• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫取代氮增強g-C3N4 光催化產(chǎn)氫性能

    2024-07-16 00:00:00王海濤余良浪江吉周Arramel鄒菁
    物理化學學報 2024年5期
    關(guān)鍵詞:產(chǎn)氫光催化

    摘要:利用取之不盡的太陽能資源進行光催化水裂解制氫是緩解全球能源危機、實現(xiàn)碳中和戰(zhàn)略的一項有前景的技術(shù)。石墨相氮化碳(g-C3N4)因成本低且穩(wěn)定性高在光催化產(chǎn)氫領(lǐng)域備受關(guān)注。然而,純g-C3N4存在表面積小、電子轉(zhuǎn)移慢、光生載流子復(fù)合快等缺陷,產(chǎn)氫性能通常不佳。本研究通過直接熱解硫酸銨和三聚氰胺混合物,成功實現(xiàn)硫物種對g-C3N4氮位點的原位取代,開發(fā)出一種高效的硫摻雜g-C3N4 (S-g-CN)光催化劑。系列結(jié)構(gòu)和光譜表征證實硫的成功摻雜。密度泛函理論的第一性原理計算表明S活性位對氫的吸附吉布斯自由能近乎為零(~0.26 eV),揭示S摻雜在優(yōu)化H活性中間體吸附和解吸過程中起著重要作用。透射電子顯微鏡和原子力顯微鏡測試結(jié)果表明,S-g-CN具有超薄的納米片狀結(jié)構(gòu),其片層厚度約為2.5 nm。隨后的氮氣吸脫附等溫線和光電化學性質(zhì)測試結(jié)果表明,S摻雜不僅可顯著增大g-C3N4比表面積,而且還能有效提高其光生電子-空穴對的轉(zhuǎn)移、分離和氧化還原能力。得益于材料良好的結(jié)構(gòu)特性,S-g-CN的光催化產(chǎn)氫速率高達4923 μmol?g?1?h?1,是原始g-C3N4的28倍,超越諸多最近報道的其它S摻雜g-C3N4光催化劑。而且,S-g-CN的表觀量子效率高達3.64%。本研究除了開發(fā)一種高效的光催化劑,還將為高性能g-C3N4基催化劑的設(shè)計提供有益借鑒。

    關(guān)鍵詞:理論預(yù)測;硫摻雜;g-C3N4;產(chǎn)氫;光催化

    中圖分類號:O649;O644

    S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity

    Abstract: The use of solar energy as an inexhaustible resource to conductphotocatalytic water splitting in hydrogen (H2) production can alleviate theworldwide energy crisis and achieve carbon neutrality. However, research inphotocatalytic H2 evolution reaction (HER) is extremely challenging in terms ofexploring the current development of an active and durable graphitic carbon nitride(g-C3N4)-based photocatalyst. Several parameters of pristine g-C3N4 requirestructural, physical, and chemical improvements, such as optimization of thesurface area, electron transfer, and photo-generated carrier recombination, torender the g-C3N4 suitable for photocatalysis. In this study, the development of anefficient and robust S-doped g-C3N4 (S-g-CN) catalyst was pursued that involvesdoping nitrogen (N) active sites of g-C3N4 with sulfur (S) dopants via one-stepcalcination of the sulphate and melamine precursors. A combination of structural and spectroscopic fingerprints wasestablished to distinctly determine the realization of S-doping onto the g-C3N4 structure. We obtained the optimum Gibbsfree energy of adsorbed hydrogen (ΔGH*) for S-g-CN at the S active sites, which is nearly zero (~0.26 eV), suggesting thatthe filled S dopants play an essential role in optimizing the adsorption and desorption processes of H-active intermediates.The results of atomic force and transmission electron microscopies (AFM and TEM) demonstrated that the produced S-g-CN catalyst has an ultrathin nanosheet structure with a lamellar thickness of approximately 2.5 nm. A subsequent N2sorption isotherms test revealed a substantial increase in the specific surface area after the integration of S dopants intothe g-C3N4 nanoskeleton. Moreover, the incorporation of S atoms into the g-C3N4 significantly increased the carrierconcentrations, improving the transfer, separation, as well as the oxidation and reduction abilities of the photo-generatedelectron-hole pairs. Leveraging the favorable material characteristics of the S-doped two-dimensional nanostructures, theresulting S-g-CN achieved a high H2 evolution rate of 4923 μmol·g?1·h?1, which is 28 times higher than that of the pristineg-C3N4. Additionally, the developed S-g-CN possessed a high apparent quantum efficiency (3.64%) at visible-lightirradiation. When compared to the recently reported S-doped g-C3N4-based photocatalysts, our optimal S-g-CN catalyst(S-CN1.0) showed one of the best HER catalytic activities. Our rational design is based on an effective strategy that notonly explored a promising HER photocatalyst but also aimed to pave the way for the development of other highperformanceg-C3N4 based catalysts.

    Key Words: Theoretical prediction; S-doping; g-C3N4; Hydrogen evolution; Photocatalysis

    1 Introduction

    The excessive fossil fuels consumption as the primarynonrenewable energy resources has triggered imminentenvironmental crisis that become alarming issues. Theseinevitable challenges require serious attentions towardsustainable and efficient energy sources 1,2. Hydrogen (H2) withthe remarkable characteristics of high calorific value, zeroemission and renewable, has been considered to be a promisingenergy source in the 21st century, capable of poweringequipment from portable electronic devices to vehicles 3. Todate, the conventional H2 production is mainly produced via thechemical conversion of natural gas/coal method, which is limitedby the fossil energy consumption and moreover this route has ledto severe environmental contaminations 4. Based on theseintriguing backgrounds, we believe a reliable method is urgentlyrequired to produce environmentally-friendly, inexpensive, andsustainable H2 gas.

    Photocatalysis technology, which takes advantage ofinexhaustible solar energy resources, is a promising option for astrategy to mitigate the global energy crisis and eventuallyachieve zero carbon emissions 5,6. Therefore, photocatalyticwater splitting for hydrogen production has attracted extensiveattention from researchers in the field of hydrogen energy 7–9.Prior to the photocatalytic process of H2 evolution reaction(HER), a suitable catalyst must be designed to provide an efficient H2 gas production 10,11. Although many usefulsemiconductors, including metal (oxy) sulfides, metal oxides,and metal (oxy) nitrides, are constructed as photocatalysts foroverall water splitting, the high-cost, complicated synthesisprocess, and mediocre photocatalytic performance all restricttheir applications 12–14.

    Graphitic carbon nitride (g-C3N4) has drawn considerablecenter of interest as a candidate of metal-free photocatalysttowards hydrogen production, due to its wide band gap, robustchemical stability and tunable composition 15,16. However, thephoto-induced carriers of pristine g-C3N4 are strictly confined inthe triazine unit based on the theoretical calculations. This ismainly governed by the excited electrons that are not capable ofbridging N atoms, nor being transferred from one heptazine(C6N7) unit to an adjoining unit 17–19. Furthermore, the relativelow surface area, rapid electron-hole pair recombination, andinadequate light absorption of pristine g-C3N4, results inunsatisfactory photocatalytic HER performance 20,21.

    To overcome the aforementioned issues, several approachesare introduced in this research area such as an attempt to performthe shape and size manipulation, element doping, heterojunctionstructure, and composites, etc. Amongst, non-metal elementdoping in g-C3N4, especially sulfur (S) element, has beengenerally considered to be an effective candidate to regulate itsband gap that plays crucial role for the light harvesting and photocatalytic process under visible light region 22–26. Forexample, Wang et al. have fabricated S-doped g-C3N4nanosheets by self-assembling melamine and tri-thiocyanuricacid to study its photocatalytic activity for hydrogen evolution 27.The H2 evolution rate of g-C3N4 after S doping is 11 times higherthan that of g-C3N4. Li et al. verified the outcome of S-doped g-C3N4 can cause the modification of intrinsic electron structureand specific surface area, thus enhancing visible lightabsorption, reactive sites and catalytic properties 28. However,the above previous reports focused almost exclusively on thesynthesis, characterization and catalytic performance of S-dopedg-C3N4. In addition, the chemical nature of S dopants into the g-C3N4 remains elusive. Moreover, the deterministic spatiallocation of S-dopants in the g-C3N4 molecular structure isrequired to identify its specific contribution to the photocatalyticHER performance.

    In this work, density functional theory (DFT) calculationsof g-C3N4 are simulated to introduce S dopants into the Nsites,and resulting S-doped g-C3N4 (S-g-CN) can serve as anefficient and robust HER photocatalyst. To confirm theproposed structural model, several experimental results areunambiguously demonstrated that the filling of S-dopants intothe N-sites of g-C3N4 significantly enhance specific surfacearea, regulate carrier concentrations, and improve transfer,separation as well as oxidation and reduction ability of photogeneratedelectron-hole pairs. Based on DFT calculations, itturns out that the filled S-dopants contribute significantly inthe photocatalytic enhancement of HER activity byoptimizing the Gibbs free energy of adsorbed hydrogen(ΔGH*). Therefore, we present an optimum S-g-CN catalystthat demonstrates an excellent photocatalytic HER activity of4923 μmol?g?1?h?1 compared to its pristine counterparts.Moreover, we achieve the apparent quantum efficiency (AQE)is even up to 3.64% (λ = 420 nm).

    2 Experimental section

    2.1 Chemicals

    Ammonium sulfate (NH4)2SO4 (AR, ≥ 99.0%), ammoniumcarbonate (NH4)2CO3 (AR, ≥ 99.0%) and melamine (AR, ≥99.0%) were obtained from Sinopharm Chemical Reagent Co.Ltd.

    2.2 Synthesis of S-doped g-C3N4 (S-g-CN)

    Typically, different amount of (NH4)2SO4 (0.5, 0.75, 1.0, 1.25,and 1.5 g) and 1 g melamine (MA) were grinded to non-granularpowder, respectively. The resulting mixtures were then annealeddirectly at 550 °C for 4 h under air atmosphere to prepare a seriesof S-g-CNx materials. According to the dosage of (NH4)2SO4, thesamples were respectively named S-g-CN0.5, S-g-CN0.75, S-g-CN1.0, S-g-CN1.25, and S-g-CN1.5. The g-C3N4 was prepared in asimilar way without the addition of (NH4)2SO4 that intended fora comparative material. For comparison, the g-C3N4-(NH4)2CO3control sample was also fabricated through a similar way with(NH4)2CO3 instead of (NH4)2SO4.

    3 Results and discussions

    The optimized atomic configurations of g-C3N4 and S-g-CNare simulated initially by first-principle DFT calculations asexhibited in Fig. 1a,c. Subsequently, the values of ΔGH* for g-CN, and S-g-CN samples are also calculated to evaluate theirintrinsic HER catalytic activity. We carefully optimized H*active intermediate that adsorbed onto different active sites (Nor S sites) of g-CN and S-g-CN. For g-C3N4, the H* adsorptionmodel is established at N active sites (Fig. 1b). Meanwhile, weconsider three H* adsorption models are constructed at N and Ssites (Fig. 1d–f), corresponding to S-g-CNN1, S-g-CNN2 and Sg-CNS, respectively. The targeted ΔGH* value should be close to0 eV, which represents the optimum H* adsorption/desorptionprocesses over an efficient HER catalyst 29–31. According to thecalculation, the value of ΔGH* for g-C3N4 and S-g-CN at N activesites are found to be ?1.92 eV (g-C3N4), ?1.59 eV (S-g-CNN1),and ?1.55 eV (S-g-CNN2). Notably, the optimum value of ΔGH*for S-g-CN at the S active sites (S-g-CNS) is calculated to be?0.26 eV, which is approximately close to zero in comparison tothe ΔGH* of g-C3N4 and S-g-CN at N sites (Fig. 1g). The aboveDFT results confirm the significant role of filling S-dopants intothe N-sites in promoting the HER catalytic activity of g-C3N4.

    Guided by theoretical predictions, a versatile and eco-friendly fabrication strategy is employed to prepare S-g-CN by using(NH4)2SO4 as a non-toxic S doping source, while g-C3N4 sampleis also prepared via a typical thermal polycondensation processof MA molecules (Fig. 2a,b). The sample morphologies of g-C3N4 and S-g-CN are determined by transmission electronmicroscopy (TEM) technique. Fig. 2c displays the TEM imageof g-C3N4 displays a well-defined layered structure. On the otherhands, The TEM observation in Fig. 2d displays the retainedlamellar framework of S-g-CN upon S-doping. We note that thestructural difference in the S-g-CN possess an ultrathinnanosheet structure compared to its counterparts. To confirm thenanosheet thickness of the S-g-CN, the cross-sectional analysisusing atomic force microscope (AFM) is demonstrated as theevidence for the formation of free-standing nanosheets,indicating the lamellar thickness (~2.5 nm) associated to the Sg-CN shown in Fig. 3a. This result corresponds to the thicknessas thin as four layers of g-C3N4 is formed after filling S-dopants 32.

    The electron spin-resonance spectroscopy (ESR) is employedto study the evolution of substitution N sites by S dopants in g-C3N4 (Fig. 3b). Obviously, the intensity of ESR for S-g-CN ismuch higher than that of g-C3N4, inferring the C3N4 matrix hasmore defects with poorer crystallinity upon S-doping. Fig. 3cdisplays the X-ray diffraction (XRD) results of g-C3N4, and S-g-CN obtained at different dosage of (NH4)2SO4, in which thepeaks centered at ~13° and 27° are assigned to the (100) and(002) reflection planes of g-C3N4, which correspond to in-planeand inter-planar stacking of aromatic units, respectively 33,34.Both reflection planes remain at the similar positions after g-C3N4 phase is converted by the S dopants. The gradual reductionof (100) diffraction peak intensity of S-g-CN demonstrates that it s framework rigidity is reduced, which is consistent to thereduced layer thickness after introducing S dopants as discussedabove 35.

    To obtain the porosity textural features of g-C3N4 and serial Sg-CN samples, we further analyzed the N2 sorption isothermsprofile as displayed in Fig. 3d. Noteworthy, the specific surface areas of all S-g-CN samples are generally larger than that oforiginal g-C3N4, which could be assigned to the stripping effectof the gas generated by the decomposition of (NH4)2SO4 duringsample preparation process. Particularly, the S-g-CN1.0 samplepossesses the highest specific surface area of 216.23 m2?g?1 thatprovide many catalytic active sites for the interface reaction(Table S1), thus expecting to become an excellent photocatalysttowards HER 36,37.

    X-ray photoelectron spectroscopy (XPS) technique isemployed to investigate the influence of filling S-dopants intothe N-sites of g-C3N4 (Table S2). The prominent peaks observedin Fig. 4a are assigned to C 1s and N 1s. A distinct feature was collected compared to the XPS spectra of g-C3N4, here wemeasured that the chemical states corresponding to thecharacteristic of S 2p state at 165.4 eV peak has emerged in theXPS spectra of S-g-CN1.0, suggesting the S-doping formation.Furthermore, the atomic ratios of C : N in S-g-CN (0.806) ishigher than that of g-C3N4 (0.727), revealing that some N activesites are replaced by S dopants. The spectral characteristic of C1s and N 1s in these samples are similar in their lineshapes andbinding energies. To outline their chemical states, the C 1s, N 1sand S 2p spectra for the g-C3N4 and S-g-CN1.0 are studiedsystematically. The C 1s core level spectra are deconvoluted intothree major peaks located at 284.4, 287.2, and 287.8 eV,corresponding to the C―C, C―NH2, and N―C=N in triazineskeleton rings of g-C3N4 38,39, respectively (Fig. 4b). For the Sg-CN1.0, the peak intensity of N―C=N is decreased relative tothat of g-C3N4, implying the successful S doping into g-C3N4.Both the spectral features recorded in the g-C3N4 and S-g-CN1.0showed the analogous N 1s XPS profiles (Fig. 4c) in which thecorresponding peaks at 398.0, 398.6, and 400.3 eV can beascribed to C―N=C, N―(C)3 and C―NH2, respectively 40,41.We note that the peak intensity of C―N=C for S-g-CN1.0 islesser than that of g-C3N4, suggesting several of sp2 hybridizedN atoms are substituted by the S atoms 42. Fig. 4d depicts theS 2p spectra of S-g-CN1.0, where the peaks at 165.4 eV suggestthe presence of C―S―C bond 43. The chemical states of C―S―C have shown that S atom is successfully incorporated intothe N-sites of g-C3N4 structural unit.

    The photocatalytic HER performance of as-fabricatedcatalysts is assessed in a triethanolamine solutions the visiblelight irradiation (≥ 420 nm, Experimental detail, SupportingInformation). As expected, pristine g-C3N4 can only release atrace amount of H2 (Fig. 5a,b), while the significantly enhancedH2 generation efficiency is reached over all g-CNx catalyst,which indicates the significant role of S-doping in improving thephotocatalytic activity. Particularly, the optimized catalyst of SCN1.0achieved the champion H2 production rate of 4923μmol?h?1?g?1, which is about 28 times larger than that of g-C3N4(173 μmol?h?1?g?1). Moreover, the S-CN1.0 catalyst holds one ofthe best catalytic activity compared to other S-doped C3N4-basedphotocatalysts reported recently (Table 1) 44–54. Fig. S1 displayedthe specific surface area and photocatalytic HER activity of theg-C3N4-(NH4)2CO3. Notably, the g-C3N4-(NH4)2CO3 alsopossesses a large specific surface area (186.37 m2?g?1), but itscatalytic activity is much lower than that of S-g-CN (Fig. 5a).We believe that the incremental changes of surface area upon Sdopingcould be the turnover factor to improve the photocatalyticHER activity of g-C3N4. Therefore, we used g-C3N4-(NH4)2CO3as the comparative sample via direct pyrolysis of melamine with(NH4)2CO3. According to these results, we suggest that S-dopingis the promising route to achieve the highly-efficient reaction of photocatalytic HER activity of g-C3N4 rather than the increaseof specific surface area.

    Additionally, the apparent quantum efficiency (AQE) of S-g-CN1.0 is measured as a function of different incident illuminationwavelengths by using band-pass filters. One should considerAQE is an indispensable indicator to measure the photocatalyticefficiency of a catalyst. The larger AQE indicates a prominentaccess to identify the separation efficiency that influences thephoto-induced charge pairs, thus achieving superior HERphotocatalytic activity. We present Fig. 5c to outline theimplication of incident light wavelength on HER catalyticactivity, which suggests that the HER photocatalysis is mainlydriven by the incident photons. Impressively, the AQE of S-g-CN1.0 reaches to 3.64% at 420 nm, and even at 550 nm, the AQEis still 0.37. Apart from the ideal photocatalytic activity, the longtermstability is a deterministic feature of the catalyst that mightbe another major concern to consider 55. Therefore, the durabilityof S-g-CN1.0 is also studied by comparing the activity attenuationafter six catalytic cycles. As exhibited in Fig. 5d, the H2generation rates of S-g-CN1.0 remains unperturbed after sixcycles, demonstrating their robust photocatalytic durability.

    To explore further insight of the photocatalytic activityenhancement upon the filling S-dopants into the N-sites of g-C3N4, we systematically investigate the carrier concentration, thetransfer, and the recombination ability of photo-induced carriersby recording the Mott-Schottky (M-S) plots, electrochemicalimpedance spectra (EIS), photoluminescence (PL) andphotocurrent (PC) responses. Fig. 6a exhibits the M-S plots of g-C3N4 and serial S-g-CNx materials, where the present positiveslopes indicate the typical n-type semiconductors feature 56.Among them, S-g-CN1.0 delivers the smallest slope,demonstrating the abundant carrier concentration and low photogeneratedelectron/hole pair recombination, which is anindispensable reason for its superior catalytic activity 57.Meanwhile, the typical Nyquist plots of g-C3N4 and serial S-g-CNx materials are exhibited in Fig. 6b. Obviously, the interfacialcharge transfer resistance (the diameter of the semicircle in theEIS spectra) of the S-g-CN1.0 is significantly smaller than thoseof g-C3N4, verifying the fastest charge transport after filling Sdopantsinto the N-sites of g-C3N4 58. Such an effective chargetransfer capacity of developed S-g-CN1.0 can also be furthersupported by the smaller overpotential (Fig. 6c) and Tafel slopetowards electrocatalytic HER in comparison to those of g-C3N4(Fig. S2). In addition, PL and spectra analyses are carried out toinvestigate the effect of filling S-dopants on the recombinationefficiency of photo-excited carriers. Generally, strong PL peakintensity reveals the rapid recombination of photo-excitedcarriers 59. The PL spectra of g-C3N4 and serial S-g-CNx catalystsall show the emission peak in the range from 415–530 nm at theexcitation wavelength of 275 nm (Fig. 6d). As expected, the Sg-CN1.0 possesses the lowest PL emission peak, which indicatesthat suitable filling S-dopants in g-C3N4 can effectively preventthe recombination of photo-generated electron-hole pairs, thusendowing superior catalytic HER activity. The separation abilityof electron-hole pairs of g-C3N4 and S-g-CN1.0 are evaluated byrecording their PC curves. As shown in Fig. 6e, the PC responseof S-g-CN1.0 is much stronger than that of g-C3N4, indicating theenhanced separation efficiency of photon-generated carriersafter S doping. In addition, the energy gap changes of g-C3N4after S-doping is disclose on the basis of M-S plots. Fig. 6fdepicts the estimated band gaps energy (Eg) of g-C3N4 and S-g-CNx, which can be calculated from the corresponding UV-Visdiffuse reflectance spectra (UV-Vis DRS, Fig. S3). Obviously,the S-g-CN1.0 possesses the largest Eg value of is determined tobe 2.74 eV, revealing the enhanced oxidation and reductioncapacity of photo-generated holes and charges after filling Sdopantsinto g-C3N4 structural unit 60,61, which is essential for thepromotion of HER photocatalytic activity. According to theabove discussions, the integration of S dopants not onlyenhances the carrier concentration profile, but also improves thecharge carrier transfer and their splitting event as well asoxidation and reduction ability of photo-generated electron-hole pairs, thereby strengthening photocatalytic H2 evolutionperformance.

    4 Conclusion

    In summary, guided by the theoretical predictions, we havepresented experimentally a direct demonstration of S-dopantsfilling into the N-sites of g-C3N4 under multitude spectroscopictechniques. Here the rational chemical design of S-g-CN impliesthat the one-step calcining the mixture of sulphate and melaminewithout the usage of toxic agent is a promising route toward itsphotocatalytic response. Owing to the typical lamellarnanostructures with large specific surface area, moderateintegrating S dopants, abundant carrier concentration, as well aseffective carrier separation and transfer efficiency, thedeveloped S-g-CN presents a conspicuously improved HERphotocatalytic activity and durability relative to g-C3N4. Asdisclosed by the DFT calculations, the ΔGH* of S-g-CN at thefilled S active sites is approximately close to zero (?0.26 eV),strongly confirms the significant role of filling S-dopants intothe N-sites in enhancing the HER catalytic activity. Importantly,filling N-sites of g-C3N4 with S-dopants may open a new avenueto design high-performance photocatalyst for hydrogenproduction and other photo(electro)chemical conversionprogress.

    Author Contributions: H.W. and J.J. designed the proposaland wrote the manuscript. H.W. and L.Y. performed thesynthesis, characterization and the catalytic measurements.H.W., J.J., Arramel, and J.Z., contributed to revising themanuscript. All authors discussed the results and reviewed themanuscript.

    Supporting Information: Supplementary data associatedwith this article is available free of charge via the internet athttp://www.whxb.pku.edu.cn., including: Physical characterizations,photoelectrochemical measurements, photocatalytic hydrogenevolution tests, details of theoretical calculations, N2 sorptionisotherms, XPS results, Tafel plots, UV-Vis DRS spectra.

    References

    (1) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C.Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470

    (2) Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim.Sin. 2021, 37, 2009030. [李云鋒, 張敏, 周亮, 楊思佳, 武占省,馬玉花. 物理化學學報, 2021, 37, 2009030.]doi: 10.3866/PKU.WHXB202009030

    (3) Wang, J.; Jiang, J.; Li, F.; Zou, J.; Xiang, K.; Wang, H.; Li, Y.; Li, X.Green Chem. 2023, 25, 32. doi: 10.1039/D2GC03160D

    (4) Wang, X.; Wang, X.; Huang, J.; Li, S.; Meng, A.; Li, Z. Nat.Commun. 2021, 12, 4112.doi: 10.21203/rs.3.rs-208751/v1

    (5) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41,2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108

    (6) Liu, T.; Li, Y. F.; Sun, H. J.; Zhang, M.; Xia, Z. L.; Yang, Q. Chin. J.Struct. Chem. 2022, 41, 2206055.doi: 10.14102/j.cnki.0254-5861.2022-0152

    (7) Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng,F(xiàn). Acta Phys. -Chim. Sin. 2021, 37, 2010030. [李喜寶, 劉積有, 黃軍同, 何朝政, 馮志軍, 陳智, 萬里鷹, 鄧芳. 物理化學學報,2021, 37, 2010030.] doi: 10.3866/PKU.WHXB202010030

    (8) Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. J. Mater. Sci.Technol. 2022, 114, 222. doi: 10.1016/j.jmst.2021.10.030

    (9) Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y.; Zhang, P.; Li, X. Sci.China Mater. 2022, 63, 2153. doi: 10.1007/s40843-020-1456-x

    (10) Zhang, S.; Dong, H.; An, C.; Li, Z.; Xu, D.; Xu, K.; Wu, Z.; Shen, J.;Chen, X.; Zhang, S. J. Mater. Sci. Technol. 2021, 75, 59.doi: 10.1016/j.jmst.2020.10.030

    (11) Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu,P.; Hsu, J. P. Nano Res. 2023, 16, 127.doi: 10.1007/s12274-022-4799-z

    (12) Liu, S; Wang, K; Yang, M; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38,2109023. [劉珊池, 王凱, 楊夢雪, 靳治良. 物理化學學報, 2022,38, 2109023.] doi: 10.3866/PKU.WHXB202109023

    (13) Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater.Chem. A 2021, 9, 24195. doi: 10.1039/d1ta07332j

    (14) Jiang, J.; Xiong, Z.; Wang, H.; Xiang, K.; Wu, P.; Zou, J. Sci. ChinaTechnol. Sc. 2022, 65, 3020. doi: 10.1007/s11431-022-2192-6

    (15) Tao, S. R.; Wan, S. J.; Huang, Q. Y.; Li, C. M.; Yu, J. G.; Cao, S. W.Chin. J. Struct. Chem. 2022, 41, 2206048.doi: 10.14102/j.cnki.0254-5861.2022-0068

    (16) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43,2111. doi: 10.1016/s1872-2067(22)64096-8

    (17) Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023, 7,2100498. doi: 10.1002/adsu.202100498

    (18) Li, Y.; He, Z.; Liu, L.; Jiang, Y.; Ong, W.; Duan, Y.; Ho, W.; Dong, F.Nano Energy 2023, 105, 108032. doi: 10.1016/j.nanoen.2022.108032

    (19) Zou, J.; Liao, G.; Wang, H.; Ding, Y.; Wu, P.; Hsu, J. P.; Jiang, J.J. Alloy. Compd. 2022, 911, 165020.doi: 10.1016/j.jallcom.2022.165020

    (20) Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.;Zhang, P.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2201025.doi: 10.14102/j.cnki.0254-5861.2021-0039

    (21) Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B Environ. 2019,243, 556. doi: 10.1016/j.apcatb.2018.11.011

    (22) Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38, 2110014. [沈榮晨, 郝磊, 陳晴, 鄭巧清, 張鵬,李鑫. 物理化學學報, 2022, 38, 2110014.]doi: 10.3866/PKU.WHXB202110014

    (23) Liu, Y.; Zheng, Y.; Zhang, W.; Peng, Z.; Xie, H.; Wang, Y.; Guo, X.;Zhang, M.; Li, R.; Huang, Y. J. Mater. Sci. Technol. 2021, 95, 127.doi: 10.1016/j.jmst.2021.03.025

    (24) Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021,42, 56. doi: 10.1016/s1872-2067(20)63634-8

    (25) Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye,L. Chem. Eng. J. 2021, 404, 126498. doi: 10.1016/j.cej.2020.126498

    (26) Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.;Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 118, 15.doi: 10.1016/j.jmst.2021.12.018

    (27) Wang, H.; Bian, Y. R.; Hu, J. T.; Dai, L. M. Appl. Catal. B Environ.2018, 238, 592. doi: 10.1016/j.apcatb.2018.07.023

    (28) Zhou, Y.; Lv, W.; Zhu, B.; Tong, F.; Pan, J.; Bai, J.; Zhou, Q.; Qin, H.ACS Sustain. Chem. Eng. 2019, 7, 5801.doi: 10.1021/acssuschemeng.8b05374

    (29) Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu,S. npj 2D Mater. Appl. 2021, 5, 78. doi: 10.1038/s41699-021-00259-4

    (30) Liu, D.; Xu, G.; Yang, H.; Wang, H.; Xia, B. Y. Adv. Funct. Mater.2023, 33, 2208358. doi: 10.1002/adfm.202208358

    (31) Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang,K.; Liu, S.; Zhai, T. Nano Res. 2022, 15, 5977.doi: 10.1007/s12274-022-4276-8

    (32) Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37,2005027. [秦祖贈, 吳靖, 李斌, 蘇通明, 紀紅兵. 物理化學學報,2021, 37, 2005027.] doi: 10.3866/PKU.WHXB202005027

    (33) Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J. P.; Wee, A. T. S.;Jiang, J. Carbon 2018, 130, 652. doi: 10.1016/j.carbon.2018.01.008

    (34) Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.;Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539.doi: 10.1016/j.apcatb.2020.119539

    (35) Deng, Y.; Zhou, Z.; Zeng, H.; Tang, R.; Li, L.; Wang, J.; Feng, C.;Gong, D.; Tang, L.; Huang, Y. Appl. Catal. B Environ. 2022, 320,121942. doi: 10.1016/j.apcatb.2022.121942

    (36) Wang, H.; Qiu, X.; Peng, Z.; Wang, W.; Wang, J.; Zhang, T.; Jiang,L.; Liu, H. J. Colloid Interface Sci. 2020, 561, 829.doi: 10.1016/j.jcis.2019.11.065

    (37) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci.Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003

    (38) Jiang, J.; Lei, O. Y.; Zhu, L.; Zheng, A.; Zou, J.; Yi, X.; Tang, H.Carbon 2014, 80, 213. doi: 10.1016/j.carbon.2014.08.059

    (39) Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.;Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138.doi: 10.1039/c9nr00168a

    (40) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen,Z.; Huang, J.; Zengi, F.; et al. Chin. J. Struct. Chem. 2022, 41,2206069. doi: 10.14102/j.cnki.0254-5861.2022-0103

    (41) Wu, M.; Yan, J.; Tang, X.; Zhao, M.; Jiang, Q. ChemSusChem 2014,7, 2654. doi: 10.1002/cssc.201402180

    (42) Lin, Y. R.; Dizon, G. V. C.; Yamada, K.; Liu, C. Y.; Venault, A.; Lin,H. Y.; Yoshida, M.; Hu, C. J. Colloid Interface Sci. 2020, 567, 202.doi: 10.1016/j.jcis.2020.02.017

    (43) Wang, H.; Qiu, X.; Wang, W.; Jiang, L.; Liu, H. Front. Chem. 2019,7, 855. doi: 10.3389/fchem.2019.00855

    (44) Bai, J.; Zhou, P.; Xu, P.; Deng, Y.; Zhou, Q. Ceram. Int. 2021, 47,4043. doi: 10.1016/j.ceramint.2020.09.275

    (45) Jiao, Y.; Liu, M.; Qin, J.; Li, Y.; Wang, J.; He, Z.; Li, Z. J. ColloidInterface Sci. 2022, 608, 1432. doi: 10.1016/j.jcis.2021.10.084

    (46) Fei, T.; Qin, C.; Zhang, Y.; Dong, G.; Wang, Y.; Zhou, Y. Int. J.Hydrog. Energy 2021, 46, 20481. doi: 10.1016/j.ijhydene.2021.03.148

    (47) Li, J.; Liu, X.; Liu, C.; Che, H.; Li, C. J. Taiwan. Inst. Chem. E 2020,117, 93. doi: 10.1016/j.jtice.2020.12.001

    (48) Zhang, T.; Cai, X.; Lin, X.; Jiang, Z.; Jin, H.; Huang, Z.; Gan, T.; Hu,H.; Zhang, Y. Sep. Purif. Technol. 2023, 314, 123618.doi: 10.1016/j.seppur.2023.123618

    (49) Niu, L.; Du, J.; Tian, X.; Jiang, D.; Gu, L.; Yuan, Y. Mater. Lett. 2021,300, 130120. doi: 10.1016/j.matlet.2021.130120

    (50) Fang, K.; Chen, Z.; Wei, Y.; Fang, S.; Dong, Z.; Zhang, Y.; Li, W.;Wang, L. J. Alloy. Compd. 2022, 925, 166257.doi: 10.1016/j.jallcom.2022.166257

    (51) Long, D.; Wang, L.; Cai, H.; Rao, X.; Zhang, Y. Catal. Lett. 2020,150, 2487. doi: 10.1007/s10562-020-03156-5

    (52) Ahmad, K.; Khan, M. Q.; Alsalme, A.; Kim, H. Synth. Met. 2022,288, 117100. doi: 10.1016/j.synthmet.2022.117100

    (53) Zhou, P.; Meng, X.; Li, L.; Sun, T. J. Alloy. Compd. 2020, 827,154259. doi: 10.1016/j.jallcom.2020.154259

    (54) Feng, C.; Tang, L.; Deng, Y, Wang, J.; Liu, Y.; Ouyang, X.; Yang, H.;Yu, J.; Wang, J. Appl. Catal. B Environ. 2021, 281, 119539.doi: 10.1016/j.apcatb.2020.119539

    (55) Zou, J.; Zou, Y.; Wang, H.; Wang, W.; Wu, P.; Arramel; Jiang, J.; Li,X. Chin. Chem. Lett. 2023, 34, 107378.doi: 10.1016/j.cclet.2022.03.101

    (56) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci.Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046

    (57) Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.;Liu, Q.; Liu, J.; Hu, F.; et al. J. Am. Chem. Soc. 2017, 139, 3021.doi: 10.1021/jacs.6b11878

    (58) Gao, C.; Wei, T.; Zhang, Y.; Song, X.; Huan, Y.; Liu, H.; Zhao, M.;Yu, J.; Chen, X. Adv. Mater. 2019, 31, 1806596.doi: 10.1002/adma.201806596

    (59) Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.;Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35, 2209141.doi: 10.1002/adma.202209141

    (60) Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew.Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012

    (61) Wang, H.; Jiang, J.; Yu, L.; Peng, J.; Song, Z.; Xiong, Z.; Li, N.;Xiang, K.; Zou, J.; Hsu, J.-P.; et al. Small 2023,doi: 10.1002/smll.202301116

    國家自然科學基金(62004143), 湖北省重點研發(fā)計劃(2022BAA084), 湖北省自然科學基金(2021CFB133), 國家重點研發(fā)計劃 (2022YFC3902703), 磷資源開發(fā)利用教育部工程研究中心創(chuàng)新項目(LCX2021003),能量轉(zhuǎn)換與存儲材料化學教育部重點實驗室開放基金(2021JYBKF05)資助

    猜你喜歡
    產(chǎn)氫光催化
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進光催化產(chǎn)氫
    變壓吸附制氫解吸氣壓縮機選型方案探討
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    陶瓷學報(2019年5期)2019-01-12 09:17:34
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    復(fù)合催化劑NiS/g-C3N4的制備及光催化產(chǎn)氫性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    有機廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    爆轟法合成納米TiO2及其光催化性能
    可見光光催化降解在有機污染防治中的應(yīng)用
    WO3/ZnO的制備及其光催化降解甲基橙研究
    久久国产亚洲av麻豆专区| av天堂在线播放| 国产免费av片在线观看野外av| 免费看美女性在线毛片视频| 18禁黄网站禁片午夜丰满| 亚洲欧洲精品一区二区精品久久久| 中文字幕精品免费在线观看视频| 97碰自拍视频| 亚洲精品国产精品久久久不卡| 久久久久久久精品吃奶| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av在线| 亚洲激情在线av| 51午夜福利影视在线观看| 亚洲人成电影免费在线| 国产精品野战在线观看| 男人舔女人的私密视频| 哪里可以看免费的av片| 麻豆成人午夜福利视频| 免费一级毛片在线播放高清视频| 日本免费一区二区三区高清不卡| 国产午夜精品久久久久久| 给我免费播放毛片高清在线观看| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 午夜免费观看网址| 两性夫妻黄色片| 黄色丝袜av网址大全| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 色综合站精品国产| 免费在线观看成人毛片| av电影中文网址| 日韩精品青青久久久久久| 变态另类丝袜制服| 国产国语露脸激情在线看| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 丰满的人妻完整版| 男人的好看免费观看在线视频 | 又黄又粗又硬又大视频| 村上凉子中文字幕在线| 国产亚洲精品久久久久5区| 99热6这里只有精品| 脱女人内裤的视频| 嫩草影视91久久| 免费在线观看完整版高清| 又大又爽又粗| 50天的宝宝边吃奶边哭怎么回事| 91字幕亚洲| АⅤ资源中文在线天堂| 热99re8久久精品国产| xxx96com| 日本免费一区二区三区高清不卡| 日韩视频一区二区在线观看| 老司机午夜福利在线观看视频| 久久久久免费精品人妻一区二区 | 国产精华一区二区三区| 一级毛片女人18水好多| 嫩草影视91久久| 色综合站精品国产| 国产97色在线日韩免费| 精品国内亚洲2022精品成人| 精品少妇一区二区三区视频日本电影| 欧美黑人精品巨大| 99riav亚洲国产免费| 国产成人av教育| www.精华液| 国产亚洲精品综合一区在线观看 | avwww免费| 成人午夜高清在线视频 | 国产私拍福利视频在线观看| 真人一进一出gif抽搐免费| 日本一本二区三区精品| 久久久久久九九精品二区国产 | 中文字幕人妻熟女乱码| 亚洲av成人一区二区三| 日韩成人在线观看一区二区三区| 日本 欧美在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美亚洲日本最大视频资源| 99在线人妻在线中文字幕| 欧美色视频一区免费| 中文字幕久久专区| 国产精品综合久久久久久久免费| 极品教师在线免费播放| 欧美日韩亚洲国产一区二区在线观看| 亚洲专区国产一区二区| 国产三级黄色录像| 久久久久国产一级毛片高清牌| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 男女视频在线观看网站免费 | 激情在线观看视频在线高清| 美女高潮喷水抽搐中文字幕| 国产色视频综合| 啦啦啦韩国在线观看视频| 国产精品综合久久久久久久免费| 制服丝袜大香蕉在线| 可以免费在线观看a视频的电影网站| 国产免费男女视频| 国产一卡二卡三卡精品| 91国产中文字幕| 我的亚洲天堂| 亚洲专区中文字幕在线| 成人午夜高清在线视频 | 黄色视频不卡| 欧美中文日本在线观看视频| 一边摸一边做爽爽视频免费| 精品久久久久久久毛片微露脸| 99久久精品国产亚洲精品| 搡老熟女国产l中国老女人| 成人三级黄色视频| 国产精华一区二区三区| 香蕉久久夜色| 久久精品国产清高在天天线| 国产日本99.免费观看| 国产亚洲精品综合一区在线观看 | 日本a在线网址| 校园春色视频在线观看| 中文亚洲av片在线观看爽| 老汉色av国产亚洲站长工具| 国产单亲对白刺激| 亚洲成人免费电影在线观看| 久久中文字幕一级| 久久热在线av| 亚洲专区中文字幕在线| 色播亚洲综合网| 国产片内射在线| 国产午夜福利久久久久久| 久久久水蜜桃国产精品网| 国产成人av教育| 中文字幕精品免费在线观看视频| 亚洲av美国av| 操出白浆在线播放| 成年版毛片免费区| 久久久水蜜桃国产精品网| 国产日本99.免费观看| 亚洲国产精品合色在线| 久久久水蜜桃国产精品网| 日本撒尿小便嘘嘘汇集6| 日韩国内少妇激情av| 久久精品夜夜夜夜夜久久蜜豆 | 久99久视频精品免费| 一区二区三区国产精品乱码| 黄色女人牲交| 99热6这里只有精品| 亚洲国产精品合色在线| 欧美激情极品国产一区二区三区| 熟女少妇亚洲综合色aaa.| 成人特级黄色片久久久久久久| 国产黄a三级三级三级人| x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 亚洲成av片中文字幕在线观看| 精品久久久久久久末码| АⅤ资源中文在线天堂| 亚洲国产精品999在线| 免费在线观看完整版高清| 欧美成人性av电影在线观看| 色播亚洲综合网| e午夜精品久久久久久久| 精品第一国产精品| 久久香蕉精品热| 一二三四社区在线视频社区8| 欧美日韩一级在线毛片| 国产黄片美女视频| 亚洲人成77777在线视频| 中出人妻视频一区二区| 熟女电影av网| 中文字幕另类日韩欧美亚洲嫩草| 夜夜躁狠狠躁天天躁| 国产一区二区三区视频了| 日韩精品青青久久久久久| 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 妹子高潮喷水视频| 欧美成人性av电影在线观看| 中文字幕久久专区| 18禁黄网站禁片免费观看直播| 午夜福利在线观看吧| 久久 成人 亚洲| 亚洲第一av免费看| 99精品久久久久人妻精品| 中文字幕精品免费在线观看视频| 亚洲第一青青草原| 十分钟在线观看高清视频www| 欧美 亚洲 国产 日韩一| 一进一出好大好爽视频| 国产精品亚洲av一区麻豆| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 在线av久久热| 悠悠久久av| 日韩视频一区二区在线观看| 最新美女视频免费是黄的| 久久久久久人人人人人| 色播亚洲综合网| 日日爽夜夜爽网站| 一区二区日韩欧美中文字幕| 亚洲欧美激情综合另类| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| 香蕉久久夜色| 十八禁网站免费在线| 成人国语在线视频| 黄色 视频免费看| 午夜亚洲福利在线播放| 黄色毛片三级朝国网站| 欧美午夜高清在线| 狂野欧美激情性xxxx| 亚洲 欧美 日韩 在线 免费| 亚洲九九香蕉| 亚洲欧美日韩高清在线视频| 亚洲自拍偷在线| 麻豆av在线久日| 精品国产国语对白av| 91麻豆精品激情在线观看国产| 99久久国产精品久久久| 亚洲五月色婷婷综合| 黄色视频,在线免费观看| 观看免费一级毛片| 国产精品香港三级国产av潘金莲| 中文字幕人妻熟女乱码| 黄网站色视频无遮挡免费观看| 日韩欧美免费精品| 窝窝影院91人妻| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| 亚洲中文字幕一区二区三区有码在线看 | 国产精品99久久99久久久不卡| 视频区欧美日本亚洲| 成人18禁在线播放| 美女午夜性视频免费| 亚洲五月天丁香| 首页视频小说图片口味搜索| 亚洲av熟女| 国产国语露脸激情在线看| 亚洲av中文字字幕乱码综合 | 日韩三级视频一区二区三区| 91国产中文字幕| 国内久久婷婷六月综合欲色啪| 一本综合久久免费| 国产精品久久久久久亚洲av鲁大| 长腿黑丝高跟| www.www免费av| 欧美中文综合在线视频| 欧美不卡视频在线免费观看 | 国产精品久久久人人做人人爽| 久久人妻福利社区极品人妻图片| 97超级碰碰碰精品色视频在线观看| 波多野结衣巨乳人妻| 久久久久久人人人人人| 精品国产乱码久久久久久男人| 亚洲成a人片在线一区二区| 精品福利观看| 听说在线观看完整版免费高清| 黄片播放在线免费| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 久久久久久免费高清国产稀缺| 久久久久久久精品吃奶| 99国产精品一区二区三区| 国产午夜精品久久久久久| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| av片东京热男人的天堂| 亚洲 国产 在线| 这个男人来自地球电影免费观看| 激情在线观看视频在线高清| 久久中文字幕一级| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 欧洲精品卡2卡3卡4卡5卡区| 国产不卡一卡二| 三级毛片av免费| 精品一区二区三区视频在线观看免费| 国产精品久久视频播放| 国产黄片美女视频| 免费搜索国产男女视频| 日本熟妇午夜| 男女之事视频高清在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲av成人一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 精品国产乱子伦一区二区三区| 日韩欧美一区视频在线观看| 欧美一级毛片孕妇| 国产精品久久久av美女十八| 国产区一区二久久| 欧美日本亚洲视频在线播放| 欧美色欧美亚洲另类二区| 亚洲成人久久性| 久久久久九九精品影院| 久热爱精品视频在线9| 中文字幕另类日韩欧美亚洲嫩草| 香蕉久久夜色| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 国产精品日韩av在线免费观看| 观看免费一级毛片| 亚洲第一青青草原| 久久热在线av| 国产精品久久久人人做人人爽| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 人人妻人人澡人人看| 身体一侧抽搐| 国产精品久久视频播放| 又紧又爽又黄一区二区| av超薄肉色丝袜交足视频| 日本熟妇午夜| 最近最新中文字幕大全免费视频| 欧美精品啪啪一区二区三区| 最近最新中文字幕大全免费视频| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人| 欧美绝顶高潮抽搐喷水| 久久人妻福利社区极品人妻图片| 一本大道久久a久久精品| 国产一区二区三区在线臀色熟女| 精品高清国产在线一区| 国产精品爽爽va在线观看网站 | 精品乱码久久久久久99久播| 91大片在线观看| 一区福利在线观看| 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| 久热这里只有精品99| 欧美丝袜亚洲另类 | 国产精品98久久久久久宅男小说| 亚洲黑人精品在线| 手机成人av网站| 18禁美女被吸乳视频| 一本综合久久免费| 精品免费久久久久久久清纯| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 日本成人三级电影网站| 中国美女看黄片| 国产乱人伦免费视频| 亚洲一码二码三码区别大吗| 色老头精品视频在线观看| 一夜夜www| 中文资源天堂在线| 国产精品精品国产色婷婷| 亚洲av片天天在线观看| 久久中文字幕人妻熟女| 国产免费男女视频| 亚洲一码二码三码区别大吗| 国产黄片美女视频| 久久精品国产亚洲av高清一级| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 欧美国产精品va在线观看不卡| 俄罗斯特黄特色一大片| 欧美绝顶高潮抽搐喷水| 国产成人精品无人区| 女性被躁到高潮视频| 日本免费a在线| 亚洲一区二区三区不卡视频| 中文字幕另类日韩欧美亚洲嫩草| 色婷婷久久久亚洲欧美| 亚洲国产欧美一区二区综合| 久久香蕉精品热| 十八禁人妻一区二区| 少妇 在线观看| 久久精品成人免费网站| 亚洲熟女毛片儿| 大香蕉久久成人网| 99久久久亚洲精品蜜臀av| 久久香蕉激情| 日韩精品青青久久久久久| 午夜老司机福利片| 亚洲成人精品中文字幕电影| 特大巨黑吊av在线直播 | 最新美女视频免费是黄的| 国产私拍福利视频在线观看| 欧美一级a爱片免费观看看 | 热99re8久久精品国产| 嫩草影视91久久| 免费在线观看亚洲国产| 成人三级黄色视频| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线| 黄片播放在线免费| 国产三级黄色录像| 美国免费a级毛片| 欧美激情高清一区二区三区| 婷婷亚洲欧美| 99riav亚洲国产免费| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| 一进一出抽搐动态| 国产视频内射| 久热爱精品视频在线9| 搡老妇女老女人老熟妇| 日日爽夜夜爽网站| 国产高清激情床上av| 欧美日韩一级在线毛片| 一级a爱视频在线免费观看| 18禁美女被吸乳视频| 亚洲专区字幕在线| 日韩视频一区二区在线观看| 一级毛片精品| 一二三四社区在线视频社区8| 久久久久精品国产欧美久久久| 无遮挡黄片免费观看| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 欧美性猛交╳xxx乱大交人| 级片在线观看| 12—13女人毛片做爰片一| 99国产精品一区二区蜜桃av| 波多野结衣巨乳人妻| 黄片小视频在线播放| 久久久久国产一级毛片高清牌| 久久精品人妻少妇| 亚洲五月婷婷丁香| 亚洲最大成人中文| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩高清在线视频| 国产av一区二区精品久久| 国产区一区二久久| 国产爱豆传媒在线观看 | 99国产综合亚洲精品| 啦啦啦观看免费观看视频高清| 国产主播在线观看一区二区| xxx96com| a级毛片a级免费在线| 国产亚洲精品一区二区www| 国产黄色小视频在线观看| 婷婷亚洲欧美| 给我免费播放毛片高清在线观看| 男人舔女人的私密视频| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| xxx96com| 淫秽高清视频在线观看| 天天一区二区日本电影三级| 亚洲精品在线观看二区| 亚洲成国产人片在线观看| 亚洲片人在线观看| 欧美久久黑人一区二区| 欧美日韩中文字幕国产精品一区二区三区| 搞女人的毛片| 又大又爽又粗| 亚洲专区中文字幕在线| 亚洲第一欧美日韩一区二区三区| 亚洲激情在线av| 成人一区二区视频在线观看| 国产精品av久久久久免费| 亚洲一区中文字幕在线| 午夜福利视频1000在线观看| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 亚洲片人在线观看| 一级毛片女人18水好多| 欧美激情高清一区二区三区| 在线观看66精品国产| 欧美乱妇无乱码| 久久欧美精品欧美久久欧美| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 精品卡一卡二卡四卡免费| av视频在线观看入口| 国产精品免费视频内射| 久9热在线精品视频| 国产男靠女视频免费网站| 亚洲avbb在线观看| 国产成年人精品一区二区| 麻豆一二三区av精品| 国产亚洲精品久久久久5区| 变态另类成人亚洲欧美熟女| 欧美日韩福利视频一区二区| 亚洲国产毛片av蜜桃av| 正在播放国产对白刺激| 欧美性猛交黑人性爽| 女性被躁到高潮视频| 亚洲五月婷婷丁香| 99国产极品粉嫩在线观看| 成人三级做爰电影| 十八禁网站免费在线| 好看av亚洲va欧美ⅴa在| av超薄肉色丝袜交足视频| 成人国产综合亚洲| 国产成人精品无人区| 精品久久蜜臀av无| 99国产精品99久久久久| 一二三四社区在线视频社区8| 国产亚洲欧美精品永久| 亚洲真实伦在线观看| 一级作爱视频免费观看| 亚洲人成网站在线播放欧美日韩| 亚洲精华国产精华精| 老司机在亚洲福利影院| cao死你这个sao货| 成人国产综合亚洲| av视频在线观看入口| 欧美精品啪啪一区二区三区| a级毛片在线看网站| 午夜两性在线视频| 十八禁人妻一区二区| 成人特级黄色片久久久久久久| 黄片大片在线免费观看| 久久久久久免费高清国产稀缺| 久久久水蜜桃国产精品网| 精品一区二区三区四区五区乱码| 男人舔女人的私密视频| 桃色一区二区三区在线观看| av在线播放免费不卡| 精品久久久久久久久久久久久 | 国产精品一区二区三区四区久久 | 黑人巨大精品欧美一区二区mp4| av超薄肉色丝袜交足视频| 国产亚洲精品久久久久久毛片| 午夜福利视频1000在线观看| 身体一侧抽搐| 美女 人体艺术 gogo| 91成人精品电影| 美女扒开内裤让男人捅视频| 国产私拍福利视频在线观看| 级片在线观看| 天堂√8在线中文| 中文字幕高清在线视频| 黑丝袜美女国产一区| 两性午夜刺激爽爽歪歪视频在线观看 | 大型黄色视频在线免费观看| 国产日本99.免费观看| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 久久国产精品男人的天堂亚洲| 午夜福利成人在线免费观看| 久久亚洲精品不卡| 两个人看的免费小视频| 国产成年人精品一区二区| 国产精品 欧美亚洲| 日韩欧美三级三区| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 欧美 亚洲 国产 日韩一| 中国美女看黄片| 久久婷婷成人综合色麻豆| 国产成人一区二区三区免费视频网站| 久久国产乱子伦精品免费另类| 熟女少妇亚洲综合色aaa.| 久久婷婷人人爽人人干人人爱| 国产成人av激情在线播放| 90打野战视频偷拍视频| 亚洲va日本ⅴa欧美va伊人久久| 中国美女看黄片| 每晚都被弄得嗷嗷叫到高潮| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人av| 一级毛片精品| 国产精品自产拍在线观看55亚洲| 韩国av一区二区三区四区| 免费看美女性在线毛片视频| 老司机在亚洲福利影院| 国产亚洲av嫩草精品影院| 男人舔奶头视频| 亚洲男人的天堂狠狠| 亚洲熟妇中文字幕五十中出| 色播在线永久视频| 亚洲aⅴ乱码一区二区在线播放 | 精品国产超薄肉色丝袜足j| 一进一出抽搐动态| 久久国产乱子伦精品免费另类| www.精华液| 十八禁网站免费在线| 国产亚洲精品综合一区在线观看 | 嫁个100分男人电影在线观看| 99久久综合精品五月天人人| 国产高清视频在线播放一区| 一本久久中文字幕| 看黄色毛片网站| 久久精品影院6| 高潮久久久久久久久久久不卡| 黄片小视频在线播放| 久久午夜综合久久蜜桃| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 久久热在线av| 中文字幕人妻丝袜一区二区| 国产激情欧美一区二区| 亚洲狠狠婷婷综合久久图片| 91九色精品人成在线观看| 51午夜福利影视在线观看| 777久久人妻少妇嫩草av网站| 18禁裸乳无遮挡免费网站照片 | 国产视频一区二区在线看| 欧美成狂野欧美在线观看| 黄色 视频免费看| 日韩有码中文字幕| 91成人精品电影| 亚洲avbb在线观看| 香蕉av资源在线| 日韩大尺度精品在线看网址| 成人亚洲精品一区在线观看| 中文资源天堂在线| 亚洲一码二码三码区别大吗| 又紧又爽又黄一区二区| 真人一进一出gif抽搐免费| 午夜福利高清视频| 欧美中文日本在线观看视频| 香蕉av资源在线| 免费一级毛片在线播放高清视频| 久久中文字幕人妻熟女| 日韩精品中文字幕看吧| 这个男人来自地球电影免费观看| 午夜影院日韩av|