHXB202109023

    (69) Guo, S.; Li, Y.; Xue, C.; Sun, Y.; Wu, C.; Shao, G.; Zhang, P. Chem.Eng. J. 2021, 419, 129213. doi: 10.1016/j.cej.2021.129213

    (70) Cheng, C.; Zhang, J.; Zeng, R.; Xing, F.; Huang, C. Appl. Catal. B:Environ. 2022, 310, 121321. doi: 10.1016/j.apcatb.2022.121321

    (71) Zheng, J.; Lei, Z. Appl. Catal. B: Environ.2018, 237, 1.doi: 10.1016/j.apcatb.2018.05.060

    國家自然科學(xué)基金(51902282, 12274361), 江蘇高校青藍(lán)工程,江蘇省自然科學(xué)基金(BK20211361), 江蘇省高校自然科學(xué)研究項(xiàng)目(20KJA430004)和江蘇省生態(tài)環(huán)境材料重點(diǎn)實(shí)驗(yàn)室開放課題資助項(xiàng)目

    猜你喜歡
    產(chǎn)氫光催化
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進(jìn)光催化產(chǎn)氫
    變壓吸附制氫解吸氣壓縮機(jī)選型方案探討
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    復(fù)合催化劑NiS/g-C3N4的制備及光催化產(chǎn)氫性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    有機(jī)廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    爆轟法合成納米TiO2及其光催化性能
    可見光光催化降解在有機(jī)污染防治中的應(yīng)用
    WO3/ZnO的制備及其光催化降解甲基橙研究
    99热网站在线观看| 欧美+日韩+精品| 激情五月婷婷亚洲| 美女中出高潮动态图| xxx大片免费视频| 观看免费一级毛片| 99热网站在线观看| 久久久久久久亚洲中文字幕| 日日撸夜夜添| 午夜精品国产一区二区电影| 一区在线观看完整版| 香蕉精品网在线| 久久鲁丝午夜福利片| 在线观看国产h片| h视频一区二区三区| √禁漫天堂资源中文www| 在线观看一区二区三区激情| 777米奇影视久久| 久久狼人影院| 欧美少妇被猛烈插入视频| 久久久精品免费免费高清| a级毛片免费高清观看在线播放| 赤兔流量卡办理| 亚洲av电影在线观看一区二区三区| 日韩在线高清观看一区二区三区| 99九九线精品视频在线观看视频| 亚洲性久久影院| 亚洲国产精品一区三区| 亚洲,欧美,日韩| 中文字幕av电影在线播放| 老司机影院毛片| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 精品人妻熟女av久视频| 在线观看免费日韩欧美大片 | 人妻系列 视频| 97超视频在线观看视频| 两个人的视频大全免费| 精华霜和精华液先用哪个| 精品熟女少妇av免费看| 91精品一卡2卡3卡4卡| 久久久久久人妻| 简卡轻食公司| 久久久久久伊人网av| 国产在线男女| 日日爽夜夜爽网站| 国产成人精品久久久久久| 午夜激情福利司机影院| 精品国产乱码久久久久久小说| 精品亚洲成国产av| 夫妻午夜视频| av免费观看日本| 男女啪啪激烈高潮av片| 亚洲国产成人一精品久久久| 在线观看人妻少妇| 欧美3d第一页| 国内精品宾馆在线| 日韩成人av中文字幕在线观看| 大码成人一级视频| 看非洲黑人一级黄片| 赤兔流量卡办理| 精品久久久精品久久久| 亚洲av中文av极速乱| 免费黄网站久久成人精品| 亚洲内射少妇av| 免费看光身美女| av不卡在线播放| 亚洲精品色激情综合| 成人国产麻豆网| 久久婷婷青草| av在线播放精品| 国产永久视频网站| av福利片在线| 国产精品秋霞免费鲁丝片| av在线老鸭窝| 青春草视频在线免费观看| 国产又色又爽无遮挡免| 日韩av不卡免费在线播放| 亚洲欧美精品专区久久| 亚洲图色成人| 91久久精品国产一区二区三区| 九草在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲激情五月婷婷啪啪| 蜜桃久久精品国产亚洲av| 国产亚洲午夜精品一区二区久久| 国产成人freesex在线| 国产亚洲精品久久久com| 成人黄色视频免费在线看| 亚洲国产毛片av蜜桃av| 久久久久人妻精品一区果冻| 国产熟女欧美一区二区| 麻豆精品久久久久久蜜桃| av免费在线看不卡| 日韩成人伦理影院| 成人无遮挡网站| 亚洲精品,欧美精品| 亚洲av成人精品一区久久| 久久久久久久精品精品| 亚洲精品aⅴ在线观看| 亚洲图色成人| 国产高清国产精品国产三级| 秋霞伦理黄片| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 午夜福利影视在线免费观看| 91aial.com中文字幕在线观看| 在线观看一区二区三区激情| 久久 成人 亚洲| 蜜臀久久99精品久久宅男| 99热这里只有是精品50| 男男h啪啪无遮挡| 自拍偷自拍亚洲精品老妇| 午夜影院在线不卡| 六月丁香七月| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产成人久久av| 亚洲欧美清纯卡通| 一本久久精品| 一级毛片我不卡| 免费观看无遮挡的男女| 黄色怎么调成土黄色| 亚洲,一卡二卡三卡| 又大又黄又爽视频免费| 一区在线观看完整版| 少妇的逼好多水| 国产成人精品无人区| 精品亚洲乱码少妇综合久久| 亚洲色图综合在线观看| av黄色大香蕉| 国产黄片视频在线免费观看| 亚洲av国产av综合av卡| 久久婷婷青草| 亚洲国产色片| 久热久热在线精品观看| 晚上一个人看的免费电影| 热re99久久精品国产66热6| 少妇 在线观看| 国产 精品1| 色婷婷久久久亚洲欧美| 妹子高潮喷水视频| 黄色毛片三级朝国网站 | 夫妻午夜视频| 美女大奶头黄色视频| 久久婷婷青草| 国产黄色视频一区二区在线观看| 午夜激情久久久久久久| 国产精品久久久久久久电影| 乱码一卡2卡4卡精品| 夜夜骑夜夜射夜夜干| 一本—道久久a久久精品蜜桃钙片| .国产精品久久| 伊人久久国产一区二区| 亚洲成人手机| 亚洲欧美成人综合另类久久久| www.av在线官网国产| 久久久久久久大尺度免费视频| 亚洲欧洲精品一区二区精品久久久 | 久久午夜福利片| 最黄视频免费看| 五月开心婷婷网| 亚洲人成网站在线播| 亚洲欧美日韩卡通动漫| 黄片无遮挡物在线观看| 人人妻人人爽人人添夜夜欢视频 | 日日啪夜夜爽| 插阴视频在线观看视频| 国产精品国产三级国产av玫瑰| 精品国产一区二区三区久久久樱花| 国产在线一区二区三区精| 一区二区三区免费毛片| 久久久久久伊人网av| 免费观看av网站的网址| 一级爰片在线观看| 亚洲国产色片| 免费av中文字幕在线| 亚洲精品久久久久久婷婷小说| 免费看不卡的av| 欧美3d第一页| 一二三四中文在线观看免费高清| 亚洲av成人精品一二三区| 老司机影院毛片| 亚洲av成人精品一区久久| 简卡轻食公司| 偷拍熟女少妇极品色| 深夜a级毛片| av有码第一页| 乱码一卡2卡4卡精品| 久久久久网色| 久久ye,这里只有精品| 亚洲精品日韩av片在线观看| h日本视频在线播放| av在线app专区| 色婷婷久久久亚洲欧美| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 久久精品熟女亚洲av麻豆精品| 国产白丝娇喘喷水9色精品| 久久精品国产鲁丝片午夜精品| 日本欧美国产在线视频| 高清av免费在线| 2022亚洲国产成人精品| 亚洲精品一二三| 国产亚洲一区二区精品| 久久 成人 亚洲| 久久久久视频综合| 免费av不卡在线播放| 丁香六月天网| 大又大粗又爽又黄少妇毛片口| 精品一区二区三区视频在线| 男女国产视频网站| 婷婷色综合大香蕉| 夜夜看夜夜爽夜夜摸| av视频免费观看在线观看| 欧美3d第一页| 最后的刺客免费高清国语| 国产精品三级大全| 哪个播放器可以免费观看大片| 99精国产麻豆久久婷婷| 久久婷婷青草| 国产欧美日韩一区二区三区在线 | a级毛片免费高清观看在线播放| 一区在线观看完整版| 久久人妻熟女aⅴ| 一级毛片aaaaaa免费看小| 久久精品久久久久久久性| 热re99久久国产66热| 一级片'在线观看视频| 欧美日韩视频高清一区二区三区二| 一级av片app| 夜夜爽夜夜爽视频| 另类亚洲欧美激情| 国产精品99久久久久久久久| 亚洲中文av在线| 精品国产露脸久久av麻豆| 欧美老熟妇乱子伦牲交| 丰满饥渴人妻一区二区三| 在线观看免费高清a一片| 亚洲av福利一区| 最新的欧美精品一区二区| 国产一区二区三区综合在线观看 | 免费看av在线观看网站| 噜噜噜噜噜久久久久久91| 精品一区二区免费观看| freevideosex欧美| 一区二区av电影网| 久久久久视频综合| 国产视频首页在线观看| 中文字幕av电影在线播放| 人妻人人澡人人爽人人| 在线 av 中文字幕| 少妇精品久久久久久久| 丰满饥渴人妻一区二区三| 成人黄色视频免费在线看| 久久久久久久久久久免费av| 国产日韩欧美在线精品| 在线观看www视频免费| 欧美 亚洲 国产 日韩一| 日韩伦理黄色片| 亚洲国产精品999| 欧美xxⅹ黑人| 国产亚洲91精品色在线| av女优亚洲男人天堂| 久久97久久精品| 在线观看国产h片| 久久韩国三级中文字幕| 大片电影免费在线观看免费| 日本色播在线视频| 久久久久久久久久久久大奶| 精品酒店卫生间| 一级毛片aaaaaa免费看小| av黄色大香蕉| 日日啪夜夜爽| 纵有疾风起免费观看全集完整版| 亚洲成色77777| 国产探花极品一区二区| av播播在线观看一区| 伊人亚洲综合成人网| 99视频精品全部免费 在线| 黄色一级大片看看| 人妻一区二区av| 80岁老熟妇乱子伦牲交| 99热这里只有是精品50| av线在线观看网站| 美女视频免费永久观看网站| 少妇人妻精品综合一区二区| 在现免费观看毛片| 国产中年淑女户外野战色| 久久亚洲国产成人精品v| 亚洲丝袜综合中文字幕| 精品久久久噜噜| 中文在线观看免费www的网站| 久久久久久久国产电影| 性色av一级| 国产精品国产三级国产专区5o| 成年人午夜在线观看视频| 丰满少妇做爰视频| 99久久综合免费| 人人妻人人添人人爽欧美一区卜| 国产视频首页在线观看| √禁漫天堂资源中文www| 高清av免费在线| 国产亚洲91精品色在线| 国产一区亚洲一区在线观看| 亚洲国产精品专区欧美| av福利片在线观看| av有码第一页| 精品酒店卫生间| 五月开心婷婷网| 女性生殖器流出的白浆| www.av在线官网国产| 人妻制服诱惑在线中文字幕| 伦精品一区二区三区| 高清视频免费观看一区二区| 日日摸夜夜添夜夜添av毛片| 另类亚洲欧美激情| 久久久欧美国产精品| 亚洲精华国产精华液的使用体验| 赤兔流量卡办理| 亚洲精华国产精华液的使用体验| 人人妻人人看人人澡| 久久亚洲国产成人精品v| 亚洲国产精品999| 亚洲,欧美,日韩| 99re6热这里在线精品视频| 精品少妇黑人巨大在线播放| 久久av网站| 欧美+日韩+精品| 成年人免费黄色播放视频 | 久久久久久久久久人人人人人人| 大陆偷拍与自拍| 人体艺术视频欧美日本| 国产有黄有色有爽视频| 永久网站在线| 美女大奶头黄色视频| 国产黄色免费在线视频| 亚洲美女黄色视频免费看| 日本av免费视频播放| 3wmmmm亚洲av在线观看| 日本wwww免费看| 亚洲精品色激情综合| 一级a做视频免费观看| 国产精品一区二区在线不卡| 一级毛片久久久久久久久女| 精品亚洲成a人片在线观看| 亚洲第一av免费看| 午夜视频国产福利| a级片在线免费高清观看视频| 日日摸夜夜添夜夜添av毛片| 伊人久久精品亚洲午夜| 亚洲经典国产精华液单| 国产精品久久久久久久电影| 国产女主播在线喷水免费视频网站| 精品人妻偷拍中文字幕| 2022亚洲国产成人精品| 亚洲欧美精品专区久久| 精品国产乱码久久久久久小说| 日韩精品有码人妻一区| 国产成人91sexporn| 九色成人免费人妻av| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲精品久久久com| 高清欧美精品videossex| 久久国产精品男人的天堂亚洲 | 三级国产精品片| 蜜桃在线观看..| 日韩av在线免费看完整版不卡| 欧美另类一区| 久久久久国产精品人妻一区二区| 欧美+日韩+精品| 免费观看av网站的网址| 在线观看免费日韩欧美大片 | 日韩一本色道免费dvd| 久久精品国产自在天天线| av又黄又爽大尺度在线免费看| 久久久久人妻精品一区果冻| 91精品伊人久久大香线蕉| 亚洲欧美中文字幕日韩二区| 美女视频免费永久观看网站| 少妇精品久久久久久久| 亚洲国产精品999| 熟女电影av网| 蜜臀久久99精品久久宅男| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| av网站免费在线观看视频| 午夜久久久在线观看| 97精品久久久久久久久久精品| av在线老鸭窝| 日本黄色片子视频| 成人美女网站在线观看视频| 午夜福利网站1000一区二区三区| 国产高清国产精品国产三级| 成人无遮挡网站| 男人狂女人下面高潮的视频| 国产免费又黄又爽又色| 国产欧美亚洲国产| 22中文网久久字幕| 亚洲av成人精品一二三区| 校园人妻丝袜中文字幕| 欧美 亚洲 国产 日韩一| 丝袜在线中文字幕| 精品一品国产午夜福利视频| 女性生殖器流出的白浆| 亚洲激情五月婷婷啪啪| 国产成人免费观看mmmm| 色视频在线一区二区三区| 麻豆成人午夜福利视频| 自线自在国产av| 蜜桃在线观看..| 天堂中文最新版在线下载| 日本色播在线视频| √禁漫天堂资源中文www| 丰满少妇做爰视频| 婷婷色av中文字幕| 精品一品国产午夜福利视频| 欧美最新免费一区二区三区| 亚洲精品,欧美精品| 七月丁香在线播放| 天美传媒精品一区二区| 一区二区三区乱码不卡18| 国产日韩欧美视频二区| 久久国产精品男人的天堂亚洲 | 搡女人真爽免费视频火全软件| 久久久久人妻精品一区果冻| 亚洲四区av| 亚洲美女搞黄在线观看| 伦精品一区二区三区| 久久热精品热| 少妇人妻久久综合中文| 国产综合精华液| 国产精品久久久久久av不卡| 免费黄色在线免费观看| 最近2019中文字幕mv第一页| 在线观看人妻少妇| 成人免费观看视频高清| 汤姆久久久久久久影院中文字幕| 777米奇影视久久| 精品久久久精品久久久| 中文字幕免费在线视频6| 久久亚洲国产成人精品v| 伊人亚洲综合成人网| 亚洲精品色激情综合| 美女内射精品一级片tv| 久久久久久久大尺度免费视频| 日韩在线高清观看一区二区三区| 两个人的视频大全免费| 一本—道久久a久久精品蜜桃钙片| 日日摸夜夜添夜夜爱| 啦啦啦啦在线视频资源| 免费看不卡的av| 国产永久视频网站| 久久久久视频综合| 国语对白做爰xxxⅹ性视频网站| 亚洲av不卡在线观看| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 大片电影免费在线观看免费| 99久久精品国产国产毛片| 乱人伦中国视频| 夫妻性生交免费视频一级片| 王馨瑶露胸无遮挡在线观看| 久久久国产精品麻豆| 午夜免费鲁丝| 亚洲性久久影院| 日韩不卡一区二区三区视频在线| 黄色视频在线播放观看不卡| tube8黄色片| 亚洲第一区二区三区不卡| 国产成人91sexporn| 毛片一级片免费看久久久久| 如何舔出高潮| 久久久久国产网址| av福利片在线| 午夜福利视频精品| 久久精品国产亚洲av天美| 九草在线视频观看| 国产精品99久久99久久久不卡 | 久久国产精品男人的天堂亚洲 | 一边亲一边摸免费视频| 国产亚洲精品久久久com| 涩涩av久久男人的天堂| av天堂中文字幕网| 日韩不卡一区二区三区视频在线| 中文字幕av电影在线播放| 内地一区二区视频在线| 伦理电影大哥的女人| 久久99热这里只频精品6学生| 久久久国产欧美日韩av| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 最后的刺客免费高清国语| 国产日韩欧美亚洲二区| 免费观看在线日韩| 自拍欧美九色日韩亚洲蝌蚪91 | 99国产精品免费福利视频| 黄片无遮挡物在线观看| 一级二级三级毛片免费看| 一级av片app| www.av在线官网国产| 亚洲美女视频黄频| 免费观看在线日韩| 欧美日韩视频高清一区二区三区二| 啦啦啦啦在线视频资源| 国产在线视频一区二区| 草草在线视频免费看| 久久青草综合色| 麻豆精品久久久久久蜜桃| 人妻一区二区av| 汤姆久久久久久久影院中文字幕| 有码 亚洲区| 99热6这里只有精品| 精品少妇黑人巨大在线播放| 国产一区二区在线观看日韩| 好男人视频免费观看在线| 日本欧美视频一区| 国产成人免费观看mmmm| 91成人精品电影| 久久久久精品久久久久真实原创| 水蜜桃什么品种好| 精品国产一区二区三区久久久樱花| 18禁在线播放成人免费| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 少妇熟女欧美另类| 婷婷色麻豆天堂久久| 免费大片18禁| 蜜桃久久精品国产亚洲av| 国产成人精品久久久久久| av天堂久久9| 国产乱人偷精品视频| 两个人的视频大全免费| 成人18禁高潮啪啪吃奶动态图 | 国产一区二区在线观看av| 国产精品嫩草影院av在线观看| 亚洲人成网站在线观看播放| 日本色播在线视频| 国产亚洲精品久久久com| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 最近手机中文字幕大全| 赤兔流量卡办理| 九九久久精品国产亚洲av麻豆| 2021少妇久久久久久久久久久| 久久久国产精品麻豆| 高清不卡的av网站| 国产伦理片在线播放av一区| 国产精品免费大片| av在线老鸭窝| 亚洲国产av新网站| 人妻系列 视频| 亚洲av中文av极速乱| 欧美丝袜亚洲另类| 久久免费观看电影| 国产精品熟女久久久久浪| 最近中文字幕2019免费版| 久久97久久精品| 另类亚洲欧美激情| 日本vs欧美在线观看视频 | av天堂中文字幕网| 精品一区在线观看国产| 99久久人妻综合| 最新的欧美精品一区二区| 王馨瑶露胸无遮挡在线观看| 成人午夜精彩视频在线观看| 69精品国产乱码久久久| 中文乱码字字幕精品一区二区三区| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美白嫩少妇大欣赏| 精品国产一区二区三区久久久樱花| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品乱久久久久久| 国产视频内射| 亚洲电影在线观看av| 少妇裸体淫交视频免费看高清| 一个人免费看片子| 亚洲熟女精品中文字幕| 老司机影院成人| 伦理电影大哥的女人| 国产精品三级大全| 十八禁高潮呻吟视频 | 精品卡一卡二卡四卡免费| 亚洲人成网站在线观看播放| 国产成人91sexporn| 建设人人有责人人尽责人人享有的| 精品国产露脸久久av麻豆| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 中文欧美无线码| 国产 精品1| 高清午夜精品一区二区三区| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 99热国产这里只有精品6| 51国产日韩欧美| 欧美区成人在线视频| 国产精品女同一区二区软件| 男人添女人高潮全过程视频| 日本wwww免费看| 性色av一级| av网站免费在线观看视频| 丰满少妇做爰视频| 欧美日本中文国产一区发布| 夫妻午夜视频| 亚洲国产毛片av蜜桃av| 3wmmmm亚洲av在线观看| 99热这里只有是精品在线观看| 免费观看av网站的网址| 国产成人免费无遮挡视频| 熟女av电影| 午夜久久久在线观看| 免费黄频网站在线观看国产| 99热国产这里只有精品6| 嘟嘟电影网在线观看|