• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫取代氮增強g-C3N4 光催化產(chǎn)氫性能

    2024-07-16 00:00:00王海濤余良浪江吉周Arramel鄒菁
    物理化學學報 2024年5期
    關(guān)鍵詞:產(chǎn)氫光催化

    摘要:利用取之不盡的太陽能資源進行光催化水裂解制氫是緩解全球能源危機、實現(xiàn)碳中和戰(zhàn)略的一項有前景的技術(shù)。石墨相氮化碳(g-C3N4)因成本低且穩(wěn)定性高在光催化產(chǎn)氫領(lǐng)域備受關(guān)注。然而,純g-C3N4存在表面積小、電子轉(zhuǎn)移慢、光生載流子復(fù)合快等缺陷,產(chǎn)氫性能通常不佳。本研究通過直接熱解硫酸銨和三聚氰胺混合物,成功實現(xiàn)硫物種對g-C3N4氮位點的原位取代,開發(fā)出一種高效的硫摻雜g-C3N4 (S-g-CN)光催化劑。系列結(jié)構(gòu)和光譜表征證實硫的成功摻雜。密度泛函理論的第一性原理計算表明S活性位對氫的吸附吉布斯自由能近乎為零(~0.26 eV),揭示S摻雜在優(yōu)化H活性中間體吸附和解吸過程中起著重要作用。透射電子顯微鏡和原子力顯微鏡測試結(jié)果表明,S-g-CN具有超薄的納米片狀結(jié)構(gòu),其片層厚度約為2.5 nm。隨后的氮氣吸脫附等溫線和光電化學性質(zhì)測試結(jié)果表明,S摻雜不僅可顯著增大g-C3N4比表面積,而且還能有效提高其光生電子-空穴對的轉(zhuǎn)移、分離和氧化還原能力。得益于材料良好的結(jié)構(gòu)特性,S-g-CN的光催化產(chǎn)氫速率高達4923 μmol?g?1?h?1,是原始g-C3N4的28倍,超越諸多最近報道的其它S摻雜g-C3N4光催化劑。而且,S-g-CN的表觀量子效率高達3.64%。本研究除了開發(fā)一種高效的光催化劑,還將為高性能g-C3N4基催化劑的設(shè)計提供有益借鑒。

    關(guān)鍵詞:理論預(yù)測;硫摻雜;g-C3N4;產(chǎn)氫;光催化

    中圖分類號:O649;O644

    S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity

    Abstract: The use of solar energy as an inexhaustible resource to conductphotocatalytic water splitting in hydrogen (H2) production can alleviate theworldwide energy crisis and achieve carbon neutrality. However, research inphotocatalytic H2 evolution reaction (HER) is extremely challenging in terms ofexploring the current development of an active and durable graphitic carbon nitride(g-C3N4)-based photocatalyst. Several parameters of pristine g-C3N4 requirestructural, physical, and chemical improvements, such as optimization of thesurface area, electron transfer, and photo-generated carrier recombination, torender the g-C3N4 suitable for photocatalysis. In this study, the development of anefficient and robust S-doped g-C3N4 (S-g-CN) catalyst was pursued that involvesdoping nitrogen (N) active sites of g-C3N4 with sulfur (S) dopants via one-stepcalcination of the sulphate and melamine precursors. A combination of structural and spectroscopic fingerprints wasestablished to distinctly determine the realization of S-doping onto the g-C3N4 structure. We obtained the optimum Gibbsfree energy of adsorbed hydrogen (ΔGH*) for S-g-CN at the S active sites, which is nearly zero (~0.26 eV), suggesting thatthe filled S dopants play an essential role in optimizing the adsorption and desorption processes of H-active intermediates.The results of atomic force and transmission electron microscopies (AFM and TEM) demonstrated that the produced S-g-CN catalyst has an ultrathin nanosheet structure with a lamellar thickness of approximately 2.5 nm. A subsequent N2sorption isotherms test revealed a substantial increase in the specific surface area after the integration of S dopants intothe g-C3N4 nanoskeleton. Moreover, the incorporation of S atoms into the g-C3N4 significantly increased the carrierconcentrations, improving the transfer, separation, as well as the oxidation and reduction abilities of the photo-generatedelectron-hole pairs. Leveraging the favorable material characteristics of the S-doped two-dimensional nanostructures, theresulting S-g-CN achieved a high H2 evolution rate of 4923 μmol·g?1·h?1, which is 28 times higher than that of the pristineg-C3N4. Additionally, the developed S-g-CN possessed a high apparent quantum efficiency (3.64%) at visible-lightirradiation. When compared to the recently reported S-doped g-C3N4-based photocatalysts, our optimal S-g-CN catalyst(S-CN1.0) showed one of the best HER catalytic activities. Our rational design is based on an effective strategy that notonly explored a promising HER photocatalyst but also aimed to pave the way for the development of other highperformanceg-C3N4 based catalysts.

    Key Words: Theoretical prediction; S-doping; g-C3N4; Hydrogen evolution; Photocatalysis

    1 Introduction

    The excessive fossil fuels consumption as the primarynonrenewable energy resources has triggered imminentenvironmental crisis that become alarming issues. Theseinevitable challenges require serious attentions towardsustainable and efficient energy sources 1,2. Hydrogen (H2) withthe remarkable characteristics of high calorific value, zeroemission and renewable, has been considered to be a promisingenergy source in the 21st century, capable of poweringequipment from portable electronic devices to vehicles 3. Todate, the conventional H2 production is mainly produced via thechemical conversion of natural gas/coal method, which is limitedby the fossil energy consumption and moreover this route has ledto severe environmental contaminations 4. Based on theseintriguing backgrounds, we believe a reliable method is urgentlyrequired to produce environmentally-friendly, inexpensive, andsustainable H2 gas.

    Photocatalysis technology, which takes advantage ofinexhaustible solar energy resources, is a promising option for astrategy to mitigate the global energy crisis and eventuallyachieve zero carbon emissions 5,6. Therefore, photocatalyticwater splitting for hydrogen production has attracted extensiveattention from researchers in the field of hydrogen energy 7–9.Prior to the photocatalytic process of H2 evolution reaction(HER), a suitable catalyst must be designed to provide an efficient H2 gas production 10,11. Although many usefulsemiconductors, including metal (oxy) sulfides, metal oxides,and metal (oxy) nitrides, are constructed as photocatalysts foroverall water splitting, the high-cost, complicated synthesisprocess, and mediocre photocatalytic performance all restricttheir applications 12–14.

    Graphitic carbon nitride (g-C3N4) has drawn considerablecenter of interest as a candidate of metal-free photocatalysttowards hydrogen production, due to its wide band gap, robustchemical stability and tunable composition 15,16. However, thephoto-induced carriers of pristine g-C3N4 are strictly confined inthe triazine unit based on the theoretical calculations. This ismainly governed by the excited electrons that are not capable ofbridging N atoms, nor being transferred from one heptazine(C6N7) unit to an adjoining unit 17–19. Furthermore, the relativelow surface area, rapid electron-hole pair recombination, andinadequate light absorption of pristine g-C3N4, results inunsatisfactory photocatalytic HER performance 20,21.

    To overcome the aforementioned issues, several approachesare introduced in this research area such as an attempt to performthe shape and size manipulation, element doping, heterojunctionstructure, and composites, etc. Amongst, non-metal elementdoping in g-C3N4, especially sulfur (S) element, has beengenerally considered to be an effective candidate to regulate itsband gap that plays crucial role for the light harvesting and photocatalytic process under visible light region 22–26. Forexample, Wang et al. have fabricated S-doped g-C3N4nanosheets by self-assembling melamine and tri-thiocyanuricacid to study its photocatalytic activity for hydrogen evolution 27.The H2 evolution rate of g-C3N4 after S doping is 11 times higherthan that of g-C3N4. Li et al. verified the outcome of S-doped g-C3N4 can cause the modification of intrinsic electron structureand specific surface area, thus enhancing visible lightabsorption, reactive sites and catalytic properties 28. However,the above previous reports focused almost exclusively on thesynthesis, characterization and catalytic performance of S-dopedg-C3N4. In addition, the chemical nature of S dopants into the g-C3N4 remains elusive. Moreover, the deterministic spatiallocation of S-dopants in the g-C3N4 molecular structure isrequired to identify its specific contribution to the photocatalyticHER performance.

    In this work, density functional theory (DFT) calculationsof g-C3N4 are simulated to introduce S dopants into the Nsites,and resulting S-doped g-C3N4 (S-g-CN) can serve as anefficient and robust HER photocatalyst. To confirm theproposed structural model, several experimental results areunambiguously demonstrated that the filling of S-dopants intothe N-sites of g-C3N4 significantly enhance specific surfacearea, regulate carrier concentrations, and improve transfer,separation as well as oxidation and reduction ability of photogeneratedelectron-hole pairs. Based on DFT calculations, itturns out that the filled S-dopants contribute significantly inthe photocatalytic enhancement of HER activity byoptimizing the Gibbs free energy of adsorbed hydrogen(ΔGH*). Therefore, we present an optimum S-g-CN catalystthat demonstrates an excellent photocatalytic HER activity of4923 μmol?g?1?h?1 compared to its pristine counterparts.Moreover, we achieve the apparent quantum efficiency (AQE)is even up to 3.64% (λ = 420 nm).

    2 Experimental section

    2.1 Chemicals

    Ammonium sulfate (NH4)2SO4 (AR, ≥ 99.0%), ammoniumcarbonate (NH4)2CO3 (AR, ≥ 99.0%) and melamine (AR, ≥99.0%) were obtained from Sinopharm Chemical Reagent Co.Ltd.

    2.2 Synthesis of S-doped g-C3N4 (S-g-CN)

    Typically, different amount of (NH4)2SO4 (0.5, 0.75, 1.0, 1.25,and 1.5 g) and 1 g melamine (MA) were grinded to non-granularpowder, respectively. The resulting mixtures were then annealeddirectly at 550 °C for 4 h under air atmosphere to prepare a seriesof S-g-CNx materials. According to the dosage of (NH4)2SO4, thesamples were respectively named S-g-CN0.5, S-g-CN0.75, S-g-CN1.0, S-g-CN1.25, and S-g-CN1.5. The g-C3N4 was prepared in asimilar way without the addition of (NH4)2SO4 that intended fora comparative material. For comparison, the g-C3N4-(NH4)2CO3control sample was also fabricated through a similar way with(NH4)2CO3 instead of (NH4)2SO4.

    3 Results and discussions

    The optimized atomic configurations of g-C3N4 and S-g-CNare simulated initially by first-principle DFT calculations asexhibited in Fig. 1a,c. Subsequently, the values of ΔGH* for g-CN, and S-g-CN samples are also calculated to evaluate theirintrinsic HER catalytic activity. We carefully optimized H*active intermediate that adsorbed onto different active sites (Nor S sites) of g-CN and S-g-CN. For g-C3N4, the H* adsorptionmodel is established at N active sites (Fig. 1b). Meanwhile, weconsider three H* adsorption models are constructed at N and Ssites (Fig. 1d–f), corresponding to S-g-CNN1, S-g-CNN2 and Sg-CNS, respectively. The targeted ΔGH* value should be close to0 eV, which represents the optimum H* adsorption/desorptionprocesses over an efficient HER catalyst 29–31. According to thecalculation, the value of ΔGH* for g-C3N4 and S-g-CN at N activesites are found to be ?1.92 eV (g-C3N4), ?1.59 eV (S-g-CNN1),and ?1.55 eV (S-g-CNN2). Notably, the optimum value of ΔGH*for S-g-CN at the S active sites (S-g-CNS) is calculated to be?0.26 eV, which is approximately close to zero in comparison tothe ΔGH* of g-C3N4 and S-g-CN at N sites (Fig. 1g). The aboveDFT results confirm the significant role of filling S-dopants intothe N-sites in promoting the HER catalytic activity of g-C3N4.

    Guided by theoretical predictions, a versatile and eco-friendly fabrication strategy is employed to prepare S-g-CN by using(NH4)2SO4 as a non-toxic S doping source, while g-C3N4 sampleis also prepared via a typical thermal polycondensation processof MA molecules (Fig. 2a,b). The sample morphologies of g-C3N4 and S-g-CN are determined by transmission electronmicroscopy (TEM) technique. Fig. 2c displays the TEM imageof g-C3N4 displays a well-defined layered structure. On the otherhands, The TEM observation in Fig. 2d displays the retainedlamellar framework of S-g-CN upon S-doping. We note that thestructural difference in the S-g-CN possess an ultrathinnanosheet structure compared to its counterparts. To confirm thenanosheet thickness of the S-g-CN, the cross-sectional analysisusing atomic force microscope (AFM) is demonstrated as theevidence for the formation of free-standing nanosheets,indicating the lamellar thickness (~2.5 nm) associated to the Sg-CN shown in Fig. 3a. This result corresponds to the thicknessas thin as four layers of g-C3N4 is formed after filling S-dopants 32.

    The electron spin-resonance spectroscopy (ESR) is employedto study the evolution of substitution N sites by S dopants in g-C3N4 (Fig. 3b). Obviously, the intensity of ESR for S-g-CN ismuch higher than that of g-C3N4, inferring the C3N4 matrix hasmore defects with poorer crystallinity upon S-doping. Fig. 3cdisplays the X-ray diffraction (XRD) results of g-C3N4, and S-g-CN obtained at different dosage of (NH4)2SO4, in which thepeaks centered at ~13° and 27° are assigned to the (100) and(002) reflection planes of g-C3N4, which correspond to in-planeand inter-planar stacking of aromatic units, respectively 33,34.Both reflection planes remain at the similar positions after g-C3N4 phase is converted by the S dopants. The gradual reductionof (100) diffraction peak intensity of S-g-CN demonstrates that it s framework rigidity is reduced, which is consistent to thereduced layer thickness after introducing S dopants as discussedabove 35.

    To obtain the porosity textural features of g-C3N4 and serial Sg-CN samples, we further analyzed the N2 sorption isothermsprofile as displayed in Fig. 3d. Noteworthy, the specific surface areas of all S-g-CN samples are generally larger than that oforiginal g-C3N4, which could be assigned to the stripping effectof the gas generated by the decomposition of (NH4)2SO4 duringsample preparation process. Particularly, the S-g-CN1.0 samplepossesses the highest specific surface area of 216.23 m2?g?1 thatprovide many catalytic active sites for the interface reaction(Table S1), thus expecting to become an excellent photocatalysttowards HER 36,37.

    X-ray photoelectron spectroscopy (XPS) technique isemployed to investigate the influence of filling S-dopants intothe N-sites of g-C3N4 (Table S2). The prominent peaks observedin Fig. 4a are assigned to C 1s and N 1s. A distinct feature was collected compared to the XPS spectra of g-C3N4, here wemeasured that the chemical states corresponding to thecharacteristic of S 2p state at 165.4 eV peak has emerged in theXPS spectra of S-g-CN1.0, suggesting the S-doping formation.Furthermore, the atomic ratios of C : N in S-g-CN (0.806) ishigher than that of g-C3N4 (0.727), revealing that some N activesites are replaced by S dopants. The spectral characteristic of C1s and N 1s in these samples are similar in their lineshapes andbinding energies. To outline their chemical states, the C 1s, N 1sand S 2p spectra for the g-C3N4 and S-g-CN1.0 are studiedsystematically. The C 1s core level spectra are deconvoluted intothree major peaks located at 284.4, 287.2, and 287.8 eV,corresponding to the C―C, C―NH2, and N―C=N in triazineskeleton rings of g-C3N4 38,39, respectively (Fig. 4b). For the Sg-CN1.0, the peak intensity of N―C=N is decreased relative tothat of g-C3N4, implying the successful S doping into g-C3N4.Both the spectral features recorded in the g-C3N4 and S-g-CN1.0showed the analogous N 1s XPS profiles (Fig. 4c) in which thecorresponding peaks at 398.0, 398.6, and 400.3 eV can beascribed to C―N=C, N―(C)3 and C―NH2, respectively 40,41.We note that the peak intensity of C―N=C for S-g-CN1.0 islesser than that of g-C3N4, suggesting several of sp2 hybridizedN atoms are substituted by the S atoms 42. Fig. 4d depicts theS 2p spectra of S-g-CN1.0, where the peaks at 165.4 eV suggestthe presence of C―S―C bond 43. The chemical states of C―S―C have shown that S atom is successfully incorporated intothe N-sites of g-C3N4 structural unit.

    The photocatalytic HER performance of as-fabricatedcatalysts is assessed in a triethanolamine solutions the visiblelight irradiation (≥ 420 nm, Experimental detail, SupportingInformation). As expected, pristine g-C3N4 can only release atrace amount of H2 (Fig. 5a,b), while the significantly enhancedH2 generation efficiency is reached over all g-CNx catalyst,which indicates the significant role of S-doping in improving thephotocatalytic activity. Particularly, the optimized catalyst of SCN1.0achieved the champion H2 production rate of 4923μmol?h?1?g?1, which is about 28 times larger than that of g-C3N4(173 μmol?h?1?g?1). Moreover, the S-CN1.0 catalyst holds one ofthe best catalytic activity compared to other S-doped C3N4-basedphotocatalysts reported recently (Table 1) 44–54. Fig. S1 displayedthe specific surface area and photocatalytic HER activity of theg-C3N4-(NH4)2CO3. Notably, the g-C3N4-(NH4)2CO3 alsopossesses a large specific surface area (186.37 m2?g?1), but itscatalytic activity is much lower than that of S-g-CN (Fig. 5a).We believe that the incremental changes of surface area upon Sdopingcould be the turnover factor to improve the photocatalyticHER activity of g-C3N4. Therefore, we used g-C3N4-(NH4)2CO3as the comparative sample via direct pyrolysis of melamine with(NH4)2CO3. According to these results, we suggest that S-dopingis the promising route to achieve the highly-efficient reaction of photocatalytic HER activity of g-C3N4 rather than the increaseof specific surface area.

    Additionally, the apparent quantum efficiency (AQE) of S-g-CN1.0 is measured as a function of different incident illuminationwavelengths by using band-pass filters. One should considerAQE is an indispensable indicator to measure the photocatalyticefficiency of a catalyst. The larger AQE indicates a prominentaccess to identify the separation efficiency that influences thephoto-induced charge pairs, thus achieving superior HERphotocatalytic activity. We present Fig. 5c to outline theimplication of incident light wavelength on HER catalyticactivity, which suggests that the HER photocatalysis is mainlydriven by the incident photons. Impressively, the AQE of S-g-CN1.0 reaches to 3.64% at 420 nm, and even at 550 nm, the AQEis still 0.37. Apart from the ideal photocatalytic activity, the longtermstability is a deterministic feature of the catalyst that mightbe another major concern to consider 55. Therefore, the durabilityof S-g-CN1.0 is also studied by comparing the activity attenuationafter six catalytic cycles. As exhibited in Fig. 5d, the H2generation rates of S-g-CN1.0 remains unperturbed after sixcycles, demonstrating their robust photocatalytic durability.

    To explore further insight of the photocatalytic activityenhancement upon the filling S-dopants into the N-sites of g-C3N4, we systematically investigate the carrier concentration, thetransfer, and the recombination ability of photo-induced carriersby recording the Mott-Schottky (M-S) plots, electrochemicalimpedance spectra (EIS), photoluminescence (PL) andphotocurrent (PC) responses. Fig. 6a exhibits the M-S plots of g-C3N4 and serial S-g-CNx materials, where the present positiveslopes indicate the typical n-type semiconductors feature 56.Among them, S-g-CN1.0 delivers the smallest slope,demonstrating the abundant carrier concentration and low photogeneratedelectron/hole pair recombination, which is anindispensable reason for its superior catalytic activity 57.Meanwhile, the typical Nyquist plots of g-C3N4 and serial S-g-CNx materials are exhibited in Fig. 6b. Obviously, the interfacialcharge transfer resistance (the diameter of the semicircle in theEIS spectra) of the S-g-CN1.0 is significantly smaller than thoseof g-C3N4, verifying the fastest charge transport after filling Sdopantsinto the N-sites of g-C3N4 58. Such an effective chargetransfer capacity of developed S-g-CN1.0 can also be furthersupported by the smaller overpotential (Fig. 6c) and Tafel slopetowards electrocatalytic HER in comparison to those of g-C3N4(Fig. S2). In addition, PL and spectra analyses are carried out toinvestigate the effect of filling S-dopants on the recombinationefficiency of photo-excited carriers. Generally, strong PL peakintensity reveals the rapid recombination of photo-excitedcarriers 59. The PL spectra of g-C3N4 and serial S-g-CNx catalystsall show the emission peak in the range from 415–530 nm at theexcitation wavelength of 275 nm (Fig. 6d). As expected, the Sg-CN1.0 possesses the lowest PL emission peak, which indicatesthat suitable filling S-dopants in g-C3N4 can effectively preventthe recombination of photo-generated electron-hole pairs, thusendowing superior catalytic HER activity. The separation abilityof electron-hole pairs of g-C3N4 and S-g-CN1.0 are evaluated byrecording their PC curves. As shown in Fig. 6e, the PC responseof S-g-CN1.0 is much stronger than that of g-C3N4, indicating theenhanced separation efficiency of photon-generated carriersafter S doping. In addition, the energy gap changes of g-C3N4after S-doping is disclose on the basis of M-S plots. Fig. 6fdepicts the estimated band gaps energy (Eg) of g-C3N4 and S-g-CNx, which can be calculated from the corresponding UV-Visdiffuse reflectance spectra (UV-Vis DRS, Fig. S3). Obviously,the S-g-CN1.0 possesses the largest Eg value of is determined tobe 2.74 eV, revealing the enhanced oxidation and reductioncapacity of photo-generated holes and charges after filling Sdopantsinto g-C3N4 structural unit 60,61, which is essential for thepromotion of HER photocatalytic activity. According to theabove discussions, the integration of S dopants not onlyenhances the carrier concentration profile, but also improves thecharge carrier transfer and their splitting event as well asoxidation and reduction ability of photo-generated electron-hole pairs, thereby strengthening photocatalytic H2 evolutionperformance.

    4 Conclusion

    In summary, guided by the theoretical predictions, we havepresented experimentally a direct demonstration of S-dopantsfilling into the N-sites of g-C3N4 under multitude spectroscopictechniques. Here the rational chemical design of S-g-CN impliesthat the one-step calcining the mixture of sulphate and melaminewithout the usage of toxic agent is a promising route toward itsphotocatalytic response. Owing to the typical lamellarnanostructures with large specific surface area, moderateintegrating S dopants, abundant carrier concentration, as well aseffective carrier separation and transfer efficiency, thedeveloped S-g-CN presents a conspicuously improved HERphotocatalytic activity and durability relative to g-C3N4. Asdisclosed by the DFT calculations, the ΔGH* of S-g-CN at thefilled S active sites is approximately close to zero (?0.26 eV),strongly confirms the significant role of filling S-dopants intothe N-sites in enhancing the HER catalytic activity. Importantly,filling N-sites of g-C3N4 with S-dopants may open a new avenueto design high-performance photocatalyst for hydrogenproduction and other photo(electro)chemical conversionprogress.

    Author Contributions: H.W. and J.J. designed the proposaland wrote the manuscript. H.W. and L.Y. performed thesynthesis, characterization and the catalytic measurements.H.W., J.J., Arramel, and J.Z., contributed to revising themanuscript. All authors discussed the results and reviewed themanuscript.

    Supporting Information: Supplementary data associatedwith this article is available free of charge via the internet athttp://www.whxb.pku.edu.cn., including: Physical characterizations,photoelectrochemical measurements, photocatalytic hydrogenevolution tests, details of theoretical calculations, N2 sorptionisotherms, XPS results, Tafel plots, UV-Vis DRS spectra.

    References

    (1) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C.Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470

    (2) Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim.Sin. 2021, 37, 2009030. [李云鋒, 張敏, 周亮, 楊思佳, 武占省,馬玉花. 物理化學學報, 2021, 37, 2009030.]doi: 10.3866/PKU.WHXB202009030

    (3) Wang, J.; Jiang, J.; Li, F.; Zou, J.; Xiang, K.; Wang, H.; Li, Y.; Li, X.Green Chem. 2023, 25, 32. doi: 10.1039/D2GC03160D

    (4) Wang, X.; Wang, X.; Huang, J.; Li, S.; Meng, A.; Li, Z. Nat.Commun. 2021, 12, 4112.doi: 10.21203/rs.3.rs-208751/v1

    (5) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41,2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108

    (6) Liu, T.; Li, Y. F.; Sun, H. J.; Zhang, M.; Xia, Z. L.; Yang, Q. Chin. J.Struct. Chem. 2022, 41, 2206055.doi: 10.14102/j.cnki.0254-5861.2022-0152

    (7) Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng,F(xiàn). Acta Phys. -Chim. Sin. 2021, 37, 2010030. [李喜寶, 劉積有, 黃軍同, 何朝政, 馮志軍, 陳智, 萬里鷹, 鄧芳. 物理化學學報,2021, 37, 2010030.] doi: 10.3866/PKU.WHXB202010030

    (8) Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. J. Mater. Sci.Technol. 2022, 114, 222. doi: 10.1016/j.jmst.2021.10.030

    (9) Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y.; Zhang, P.; Li, X. Sci.China Mater. 2022, 63, 2153. doi: 10.1007/s40843-020-1456-x

    (10) Zhang, S.; Dong, H.; An, C.; Li, Z.; Xu, D.; Xu, K.; Wu, Z.; Shen, J.;Chen, X.; Zhang, S. J. Mater. Sci. Technol. 2021, 75, 59.doi: 10.1016/j.jmst.2020.10.030

    (11) Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu,P.; Hsu, J. P. Nano Res. 2023, 16, 127.doi: 10.1007/s12274-022-4799-z

    (12) Liu, S; Wang, K; Yang, M; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38,2109023. [劉珊池, 王凱, 楊夢雪, 靳治良. 物理化學學報, 2022,38, 2109023.] doi: 10.3866/PKU.WHXB202109023

    (13) Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater.Chem. A 2021, 9, 24195. doi: 10.1039/d1ta07332j

    (14) Jiang, J.; Xiong, Z.; Wang, H.; Xiang, K.; Wu, P.; Zou, J. Sci. ChinaTechnol. Sc. 2022, 65, 3020. doi: 10.1007/s11431-022-2192-6

    (15) Tao, S. R.; Wan, S. J.; Huang, Q. Y.; Li, C. M.; Yu, J. G.; Cao, S. W.Chin. J. Struct. Chem. 2022, 41, 2206048.doi: 10.14102/j.cnki.0254-5861.2022-0068

    (16) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43,2111. doi: 10.1016/s1872-2067(22)64096-8

    (17) Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7,2100498. doi: 10.1002/adsu.202100498

    (18) Li, Y.; He, Z.; Liu, L.; Jiang, Y.; Ong, W.; Duan, Y.; Ho, W.; Dong, F.Nano Energy 2023, 105, 108032. doi: 10.1016/j.nanoen.2022.108032

    (19) Zou, J.; Liao, G.; Wang, H.; Ding, Y.; Wu, P.; Hsu, J. P.; Jiang, J.J. Alloy. Compd. 2022, 911, 165020.doi: 10.1016/j.jallcom.2022.165020

    (20) Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.;Zhang, P.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2201025.doi: 10.14102/j.cnki.0254-5861.2021-0039

    (21) Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B Environ. 2019,243, 556. doi: 10.1016/j.apcatb.2018.11.011

    (22) Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2110014. [沈榮晨, 郝磊, 陳晴, 鄭巧清, 張鵬,李鑫. 物理化學學報, 2022, 38, 2110014.]doi: 10.3866/PKU.WHXB202110014

    (23) Liu, Y.; Zheng, Y.; Zhang, W.; Peng, Z.; Xie, H.; Wang, Y.; Guo, X.;Zhang, M.; Li, R.; Huang, Y. J. Mater. Sci. Technol. 2021, 95, 127.doi: 10.1016/j.jmst.2021.03.025

    (24) Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021,42, 56. doi: 10.1016/s1872-2067(20)63634-8

    (25) Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye,L. Chem. Eng. J. 2021, 404, 126498. doi: 10.1016/j.cej.2020.126498

    (26) Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.;Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15.doi: 10.1016/j.jmst.2021.12.018

    (27) Wang, H.; Bian, Y. R.; Hu, J. T.; Dai, L. M. Appl. Catal. B Environ.2018, 238, 592. doi: 10.1016/j.apcatb.2018.07.023

    (28) Zhou, Y.; Lv, W.; Zhu, B.; Tong, F.; Pan, J.; Bai, J.; Zhou, Q.; Qin, H.ACS Sustain. Chem. Eng. 2019, 7, 5801.doi: 10.1021/acssuschemeng.8b05374

    (29) Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu,S. npj 2D Mater. Appl. 2021, 5, 78. doi: 10.1038/s41699-021-00259-4

    (30) Liu, D.; Xu, G.; Yang, H.; Wang, H.; Xia, B. Y. Adv. Funct. Mater.2023, 33, 2208358. doi: 10.1002/adfm.202208358

    (31) Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang,K.; Liu, S.; Zhai, T. Nano Res. 2022, 15, 5977.doi: 10.1007/s12274-022-4276-8

    (32) Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37,2005027. [秦祖贈, 吳靖, 李斌, 蘇通明, 紀紅兵. 物理化學學報,2021, 37, 2005027.] doi: 10.3866/PKU.WHXB202005027

    (33) Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.;Jiang, J. Carbon 2018, 130, 652. doi: 10.1016/j.carbon.2018.01.008

    (34) Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.;Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539.doi: 10.1016/j.apcatb.2020.119539

    (35) Deng, Y.; Zhou, Z.; Zeng, H.; Tang, R.; Li, L.; Wang, J.; Feng, C.;Gong, D.; Tang, L.; Huang, Y. Appl. Catal. B Environ. 2022, 320,121942. doi: 10.1016/j.apcatb.2022.121942

    (36) Wang, H.; Qiu, X.; Peng, Z.; Wang, W.; Wang, J.; Zhang, T.; Jiang,L.; Liu, H. J. Colloid Interface Sci. 2020, 561, 829.doi: 10.1016/j.jcis.2019.11.065

    (37) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci.Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003

    (38) Jiang, J.; Lei, O. Y.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H.Carbon 2014, 80, 213. doi: 10.1016/j.carbon.2014.08.059

    (39) Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.;Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138.doi: 10.1039/c9nr00168a

    (40) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen,Z.; Huang, J.; Zengi, F.; et al. Chin. J. Struct. Chem. 2022, 41,2206069. doi: 10.14102/j.cnki.0254-5861.2022-0103

    (41) Wu, M.; Yan, J.; Tang, X.; Zhao, M.; Jiang, Q. ChemSusChem 2014,7, 2654. doi: 10.1002/cssc.201402180

    (42) Lin, Y. R.; Dizon, G. V. C.; Yamada, K.; Liu, C. Y.; Venault, A.; Lin,H. Y.; Yoshida, M.; Hu, C. J. Colloid Interface Sci. 2020, 567, 202.doi: 10.1016/j.jcis.2020.02.017

    (43) Wang, H.; Qiu, X.; Wang, W.; Jiang, L.; Liu, H. Front. Chem. 2019,7, 855. doi: 10.3389/fchem.2019.00855

    (44) Bai, J.; Zhou, P.; Xu, P.; Deng, Y.; Zhou, Q. Ceram. Int. 2021, 47,4043. doi: 10.1016/j.ceramint.2020.09.275

    (45) Jiao, Y.; Liu, M.; Qin, J.; Li, Y.; Wang, J.; He, Z.; Li, Z. J. ColloidInterface Sci. 2022, 608, 1432. doi: 10.1016/j.jcis.2021.10.084

    (46) Fei, T.; Qin, C.; Zhang, Y.; Dong, G.; Wang, Y.; Zhou, Y. Int. J.Hydrog. Energy 2021, 46, 20481. doi: 10.1016/j.ijhydene.2021.03.148

    (47) Li, J.; Liu, X.; Liu, C.; Che, H.; Li, C. J. Taiwan. Inst. Chem. E 2020,117, 93. doi: 10.1016/j.jtice.2020.12.001

    (48) Zhang, T.; Cai, X.; Lin, X.; Jiang, Z.; Jin, H.; Huang, Z.; Gan, T.; Hu,H.; Zhang, Y. Sep. Purif. Technol. 2023, 314, 123618.doi: 10.1016/j.seppur.2023.123618

    (49) Niu, L.; Du, J.; Tian, X.; Jiang, D.; Gu, L.; Yuan, Y. Mater. Lett. 2021,300, 130120. doi: 10.1016/j.matlet.2021.130120

    (50) Fang, K.; Chen, Z.; Wei, Y.; Fang, S.; Dong, Z.; Zhang, Y.; Li, W.;Wang, L. J. Alloy. Compd. 2022, 925, 166257.doi: 10.1016/j.jallcom.2022.166257

    (51) Long, D.; Wang, L.; Cai, H.; Rao, X.; Zhang, Y. Catal. Lett. 2020,150, 2487. doi: 10.1007/s10562-020-03156-5

    (52) Ahmad, K.; Khan, M. Q.; Alsalme, A.; Kim, H. Synth. Met. 2022,288, 117100. doi: 10.1016/j.synthmet.2022.117100

    (53) Zhou, P.; Meng, X.; Li, L.; Sun, T. J. Alloy. Compd. 2020, 827,154259. doi: 10.1016/j.jallcom.2020.154259

    (54) Feng, C.; Tang, L.; Deng, Y, Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.;Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539.doi: 10.1016/j.apcatb.2020.119539

    (55) Zou, J.; Zou, Y.; Wang, H.; Wang, W.; Wu, P.; Arramel; Jiang, J.; Li,X. Chin. Chem. Lett. 2023, 34, 107378.doi: 10.1016/j.cclet.2022.03.101

    (56) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci.Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046

    (57) Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.;Liu, Q.; Liu, J.; Hu, F.; et al. J. Am. Chem. Soc. 2017, 139, 3021.doi: 10.1021/jacs.6b11878

    (58) Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.;Yu, J.; Chen, X. Adv. Mater. 2019, 31, 1806596.doi: 10.1002/adma.201806596

    (59) Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.;Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35, 2209141.doi: 10.1002/adma.202209141

    (60) Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew.Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012

    (61) Wang, H.; Jiang, J.; Yu, L.; Peng, J.; Song, Z.; Xiong, Z.; Li, N.;Xiang, K.; Zou, J.; Hsu, J.-P.; et al. Small 2023,doi: 10.1002/smll.202301116

    國家自然科學基金(62004143), 湖北省重點研發(fā)計劃(2022BAA084), 湖北省自然科學基金(2021CFB133), 國家重點研發(fā)計劃 (2022YFC3902703), 磷資源開發(fā)利用教育部工程研究中心創(chuàng)新項目(LCX2021003),能量轉(zhuǎn)換與存儲材料化學教育部重點實驗室開放基金(2021JYBKF05)資助

    猜你喜歡
    產(chǎn)氫光催化
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進光催化產(chǎn)氫
    變壓吸附制氫解吸氣壓縮機選型方案探討
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    陶瓷學報(2019年5期)2019-01-12 09:17:34
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    復(fù)合催化劑NiS/g-C3N4的制備及光催化產(chǎn)氫性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    有機廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    爆轟法合成納米TiO2及其光催化性能
    可見光光催化降解在有機污染防治中的應(yīng)用
    WO3/ZnO的制備及其光催化降解甲基橙研究
    全区人妻精品视频| 亚洲内射少妇av| 一级毛片aaaaaa免费看小| 国产麻豆成人av免费视频| 综合色丁香网| 人体艺术视频欧美日本| 日韩av在线大香蕉| 免费av毛片视频| 日产精品乱码卡一卡2卡三| 欧美精品一区二区大全| av免费观看日本| 亚洲av福利一区| 国产高清有码在线观看视频| 国产亚洲精品久久久com| 国产黄色视频一区二区在线观看 | 看黄色毛片网站| 国产黄色视频一区二区在线观看 | 国产欧美另类精品又又久久亚洲欧美| 国产亚洲91精品色在线| 欧美性感艳星| 毛片一级片免费看久久久久| 2021少妇久久久久久久久久久| 久久草成人影院| www.色视频.com| 久久人人爽人人爽人人片va| 最近视频中文字幕2019在线8| 一区二区三区四区激情视频| 午夜免费激情av| 免费黄色在线免费观看| 老司机福利观看| 丝袜喷水一区| 免费av观看视频| 一个人看的www免费观看视频| 国产精品一区二区性色av| 日本与韩国留学比较| 日韩制服骚丝袜av| 久久精品影院6| 免费看美女性在线毛片视频| 美女内射精品一级片tv| 国产人妻一区二区三区在| 麻豆精品久久久久久蜜桃| 蜜桃久久精品国产亚洲av| 99国产精品一区二区蜜桃av| 日本爱情动作片www.在线观看| 性色avwww在线观看| 久久久久网色| 久久精品国产99精品国产亚洲性色| 亚洲精品456在线播放app| 成人性生交大片免费视频hd| 桃色一区二区三区在线观看| av线在线观看网站| 51国产日韩欧美| 乱系列少妇在线播放| 亚洲aⅴ乱码一区二区在线播放| 91在线精品国自产拍蜜月| 毛片一级片免费看久久久久| 亚洲最大成人手机在线| 人妻少妇偷人精品九色| 晚上一个人看的免费电影| 天堂网av新在线| 免费一级毛片在线播放高清视频| 亚洲无线观看免费| 国产伦一二天堂av在线观看| 99久久九九国产精品国产免费| 日本免费一区二区三区高清不卡| 色哟哟·www| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 纵有疾风起免费观看全集完整版 | 久久久成人免费电影| 日韩成人av中文字幕在线观看| 亚洲成人久久爱视频| 亚洲三级黄色毛片| 欧美精品一区二区大全| 国产成人福利小说| 狂野欧美白嫩少妇大欣赏| 免费观看精品视频网站| 久久热精品热| 91久久精品国产一区二区三区| 最近手机中文字幕大全| 亚洲av成人精品一区久久| 亚洲欧美日韩东京热| 国产伦一二天堂av在线观看| 丰满少妇做爰视频| 国产一区二区在线av高清观看| 亚洲国产欧美人成| 亚洲国产精品成人综合色| 简卡轻食公司| 啦啦啦啦在线视频资源| 啦啦啦啦在线视频资源| 亚洲人与动物交配视频| 亚洲丝袜综合中文字幕| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 人妻少妇偷人精品九色| 国产伦理片在线播放av一区| 精品久久久久久久久亚洲| av在线播放精品| 午夜精品国产一区二区电影 | 乱系列少妇在线播放| 赤兔流量卡办理| 又粗又爽又猛毛片免费看| 亚洲精品国产成人久久av| 99热全是精品| 国产精品一区二区三区四区免费观看| 最近最新中文字幕免费大全7| 毛片一级片免费看久久久久| 午夜福利视频1000在线观看| 日本免费一区二区三区高清不卡| av在线观看视频网站免费| 国产精品人妻久久久影院| 午夜老司机福利剧场| 亚洲av电影不卡..在线观看| 精品久久久久久久人妻蜜臀av| 日本免费在线观看一区| 国产女主播在线喷水免费视频网站 | 免费看美女性在线毛片视频| 久久精品国产亚洲网站| 伦理电影大哥的女人| 国产伦精品一区二区三区视频9| 亚洲aⅴ乱码一区二区在线播放| 国产精品永久免费网站| 中文天堂在线官网| 日韩成人av中文字幕在线观看| 91精品国产九色| 亚洲性久久影院| www日本黄色视频网| 91在线精品国自产拍蜜月| 欧美成人午夜免费资源| 欧美精品一区二区大全| 两个人视频免费观看高清| 亚洲精品乱码久久久v下载方式| 精品国内亚洲2022精品成人| 久久久久久久国产电影| 69人妻影院| 国产精华一区二区三区| 最近2019中文字幕mv第一页| 成人亚洲精品av一区二区| av在线亚洲专区| 日本色播在线视频| 一边摸一边抽搐一进一小说| 国产欧美日韩精品一区二区| 美女大奶头视频| 国产精品女同一区二区软件| 成人性生交大片免费视频hd| 日日摸夜夜添夜夜添av毛片| 日韩欧美精品v在线| 综合色丁香网| 级片在线观看| 日韩av在线免费看完整版不卡| 国产视频首页在线观看| av线在线观看网站| av在线蜜桃| 久久久久久国产a免费观看| 51国产日韩欧美| 91狼人影院| av播播在线观看一区| 青青草视频在线视频观看| 欧美成人免费av一区二区三区| 欧美最新免费一区二区三区| 男女边吃奶边做爰视频| 中文字幕制服av| 小说图片视频综合网站| 国产精品一区二区三区四区久久| 免费看日本二区| 波野结衣二区三区在线| 久久久精品欧美日韩精品| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 亚洲最大成人av| 中文字幕制服av| 欧美三级亚洲精品| 免费电影在线观看免费观看| 成年免费大片在线观看| 99视频精品全部免费 在线| 久久久久久国产a免费观看| 91精品国产九色| 中文亚洲av片在线观看爽| 有码 亚洲区| 婷婷色av中文字幕| 欧美三级亚洲精品| 岛国在线免费视频观看| 波多野结衣巨乳人妻| 美女大奶头视频| 性色avwww在线观看| 欧美变态另类bdsm刘玥| 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| 亚洲av男天堂| 精品一区二区三区视频在线| 免费观看精品视频网站| 亚洲精品aⅴ在线观看| 亚洲人成网站在线观看播放| 波多野结衣巨乳人妻| 高清午夜精品一区二区三区| 精品久久久久久久久亚洲| 久久久精品94久久精品| 99久国产av精品国产电影| 丝袜喷水一区| 高清午夜精品一区二区三区| 国产精品久久久久久精品电影| 日日干狠狠操夜夜爽| 欧美3d第一页| 波野结衣二区三区在线| 久久精品综合一区二区三区| 高清毛片免费看| 国产女主播在线喷水免费视频网站 | 精品久久久久久电影网 | 日韩精品青青久久久久久| 91在线精品国自产拍蜜月| 精品久久久噜噜| 91aial.com中文字幕在线观看| 国产精品久久视频播放| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 好男人在线观看高清免费视频| 欧美人与善性xxx| 黄片wwwwww| 一个人免费在线观看电影| 最近2019中文字幕mv第一页| 欧美日本视频| 亚洲成人精品中文字幕电影| 搡老妇女老女人老熟妇| 成年av动漫网址| www.av在线官网国产| 国产精品福利在线免费观看| 久久综合国产亚洲精品| a级毛色黄片| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 又粗又硬又长又爽又黄的视频| 能在线免费看毛片的网站| 午夜福利成人在线免费观看| 精品国产一区二区三区久久久樱花 | 老司机影院毛片| 亚洲欧洲国产日韩| 99久久无色码亚洲精品果冻| 国产在线一区二区三区精 | 在线免费观看的www视频| 97热精品久久久久久| 日韩成人伦理影院| 成年女人永久免费观看视频| 国产高清三级在线| 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 大香蕉97超碰在线| 99热网站在线观看| 久久99蜜桃精品久久| 97热精品久久久久久| 中文字幕久久专区| 亚洲精品亚洲一区二区| 深爱激情五月婷婷| 国产精品久久电影中文字幕| 熟女电影av网| 国产精品日韩av在线免费观看| 桃色一区二区三区在线观看| 天天一区二区日本电影三级| 国产真实伦视频高清在线观看| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 欧美97在线视频| 国产乱人视频| 久久综合国产亚洲精品| 午夜精品国产一区二区电影 | 精品久久久久久电影网 | 日本午夜av视频| 亚洲国产精品成人久久小说| 国产极品精品免费视频能看的| av视频在线观看入口| 人人妻人人看人人澡| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 男女啪啪激烈高潮av片| 最近手机中文字幕大全| 人妻制服诱惑在线中文字幕| 久久久久久久午夜电影| 国产淫语在线视频| 日韩制服骚丝袜av| 中文字幕亚洲精品专区| 亚洲成人精品中文字幕电影| 青春草国产在线视频| 国产免费一级a男人的天堂| 亚洲高清免费不卡视频| 精华霜和精华液先用哪个| 成人av在线播放网站| 国产熟女欧美一区二区| 18禁在线无遮挡免费观看视频| 国产伦一二天堂av在线观看| 成人漫画全彩无遮挡| 大又大粗又爽又黄少妇毛片口| 亚洲综合色惰| 亚洲国产精品国产精品| 精品国产三级普通话版| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 欧美成人免费av一区二区三区| 亚洲精品久久久久久婷婷小说 | 网址你懂的国产日韩在线| 一级毛片久久久久久久久女| 久久久久免费精品人妻一区二区| 男女国产视频网站| 日本黄色片子视频| 亚洲国产高清在线一区二区三| 国产黄片视频在线免费观看| 欧美激情国产日韩精品一区| 深爱激情五月婷婷| 成人午夜精彩视频在线观看| 国产av在哪里看| 欧美激情在线99| 伦精品一区二区三区| 亚洲av.av天堂| 国产淫片久久久久久久久| 在线观看66精品国产| 国产高清有码在线观看视频| 日韩国内少妇激情av| 成人漫画全彩无遮挡| 亚洲av中文字字幕乱码综合| 一边亲一边摸免费视频| 天堂网av新在线| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂 | 欧美精品国产亚洲| 亚洲天堂国产精品一区在线| 99久久精品热视频| 高清在线视频一区二区三区 | 日本黄色片子视频| 亚洲欧美精品专区久久| 婷婷色av中文字幕| 成人三级黄色视频| 久久草成人影院| 亚洲第一区二区三区不卡| av在线天堂中文字幕| 欧美色视频一区免费| 亚洲内射少妇av| 欧美色视频一区免费| 中文字幕av在线有码专区| 国产av在哪里看| 一个人观看的视频www高清免费观看| 丝袜喷水一区| 国产av在哪里看| av国产久精品久网站免费入址| 国产淫语在线视频| 日韩中字成人| 久99久视频精品免费| 寂寞人妻少妇视频99o| 亚洲精品国产av成人精品| 国产精品1区2区在线观看.| 一二三四中文在线观看免费高清| 少妇高潮的动态图| 性插视频无遮挡在线免费观看| 国产精品一区二区三区四区免费观看| 卡戴珊不雅视频在线播放| 九草在线视频观看| 国产免费视频播放在线视频 | 两个人的视频大全免费| 亚洲国产精品成人久久小说| 日韩人妻高清精品专区| 少妇人妻精品综合一区二区| 男人舔奶头视频| 午夜爱爱视频在线播放| 亚洲精品自拍成人| 久久精品国产亚洲网站| 蜜臀久久99精品久久宅男| 老司机影院成人| 精品一区二区三区人妻视频| 国产精品一区www在线观看| 国产高潮美女av| 亚洲国产色片| 国产三级中文精品| 日韩一区二区三区影片| 自拍偷自拍亚洲精品老妇| 人妻系列 视频| 神马国产精品三级电影在线观看| 国产视频内射| 美女大奶头视频| 嘟嘟电影网在线观看| 亚洲国产精品sss在线观看| 男人狂女人下面高潮的视频| eeuss影院久久| 久久久久久久国产电影| 免费av毛片视频| 国产大屁股一区二区在线视频| 婷婷六月久久综合丁香| 国产乱人偷精品视频| 高清日韩中文字幕在线| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 久久精品熟女亚洲av麻豆精品 | 最近中文字幕高清免费大全6| 国产伦在线观看视频一区| 国产精品女同一区二区软件| 欧美激情久久久久久爽电影| 午夜福利在线观看吧| 精品国产一区二区三区久久久樱花 | 一卡2卡三卡四卡精品乱码亚洲| 日本午夜av视频| 午夜精品国产一区二区电影 | 三级男女做爰猛烈吃奶摸视频| 亚洲五月天丁香| 老司机影院毛片| 亚洲综合精品二区| 国产成人精品久久久久久| 精品一区二区三区视频在线| 日日啪夜夜撸| 久久精品国产99精品国产亚洲性色| 哪个播放器可以免费观看大片| 中文字幕制服av| 日韩制服骚丝袜av| 午夜精品一区二区三区免费看| 亚洲国产欧洲综合997久久,| 免费观看精品视频网站| 久久久精品欧美日韩精品| 欧美+日韩+精品| 91在线精品国自产拍蜜月| 欧美不卡视频在线免费观看| av国产久精品久网站免费入址| 国产精品久久久久久久电影| 能在线免费观看的黄片| 日本五十路高清| 国产一级毛片在线| 国产精品久久久久久精品电影| 国产色爽女视频免费观看| 国产成人精品婷婷| 中文字幕av在线有码专区| 免费看美女性在线毛片视频| 网址你懂的国产日韩在线| 亚洲综合精品二区| 国产爱豆传媒在线观看| 啦啦啦啦在线视频资源| 久久这里只有精品中国| 国产免费又黄又爽又色| 中文字幕熟女人妻在线| 久久久久国产网址| 午夜免费激情av| 纵有疾风起免费观看全集完整版 | 亚洲人成网站在线播| 亚洲av成人精品一二三区| 国产一级毛片在线| 村上凉子中文字幕在线| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 久久99热这里只频精品6学生 | 亚洲成人精品中文字幕电影| 久久精品国产亚洲网站| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人久久小说| 国产一级毛片七仙女欲春2| av国产久精品久网站免费入址| 亚洲最大成人中文| 国产黄片视频在线免费观看| 亚洲在久久综合| 中文字幕精品亚洲无线码一区| 亚洲欧美精品自产自拍| 亚洲综合精品二区| 国产av码专区亚洲av| 一二三四中文在线观看免费高清| 国产精品乱码一区二三区的特点| 18禁在线播放成人免费| 色综合色国产| 久久久久网色| 欧美日韩在线观看h| 一级av片app| 国产精品久久久久久精品电影| 大又大粗又爽又黄少妇毛片口| 我要看日韩黄色一级片| 国产精品一区二区在线观看99 | 超碰97精品在线观看| 亚洲怡红院男人天堂| 国产色婷婷99| 观看美女的网站| 老司机影院毛片| 国产精品久久久久久精品电影小说 | 午夜精品在线福利| 国产三级在线视频| 又爽又黄a免费视频| 精品久久国产蜜桃| 伦精品一区二区三区| videossex国产| ponron亚洲| 久久精品国产99精品国产亚洲性色| 精品一区二区免费观看| 麻豆一二三区av精品| 欧美一区二区亚洲| 三级男女做爰猛烈吃奶摸视频| 成人性生交大片免费视频hd| 欧美日韩精品成人综合77777| 丝袜喷水一区| 18禁在线播放成人免费| 熟女电影av网| 麻豆精品久久久久久蜜桃| 婷婷六月久久综合丁香| 麻豆一二三区av精品| 女人十人毛片免费观看3o分钟| 欧美三级亚洲精品| 欧美丝袜亚洲另类| 日韩精品有码人妻一区| 青春草视频在线免费观看| av在线天堂中文字幕| 在线观看66精品国产| 亚洲欧美一区二区三区国产| 日韩中字成人| 国产淫语在线视频| 欧美激情在线99| 两个人的视频大全免费| 晚上一个人看的免费电影| 五月玫瑰六月丁香| 一个人看视频在线观看www免费| 日本一二三区视频观看| 亚洲成人精品中文字幕电影| 又黄又爽又刺激的免费视频.| 精品久久国产蜜桃| 看片在线看免费视频| 亚洲欧洲日产国产| 可以在线观看毛片的网站| 免费播放大片免费观看视频在线观看 | 青春草国产在线视频| 2022亚洲国产成人精品| 91狼人影院| 校园人妻丝袜中文字幕| 天天一区二区日本电影三级| 岛国在线免费视频观看| 国产精品国产高清国产av| 免费搜索国产男女视频| 三级男女做爰猛烈吃奶摸视频| 最后的刺客免费高清国语| 精品不卡国产一区二区三区| 97热精品久久久久久| 你懂的网址亚洲精品在线观看 | 国产免费福利视频在线观看| 亚洲欧美日韩高清专用| 在线观看av片永久免费下载| 少妇熟女欧美另类| 免费看a级黄色片| 久热久热在线精品观看| 免费播放大片免费观看视频在线观看 | 久久人妻av系列| 亚洲av成人av| 国产欧美日韩精品一区二区| 国产亚洲最大av| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 高清午夜精品一区二区三区| 国产精品一区www在线观看| 日韩av在线免费看完整版不卡| 老司机福利观看| 麻豆国产97在线/欧美| 少妇高潮的动态图| 免费黄色在线免费观看| 亚洲av.av天堂| 久久久久免费精品人妻一区二区| 毛片女人毛片| 3wmmmm亚洲av在线观看| a级一级毛片免费在线观看| 免费搜索国产男女视频| 欧美又色又爽又黄视频| 丝袜喷水一区| 最近中文字幕高清免费大全6| 午夜福利网站1000一区二区三区| 国产精品久久电影中文字幕| or卡值多少钱| 日本黄色视频三级网站网址| 国产精品伦人一区二区| 99在线人妻在线中文字幕| 国产白丝娇喘喷水9色精品| 一级黄片播放器| 丰满人妻一区二区三区视频av| 亚洲,欧美,日韩| 男人和女人高潮做爰伦理| 欧美bdsm另类| 日韩欧美在线乱码| 国产精华一区二区三区| 少妇被粗大猛烈的视频| 午夜免费男女啪啪视频观看| 日韩高清综合在线| 国产av在哪里看| 成人美女网站在线观看视频| 欧美激情在线99| 波多野结衣高清无吗| 国产色爽女视频免费观看| 久久精品久久精品一区二区三区| 22中文网久久字幕| 国产在视频线在精品| 少妇裸体淫交视频免费看高清| 国产精品一区二区性色av| 欧美成人午夜免费资源| 听说在线观看完整版免费高清| 亚洲欧美精品自产自拍| 国产精品久久电影中文字幕| 久久久精品欧美日韩精品| 午夜福利在线观看免费完整高清在| 亚洲欧美精品综合久久99| 丰满乱子伦码专区| 精品国产露脸久久av麻豆 | 一级爰片在线观看| 毛片一级片免费看久久久久| 国产黄频视频在线观看| 日韩电影二区| 精品久久久精品久久久| 美女主播在线视频| 久久久精品免费免费高清| 婷婷色综合www| 久久精品久久久久久噜噜老黄| 国产午夜精品一二区理论片| 国语对白做爰xxxⅹ性视频网站| 欧美人与性动交α欧美精品济南到 | 国产亚洲精品第一综合不卡 | 亚洲欧美一区二区三区黑人 | 精品国产露脸久久av麻豆| 如何舔出高潮| 国产高清国产精品国产三级| 欧美xxⅹ黑人| 99久久人妻综合| 色视频在线一区二区三区| 日韩一本色道免费dvd|