• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    不同長(zhǎng)徑比的具有固定寬度金納米棒的合成

    2024-07-16 00:00:00賀鴻鵬張萌萌郝夢(mèng)嬌杜偉夏海兵
    物理化學(xué)學(xué)報(bào) 2024年5期

    摘要:金納米棒在光學(xué)、電學(xué)、信息學(xué)和生物醫(yī)學(xué)等領(lǐng)域具有廣泛的應(yīng)用。然而,一些具有特殊要求的金納米棒還不能通過(guò)常規(guī)的方法制備。在本研究中,我們創(chuàng)新地將十二醇(LA)分子引入到傳統(tǒng)種子生長(zhǎng)方法中,成功實(shí)現(xiàn)了具有固定寬度的不同長(zhǎng)徑比(AR)金納米棒(FW-Au NR)的按需制備。此外,通過(guò)合理地選擇相應(yīng)的反應(yīng)條件(如氯金酸和硝酸銀的濃度),可以在130–38.4,109–26.4和16–46 nm范圍之間分別調(diào)節(jié)FW23-Au NRs,F(xiàn)W14-Au NRs和FW6.5-Au NRs (右上角的標(biāo)注數(shù)字表示金納米棒的寬度)的長(zhǎng)度。即,可在一個(gè)較大的長(zhǎng)度范圍內(nèi)調(diào)節(jié)具有固定寬度的金納米棒的長(zhǎng)徑比。并且,在合適濃度的十二醇,0.24–0.30 mmol?L?1范圍內(nèi)調(diào)節(jié)硝酸銀濃度,可以使這些金納米棒的寬度固定在6.5–23 nm之間。另外,實(shí)現(xiàn)FW-Au NRs制備的關(guān)鍵是銀離子和十二醇分子對(duì)分布在金種子晶面上的CTA-Br-Ag+化合物的密度的協(xié)同影響。

    關(guān)鍵詞:金納米棒;十二醇;固定的寬度;對(duì)稱性打破效率;有效顆粒數(shù)

    中圖分類號(hào):O648

    Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods

    Abstract: Gold nanorods (Au NRs) have beenwidely used in the optics, electricity, informatics,and biomedical fields in recent years. However, AuNRs with specialized requirements cannot beprepared by conventional methods. For instance, inphotothermal therapy, Au NRs with high aspectratios (ARs) are desirable for increasing tissuepenetration and reducing the burning of human skinduring treatment. However, when their ARs wereadjusted to match the laser used in second nearinfraredwindows (NIR-II), the length and width ofthe Au NRs simultaneously increased. This increase in width reduces its photothermal conversion efficiency. Unfortunately,tuning the ARs of Au NRs at a fixed width requires complex procedures. In this study, we developed a new seeded-growthmethod to synthesize different ARs of fixed width Au NRs (FW-Au NRs). To the best of our knowledge, this is the first studyto adjust the length of FW-Au NRs by introducing lauryl alcohol (LA) molecules into the traditional seeded growth method.Moreover, the length span of FW23-Au, FW14-Au, and FW6.5-Au NRs (the superscript numbers denote the width of Au NRsin nm) was adjusted between 130 and 38.4 nm, 109 and 26.4 nm, and 16 and 46 nm, respectively, by judiciously selectingthe corresponding reaction conditions. Notably, the lengths of the Au NRs can be readily achieved at a fixed width over awide range. In addition, their ARs were tuned at a fixed width by adjusting only their length, instead of simultaneouslyvarying their length and width. In addition, their widths were maintained between 6.5 and 23 nm by adjusting [AgNO3]between 0.24 and 0.30 mmol?L?1 in the presence of LA. Furthermore, the synergetic effect of Ag+ and LA on the density ofthe cetyltrimethylammonium (CTA)-Br-Ag+ complexes distributed on the facets of added Au-NP seeds, which can impacttheir symmetry-breaking efficiency (SBE) and the particle number of Au-NP seeds that grow into final Au NRs, is key to thesynthesis of FW-Au NRs. The results of this study offer a flexible and reliable method to tune the length of Au NRs with afixed width and pave the way for achieving an on-demand synthesis of Au NRs, especially for cancer photothermal therapy.

    Key Words: Gold nanorods; Lauryl alcohol; Fixed width; Symmetry-breaking efficiency; Effective particle number

    1 Introduction

    Gold nanorods (Au NRs) have been widely studied in thebiomedical applications such as photothermal therapy ofcancer 1–4, biomedical imaging 5–7 and drug delivery 1,8, in therecent years due to their tunable plasmonic properties,biocompatibility, inherent low toxicity, and diverse surfacemodification. Moreover, the dimension (length width) andaspect ratio (AR) of Au NRs are essential for their performancein general 1,2,9–12. For instance, to improve their photothermalconversion efficiency in the application of photothermal therapyof cancer 13, Au NRs with higher absorption cross-sections arerequired, which is highly depended on their dimension 10,14–16.That is, it is better to prepare Au NRs with a width as small aspossible. On the other hand, near-infrared (NIR) laser inwindow-II (900–1400 nm) is better to increase the tissuepenetration and reduce the burning to skin of human during thetherapeutic treatment 17–19. That is, the position of thelongitudinal plasmon resonance peak (LSPR) of the desired AuNRs have to be well matched with the wavelength of the usedlaser 4,17, which is determined by their ARs. However, when theARs of Au NRs increase to match NIR laser in window-II, boththe length and width of Au NRs simultaneously increase 20,21,which would be disadvantage for photothermal conversionefficiency. In other words, the length of Au NRs cannot becontinuously tuned but remains their width unchanged byadjusting one experimental parameter solely in the traditionalseeded growth method.

    For instance, Murphy group achieved the synthesis of Au NRswith approximately the same width (lt; 10 nm) and differentlengths (19–93 nm) by simultaneously changing of reducingagent, modifying the concentration of cetyltrimethylammoniumbromide (CTAB), AgNO3, Au-NP seeds, and pH values of the growth solution accordingly 22. However, it is still tough toachieve the synthesis of Au NRs with different lengths but withthe same width of bigger than 10 nm. Accordingly, it is still agreat challenge to tune the ARs of fixed width Au NRs by asimple way.

    In the traditional seeded growth method used for synthesis ofnormal Au NRs, both their length and width are simultaneouslyincreased (black curve in Fig. 1a) with the decreasingconcentration of Au-NP seeds ([Au-NP seeds]) at a fixedconcentration of AgNO3 ([AgNO3]) 20,21. Accordingly, ARs offixed width Au NRs (red curve in Fig. 1a) cannot be achievedby adjusting the [Au-NP seed]. Moreover, silver ions also canaffect the growth rate of the length and width of Au NRs (Fig.1b,c) 23–27. For instance, when the [AgNO3] is in the range of0.27 to 0.45 mmol?L?1, the widths of the Au NR can keep almostunchanged at the fixed of other reaction conditions (Fig. 1b).However, their lengths turn to decrease (Figs. 1c and S1(Supporting Information)) 24,28–31,21,32. Therefore, ARs of fixedwidth Au NRs just can slightly be tuned only by adjusting the[AgNO3].

    Fortunately, it is recently found that the [AgNO3] in thegrowth solution can determine the symmetry-breaking of theAu-NP seeds and particle number of Au-NP seeds that grow intofinal Au NRs (Neffective) 23,33–35. In the previous work 23,36,37, it hasbeen demonstrated that the Neffective is determined by thesymmetry-breaking efficiency (SBE) of the Au-NP seeds, whichis impacted by the density of CTA-Br-Ag+ complex distributedon the facets of added Au-NP seeds. Thus, it is possible thatwhen typical reaction conditions for synthesis of Au NRs ([Au-NP seeds], [AgNO3] and [CTAB], [HAuCl4], etc.) are all fixed,the ARs of fixed width Au NRs can be tuned by controllingNeffective at the [AgNO3] of 0.27 mmol?L?1 according to the relationship between the [Au-NP seeds] and the size of finalparticles in conventional seeded growth method. As expected, inour previous work 37, it is found that the introduction of fattyalcohols with alkyl chains from 7 to 10 carbon as co-surfactantsall can help silver ions improve the SBE of added Au-NP seedsand further alter Neffective. Moreover, the dimensions of highquality Au NRs are greatly increased, especially at width. Therole of fatty alcohols with alkyl chains from 7 to 10 carbon in thesynthesis of Au NRs with big dimensions is similar to thatreported in literature 36,38. However, when fatty alcohols withalkyl chains bigger than 10 carbons (undecanol or lauryl alcohol)were introduced as co-surfactants, the dimension of Au NRs canbe poorly modulated. This is because the introduction of fattyalcohols with alkyl chains bigger than 10 carbons can result inthe increasing compactness of the CTAB/alcohol mixed micellesled by the strong hydrophobic interactions among them andCTAB molecule, instead of the decreasing compactness of theCTAB/alcohol mixed micelles led by fatty alcohols with alkylchains from 7 to 10 carbons.

    Herein, the introduction of lauryl alcohol (LA) molecules intoCTAB are expected to control the compactness of CTABmolecules in the micelles (Scheme 1 and Scheme S1 (SupportingInformation)) 39–41. This is because LA molecules would deeplypenetrate into the micelle core (hydrophobic layers) of theCTAB micelles and reduce the distance between the alkyl chainsof CTAB molecules due to their strong hydrophobic interactionbetween the alkyl chains of them 39–41. In addition, thecompactness of CTAB molecules in CTAB micelles can beadjusted by increasing the concentration of added LA molecules([LA]) (Scheme 1b–d). Build on that, the density of CTA-Br-Ag+ complexes distributed on the facets of added Au-NP seedscan be finely increased by increasing [LA], thus resulting in theincrease in the SBE of added Au-NP seeds and Neffective, andfurther tuning the length of fixed width Au NRs.

    In this work, Au NR with tunable length at fixed width of 14nm (defined as FW14-Au NRs) were firstly synthesized underdifferent [LA] at the fixed of other conditions. Next, how the[LA] impact the Neffective are analyzed in detail. Then, Au NRswith tunable length at other fixed width (FW23-Au NRs andFW6.5-Au NRs) were synthesized by changing the [LA] andparticle number concentration of added Au-NP seeds ([Au-NPseeds]) based on the analysis results. Finally, the length span ofAu NRs with the fixed width (6.5, 14 and 23 nm) were furtherbroadened by judiciously altering the [HAuCl4] and [AgNO3] aswell as [HQ].

    2 Experimental section

    Typically, an aqueous solution of CTAB (0.10 mol?L?1, 5.0mL) and a trace amount of LA (0.015 mL) were sequentiallyadded into a 10 mL glass at room temperature to obtain thegrowth solution under stirring of about 100 min. Then, four typesof aqueous solutions of HAuCl4 (25 mmol?L?1, 0.10 mL), HNO3(100 mol?L?1, 0.080 mL), AgNO3 (10 mmol?L?1, 0.15 mL), andHQ (100 mol?L?1, 0.25 mL) were sequentially added into theresulting growth solution. Finally, 0.060 mL of as-prepared Au-NP seed solution (See more details in Supporting Information)was added to the resulting growth solution. After thoroughlymixing of 2 min, the whole reaction mixture was placed in a water bath for aging at 28 °C. After the aging of 12 h, FW14-AuNRs were separated from the reaction mixture with the aid ofcentrifugation (8000 rcf (relative centrifugal field) × 10 min).These FW14-Au NR were redispersed into water and centrifugedtwo more times to remove the excess reactants.

    Similarly, other types of FW-Au NRs (FW6.5-Au NRs andFW23-Au NRs) with different lengths and widths can be preparedby the same procedure by properly adjusting the concentrationof silver ions, LA, HAuCl4, HQ, and Au-NP seeds were adjusted,respectively (Table S1 (Supporting Information)).

    3 Results and discussion

    3.1 Synthesis of FW14-Au NRs by adjusting the [LA]

    First of all, the optimal [AgNO3] used for growth of fixedwidth Au NRs (FW-Au NR) with a largest range of length in thepresence of LA is determined to be 0.27 mmol?L?1 when the [Au-NP seeds] in the growth solution is 8.4 × 1012 particles?mL?1(Fig. S2). In the absence of LA, the length and width of Au NRsare about 109 nm and 14 nm (Fig. 2a), respectively, which isnearly the same to those obtained in the presence of LA with aconcentration below 8.3 mmol?L?1 (Fig. S3a).

    When the [LA] in the growth solution was increased from 0to 8.3, 12.5, and 14.1 mmol?L?1, the length of the resulting AuNRs decreased from 109 to 97, 79 and 69 nm while their widthcan remain at about 14 nm (Fig. 2a to 2d). Accordingly, theircorresponding ARs can gradually decrease from 8.1 to 7.2, 5.8and 5.0 (Table 1), which is also in good consistent with thevariation in their extinction spectra (Fig. S4). Note that sphericalnanoparticles as the by-products would be formed when the [LA]was bigger than 14.1 mmol?L?1 (Fig. S3b). These results indicatethat the addition of LA into the CTAB growth solution indeedcan impact the length of the Au NRs and keep their width hardlychanged. That is, FW-Au NR can be successfully achieved bysolely varying the [LA] at the fixed other conditions. It is foundthat when [AgNO3] was fixed at 0.06 mmol?L?1 (lower thanoptimal value of 0.27 mmol?L?1) with the [LA] increasing from0 to 8.3, 12.5, and 14.1 mmol?L?1, the length of the Au NRsdecreased from 54 to 44, 39, and 36 nm, while their widthgradually decreased from 31 to 30, 27, and 26 nm, respectively.These results indicate that when [AgNO3] is fixed at 0.06mmol?L?1, FW14-Au NR cannot be achieved by solely varyingthe [LA] at the fixed other conditions. (Fig. S5)

    3.2 Role of the LA in synthesis of FW-Au NRs

    When the [LA] and other factors (including [HAuCl4],[AgNO3], [HQ], and [Au-NP seeds]) in the growth solution werefixed, both the length and the width of Au NRs can also increasewith the [CTAB] increasing (Fig. S6). It is self-evident that therelative content of LA in CTAB micelles is decreased when the[CTAB] is increased at the fixed [LA]. These results indicate thatthe compactness of CTAB micellles indeed can impact thesynthesis of FW-Au NRs. As mentioned above, the added LA(including alcohol hydroxyl groups) are expected to deeplylocated in the micelle core (hydrophobic layers) of the CTABmicelles because of the strong hydrophobic interaction betweenthe alkyl chains of LA and CTAB molecules 41. Such interactionswould shorten not only the distance between the alkyl chains, butalso the distance between polar head groups (CTA+) of CTABmolecules in the mixed CTAB-LA micelles. In word, the compactness of the whole CTAB micelles is improved by theintroduction of LA molecules, especially between those polarhead groups (CTA+). Since CTA+ ions are always complexedwith Br? and Ag+ ions to form CTA-Br-Ag+ complexes, thedensity of CTA-Br-Ag+ complexes in the mixed CTAB-LAmicelles would be higher than that in the pure CTAB micelles.Accordingly, when Au-NP seeds were added into the growthsolution, they would be also stabilized by the mixed CTAB-LAmicelles. And the density of CTA-Br-Ag+ complexes on theirsurfaces would be higher, compared with that in the pure CTABmicelles. Thus, the function of AgUPD on the certain facets ofadded Au-NP seeds would become stronger and the Neffectivewould be increased due to the improved symmetry breakingefficiency (SBE) 23–25.

    Accordingly, η (Neffective/Nadded), which is defined as the ratioof the particle number of Au-NP seeds that grow into Au NRs(Neffective) to the particle number of added Au-NP seeds (Nadded),would increase accordingly with the [LA] increasing. Asexpected, η indeed increases with the increasing [LA] at thefixed other experimental conditions (Table 1). For instance,when the [LA] was increased from 0 to 8.3, 12.5 and 14.1mmol?L?1 at the fixed [Au-NP seeds] of 8.4 × 1012particles?mL?1, the η increased from 3.3% to 3.6%, 4.5% and4.9% (Table 1) according to the calculated method reported inour previous work 37. The low η value indicate that only a smallproportion of the added Au NP seed (lt; 10%) would grow intothe final Au NRs. It is known that the formed Au NRs can be“shortened” by adding Au3+ ions into their solution 42. Therefore,it is possible that most of the added Au NP seed (gt; 90%) aredissolved in the growth solution because the relative highconcentration of Au3+ ions can react with and the active Au NPseeds during the initial growth stage (Au3+ + 2Au = 3Au+). Theresults indicate that when [AgNO3] (say, up to 0.27 mmol?L?1)can maximally achieve underpotential deposition of Ag (AgUPD)on the side facets of Au NRs during the growth stage 23,37 (Moredetails in Supporting Information), the SBE of added Au-NPseeds and the corresponding Neffective indeed can be controlled bythe density of CTA-Br-Ag+ complexes led by the introduction ofLA into CTAB micelles. Therefore, the synthesis of FW-Au NRswith varied lengths can be achieved by solely varying the [LA]at the fixed other conditions.

    In addition, when other conditions (including [LA], [AgNO3]and [CTAB]) are all fixed, the variation in the [Au-NP seeds]would lead to the variation in the density of CTA-Br-Ag+complexes on each Au-NP seed, which would result in thedecrease in the SBE and Neffective. As such, η would also varyaccordingly (Table S2). For instance, when the [Au-NP seeds]was increased from 2.8 × 1012 to 4.2 × 1012, 8.4 × 1012 and 1.4 ×1013 particles?mL?1 (at the fixed [LA] of 12.5 mmol?L?1), the ηdecreased from 6.0% to 5.2%, 4.5% and 3.6%, (Table S2)accordingly. Therefore, these results further confirm that theadded LA indeed can achieve the synthesis of FW-Au NRs byfinely affecting the SBE of added Au-NP seeds in the presence of high [AgNO3]. Moreover, the variation in the length of FWAuNRs in the presence of LA is also related to the function ofAgUPD on facets at two ends and sides of the growing Au NRs. Itis known that the order of the deposition of silver ions on eachfacet of Au NRs is as follows: {110} gt; {100} gt; {111} 23–25. Thatis, AgUPD prefers to occur on {110} or higher-index facets ratherthan others 23. Therefore, the function of AgUPD on the side facetsof the Au NRs (mainly enclosed by {110} and {100}) is close tothe maximum under the high [AgNO3] in the growth solutionwhile that on the facets of two ends of Au NRs (mainly enclosedby {111} and {100}) is relatively weak. Therefore, after thecompactness of the mixed CTAB-LA micelles is improved, thefunction of AgUPD on the facets of two ends of Au NRs would bemore obvious because of the loose packing of CTAB moleculesat two ends of pure CTAB micelles while that on their side facetswould remain hardly unchanged (or slight increase).Accordingly, the growth rate in the length of Au NRs wouldbecome relatively slower while that in the width of Au NRswould remain unchanged (slightly decrease). As a result, thelength of FW-Au NRs can be tuned by solely varying the [LA]at the fixed other condition. Furthermore, the length of FW-AuNRs may be impacted if the utilization of HAuCl4 in the growthsolution varied after the addition of the LA. It is known thatwhen AA was used as the reducing agent 21,43, only about 15%of the added HAuCl4 become into Au NRs. Therefore, an excessamount of HQ was used in this work to guarantee the 100%utilization of HAuCl4. On the basis of results of ICP tests andcontrol experiments (Fig. S7), the utilization of HAuCl4 is stillclose to 100%, which are not impacted.

    Briefly, the main function of the added LA is to improve thecompactness of CTAB micelles and enhance the density ofCTA-Br-Ag+ complexes distributed on the facets of added Au-NP seed. Accordingly, AgUPD on the certain facets of added Au-NP seeds is impacted, which then improve their SBEs and altergrowth rate of facets at two ends and sides of the growing AuNRs.

    3.3 Synthesis of FW23-Au NRs and FW6.5-Au NRs byadjusting the Neffective

    In the traditional seeded growth method for synthesis ofnormal Au NRs, the length and width of the Au NRs is usuallyimpacted by the [Au-NP seeds] in the growth solution 22,28,29,31.After a series of control experiments, the [Au-NP seeds] that isappropriate for synthesis of uniform Au NRs in the presence ofLA is determined to be in the range of 2.8 × 1012 to 5.6 × 1013particles?mL?1 (Fig. S8). In current case, other FW-Au NRs canbe further tuned just by adjusting the [LA] to control Neffective atthe fixed [Au-NP seeds] ranging from 2.8 × 1012 to 5.6 × 1013particles?mL?1. For simplicity, two types of FW-Au NRs weresynthesized by adjusting [LA] at the fixed [Au-NP seeds] of2.8 × 1012 and 5.6 × 1013 particles?mL?1, which can achieve thetuning in the length of FW-Au NRs with a maximal (23 nm) andminimal fixed width (6.5 nm), respectively (Fig. 3).

    The relationship between the [AgNO3] and width of Au NRs has been shown in Fig. 1. Accordingly, the [AgNO3] used forFW23-Au NRs and FW6.5-Au NRs were adjusted to 0.24 and 0.30mmol?L?1, respectively, which is necessary to control SBE ofadded Au-NP seeds in the presence of LA. As shown in Fig. 3A,F(xiàn)W23-Au NRs with different lengths (widthmaximal = 23 nm) weresynthesized by selecting the [Au-NP seeds] as 2.8 × 1012particles?mL?1 and [AgNO3] as 0.24 mmol?L?1, respectively.With the [LA] increasing from 0 to 8.3, 12.5 and 14.1 mmol?L?1,the lengths of FW23-Au NRs gradually decreased from 130 to110, 99 and 75 nm. Accordingly, their ARs gradually decreasedfrom 5.7 to 4.9, 4.4 and 3.4 (Table S3). In addition, the positionsof the maximal SPR peaks in their extinction spectra alsogradually blue shift from 970 to 879, 840 and 775 nm (Fig. S9).Moreover, FW6.5-Au NRs with different lengths (widthminimal =6.5 nm) were prepared by selecting the [Au-NP seeds] as 5.6 ×1013 particles?mL?1 and [AgNO3] as 0.30 mmol?L?1, respectively.Similarly, the lengths of FW6.5-Au NRs gradually decreasedfrom 35 to 30, 27 and 23 nm (Fig. 3B) when the [LA] wasincreased from 0 to 8.3, 12.5 and 14.1 mmol?L?1. In addition,their ARs gradually decreased from 5.2 to 4.6, 4.1 and 3.6accordingly (Table S4), and the position of the maximal SPRpeaks in their extinction spectra also gradually blue shift from910 to 860, 834 and 788 nm (Fig. S10). The successfulpreparation of FW23-Au NRs and FW6.5-Au NRs indicates thatFW-Au NRs with a fixed width between 6.5 and 23 nm can beprepared. Moreover, the role of the added LA in theimprovement of the SBE of added Au-NP seeds and Neffective isfurther confirmed by the calculated η value with the increasing[LA] at different [Au-NP seeds] (Tables S3 and S4).Furthermore, the appropriate [AgNO3] for synthesis of FW-AuNRs in the presence of LA is determined to be in the range of0.24 to 0.30 mmol?L?1 (Figs. S11 and S12). When the [AgNO3]was higher or lower than the contration range, FW-Au NRscannot be prepared just by adjusting the [LA] (Figs. S11 andS12). The results further confirm that the synergric effect ofAgNO3 and LA on the density of CTA-Br-Ag+ complexesdistributed on the facets of added Au-NP seeds impact their SBEand Neffective.

    3.4 Extending the length span of FW-Au NRs byadjusting [HAuCl4]

    As mentioned above, the width of FW-Au NRs can besuccessfully fixed in the range of 6.5 to 23 nm. However, itseems that the span of their length is still limited. It is known thatthe final size of seeds is proportional to the amount of precursorsin the seeded growth method. On the basis of the recipesmentioned above, the length spans of FW-Au NRs were furtherextended by adjusting [HAuCl4] (Figs. 4 and 5, Table S1). Notethat the [AgNO3] was also varied to remain the fixed widthaccordingly because the ratio of [HAuCl4]-to-[AgNO3] also canimpact the growth rate in the length and width of Au NRs duringtheir anisotropic growth 37.

    As expected, when the [HAuCl4] was decreased from 0.46 to0.23 and 0.14 mmol?L?1, the length of FW23-Au NRs decreasedfrom 75 to 55 and 38.4 nm (Figs. 3A-d, 4a and 4b), respectively.Accordingly, their ARs decreased from 3.4 to 2.5 and 1.7(Table S1) while the position of the maximal SPR peaks in theirextinction spectra also gradually blue shift (Fig. S13). Similarly,with the [HAuCl4] decreasing from 0.46 to 0.23, 0.18 and 0.14mmol?L?1, the length of FW14-Au NRs decreased from 69 to 53,41 and 26.4 nm (Fig. 4c,d,e), respectively. Accordingly, theirARs decreased from 5.0 to 3.8, 3.0 and 1.9 (Table S1) while theposition of the maximal SPR peaks in their extinction spectraalso gradually blue shift (Fig. S14). However, when the[HAuCl4] was increased from 0.46 to 0.58 and 0.69 mmol?L?1,the length of FW14-Au NRs remained fixed at 79 nm, while theirwidths gradually increased from 14 to 16 and 20 nm (Fig. S15).Therefore, the length span of FW23-Au NRs and FW14-AuNRs can be adjusted between 130–38.4 nm and 109–26.4 nm (Figs. 2, 3A, 4 and Table S1), respectively by judiciouslyselecting reaction conditions.

    Furthermore, when the [HAuCl4] was decreased from 0.46 to0.23 and 0.18 mmol?L?1, the length of FW6.5-Au NRs candecrease from 23 nm to 19 and 16 nm (Figs. 3B-d, and 5a,b),respectively. Accordingly, their ARs decrease from 3.6 to 3.0and 2.5 while the position of the maximal SPR peaks in theirextinction spectra also gradually blue shift (Fig. S16A).Fortunately, the [HAuCl4] used for synthesis of FW6.5-Au NRscan be higher than that used for syntheses of FW23-Au NRs andFW14-Au NRs. This is because the ratio of gold atoms (NAu) tothe Neffective in the growth solution of FW6.5-Au NRs is rathersmaller than that in the growth solution of FW14-Au NRs andFW23-Au NRs. Thus, the length of FW6.5-Au NRs also canincrease from 30 to 40 and 46 nm (Figs. 3B-b and 5c,d) whenthe [HAuCl4] was increased from 0.46 to 0.58 and 0.69mmol?L?1. As expected, their ARs can increase from 4.6 to 6.0and 7.2 while the position of the maximal SPR peaks in theirextinction spectra also gradually red shift (Fig. S16B).Therefore, the length span of FW6.5-Au NRs can be adjustedbetween 16 and 46 nm (Figs. 3B, 5 and Table S1) by judiciouslyselecting reaction conditions.

    4 Conclusions

    In summary, we have successfully synthesized a series of FWAuNRs with a fixed width between 6.5 and 23 nm byintroducing LA in the traditional seeded growth method for thefirst time, to the best of our knowledge. That is, we can tune theARs of fixed width Au NRs by changing their length, instead ofthe simultaneous variation in their length and width. In addition,the [AgNO3] that is appropriate for synthesis of FW-Au NRs isin the range from 0.24 to 0.30 mmol?L?1 just by adjusting the[LA] for controlling the length and width of FW-Au NRs.Moreover, the synergetic effect of Ag+ and LA on the density ofCTA-Br-Ag+ complexes distributed on the facets of added Au-NP seeds can impact their SBE and the final Neffective for synthesisof Au NRs, which is also confirmed by the calculated η valueswith the increasing [LA] at different [Au-NP seeds].Furthermore, the length span of FW23-Au NRs, FW14-Au NRsand FW6.5-Au NRs can be adjusted between 130 and 38.4 nm,between 109 and 26.4 nm, and between 16 and 46 nm,respectively, by judiciously selecting reaction conditions (suchas [HAuCl4], [AgNO3], etc.). Therefore, our work offers aflexible and reliable method to tune the length of Au NR with afixed width and pave the way to achieve on-demand synthesis ofAu NRs.

    Author Contribution: Conceptualization, Haibing Xia;Methodology, Haibing Xia; Validation, Hongpeng He,Mengmeng Zhang, and Mengjiao Hao; Investigation, HongpengHe; Data Curation, Hongpeng He and Wei Du; Writing –Original Draft Preparation, Hongpeng He; Writing – Review amp;Editing, Haibing Xia; Visualization, Hongpeng He; Supervision,Haibing Xia and Wei Du; Funding Acquisition, Haibing Xia.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Ye, J. M.; Wen, Q.; Wu, Y.; Fu, Q. R.; Zhang, X.; Wang, J. M.; Gao,S.; Song, J. B. Nano Res. 2022, 15 (7), 6372.doi: 10.1007/s12274-022-4191-z

    (2) Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R.; Shao, L.;Wang, J. F. Chem. Rev. 2021, 121 (21), 13342.doi: 10.1021/acs.chemrev.1c00422

    (3) Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.;Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P.;et al. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (15), E3110.doi: 10.1073/pnas.1619302114

    (4) Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng,Y.-S.; Su, C.-H.; Yeh, C.-S. ACS Nano 2013, 7 (6), 5330.doi: 10.1021/nn401187c

    (5) Wang, Z.; Shao, D.; Chang, Z. M.; Lu, M. M.; Wang, Y. S.; Yue, J.;Yang, D.; Li, M. Q.; Xu, Q. B.; Dong, W. F. ACS Nano 2017, 11 (12),12732. doi: 10.1021/acsnano.7b07486

    (6) Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.;Kuang, H. Adv. Funct. Mater. 2018, 28 (48), 1805320.doi: 10.1002/adfm.201805320

    (7) Fu, Q. R.; Ye, J. M.; Wang, J. J.; Liao, N. S.; Feng, H. J.; Su, L. C.;Ge, X. G.; Yang, H. H.; Song, J. B. Small 2021, 17 (26), 2008061.doi: 10.1002/smll.202008061

    (8) Dong, Q.; Wang, X.; Hu, X. X.; Xiao, L. Q.; Zhang, L.; Song, L. J.;Xu, M. L.; Zou, Y. X.; Chen, L.; Chen, Z.; et al. Angew. Chem. Int.Ed. 2018, 57 (1), 177. doi: 10.1002/anie.201709648

    (9) González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.;Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M.; et al. Science 2020, 368 (6498), 1472.doi: 10.1126/science.aba0980

    (10) Ni, W. H.; Kou, X. S.; Yang, Z.; Wang, J. F. ACS Nano 2008, 2 (4),677. doi: 10.1021/nn7003603

    (11) Xiao, J. Y.; Qi, L. M. Acta Phys. -Chim. Sin. 2020, 36 (10), 1910001.[肖軍燕, 齊利民. 物理化學(xué)學(xué)報(bào), 2020, 36 (10), 1910001.]doi: 10.3866/PKU.WHXB201910001

    (12) Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N.-N.; Gomes, W. R.;Ramesar, N. S.; Liu, S.; Hu, Z.; Sun, T.; de Moura, A. F.; et al.Science 2021, 371 (6536), 1368. doi: 10.1126/science.abd8576

    (13) Huang, X. H.; Neretina, S.; El-Sayed, M. A. Adv. Mater. 2009, 21(48), 4880. doi: 10.1002/adma.200802789

    (14) Song, J. B.; Yang, X. Y.; Jacobson, O.; Huang, P.; Sun, X. L.; Lin, L.S.; Yan, X. F.; Niu, G.; Ma, Q. J.; Chen, X. T. Adv. Mater. 2015, 27(33), 4910. doi: 10.1002/adma.201502486

    (15) Park, K.; Biswas, S.; Kanel, S.; Nepal, D.; Vaia, R. A. J. Phys. Chem.C 2014, 118 (11), 5918. doi: 10.1021/jp5013279

    (16) Jia, H. L.; Fang, C. H.; Zhu, X.-M.; Ruan, Q. F.; Wang, Y.-X. J.;Wang, J. F. Langmuir 2015, 31 (26), 7418.doi: 10.1021/acs.langmuir.5b01444

    (17) Park, J.-E.; Kim, M.; Hwang, J.-H.; Nam, J.-M. Small Methods 2017,1 (3), 1600032. doi: 10.1002/smtd.201600032

    (18) Tang, H. L; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.;Pan, H. M.; Li, D.; Ping, Y. Adv. Mater. 2021, 33 (12), 2006003.doi: 10.1002/adma.202006003

    (19) Yang, H.; He, H. P.; Tong, Z. R.; Xia, H. B.; Mao, Z. W.; Gao, C. Y.J. Colloid Interface Sci. 2020, 565, 186.doi: 10.1016/j.jcis.2020.01.026

    (20) Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.;Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; et al. ACSNano 2012, 6 (3), 2804. doi: 10.1021/nn300315j

    (21) Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25 (8), 1450.doi: 10.1021/cm303661d

    (22) Chang, H.-H.; Murphy, C. J. Chem. Mater. 2018, 30 (4), 1427.doi: 10.1021/acs.chemmater.7b05310

    (23) Walsh, M. J.; Tong, W. M.; Katz-Boon, H.; Mulvaney, P.; Etheridge,J.; Funston, A. M. Acc. Chem. Res. 2017, 50 (12), 2925.doi: 10.1021/acs.accounts.7b00313

    (24) Tong, W.; Walsh, M. J.; Mulvaney, P.; Etheridge, J.; Funston, A. M.J. Phys. Chem. C 2017, 121 (6), 3549. doi: 10.1021/acs.jpcc.6b10343

    (25) Walsh, M. J.; Barrow, S. J.; Tong, W.; Funston, A. M.; Etheridge, J.ACS Nano 2015, 9 (1), 715. doi: 10.1021/nn506155r

    (26) Song, Y. H.; Zhang, M. M.; Fang, H. T.; Xia, H. B. ChemPhysMater2023, 2 (2), 97. doi: 10.1016/j.chphma.2022.04.006

    (27) Zhu, J.; Lennox, R. B. ACS Appl. Nano Mater. 2021, 4 (4), 3790.doi: 10.1021/acsanm.1c00230

    (28) Sau, T. K.; Murphy, C. J. Langmuir 2004, 20 (15), 6414.doi: 10.1021/la049463z

    (29) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15 (10), 1957.doi: 10.1021/cm020732l

    (30) Lohse, S. E.; Murphy, C. J. Chem. Mater. 2013, 25 (8), 1250.doi: 10.1021/cm303708p

    (31) Burrows, N. D.; Harvey, S.; Idesis, F. A.; Murphy, C. J. Langmuir2017, 33 (8), 1891. doi: 10.1021/acs.langmuir.6b03606

    (32) Zhang, X.; Tran, N.; Egan, T.; Sharma, B.; Chen, G. J. Phys. Chem. C2021, 125 (24), 13350. doi: 10.1021/acs.jpcc.1c01375

    (33) González-Rubio, G.; Scarabelli, L.; Guerrero-Martínez, A.;Liz-Marzán, L. M. ChemNanoMat 2020, 6 (5), 698.doi: 10.1002/cnma.201900754

    (34) Meena, S. K.; Sulpizi, M. Angew. Chem. Int. Ed. 2016, 55 (39),11960. doi: 10.1002/anie.201604594

    (35) Seibt, S.; Zhang, H.; Mudie, S.; F?rster, S.; Mulvaney, P. J. Phys.Chem. C 2021, 125 (36), 19947. doi: 10.1021/acs.jpcc.1c06778

    (36) González-Rubio, G.; Kumar, V.; Llombart, P.; Díaz-Nú?ez, P.; Bladt,E.; Altantzis, T.; Bals, S.; Pe?a-Rodríguez, O.; Noya, E. G.;MacDowell, L. G.; et al. ACS Nano 2019,13 (4), 4424. doi: 10.1021/acsnano.8b09658

    (37) He, H. P.; Wu, C. S.; Bi, C. X.; Song, Y. H.; Wang, D. Y.; Xia, H. B.Chem. Eur. J. 2021, 27 (27), 7549. doi: 10.1002/chem.202005422

    (38) Llombart, P.; Palafox, M. A.; MacDowell, L. G.; Noya, E. G. ColloidsSurf. A-Physicochem. Eng. Aspects 2019, 580, 123730.doi: 10.1016/j.colsurfa.2019.123730

    (39) Kim, W.-J.; Yang, S.-M.; Kim, M. J. Colloid Interface Sci. 1997, 194(1), 108. doi: 10.1006/jcis.1997.5093

    (40) Dubey, N. J. Mol. Liq. 2013, 184, 60.doi: 10.1016/j.molliq.2013.04.022

    (41) Karayil, J.; Kumar, S.; Hassan, P. A.; Talmon, Y.; Sreejith, L. RSCAdv. 2015, 5 (16), 12434. doi: 10.1039/C4RA10052B

    (42) Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán,L. M. J. Phys. Chem. B 2005, 109 (30), 14257.doi: 10.1021/jp052516g

    (43) Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.;Shawver, N.; Tran, N.; Beazley, M.; Chen, G. Nano Res. 2021,14 (4), 1167. doi: 10.1007/s12274-020-3167-0

    國(guó)家自然科學(xué)基金(22072076, 21773142), 山東省泰山學(xué)者(tstp20221106)及山東大學(xué)基礎(chǔ)研究基金資助項(xiàng)目

    欧美日韩亚洲国产一区二区在线观看| 最新美女视频免费是黄的| 亚洲成人精品中文字幕电影 | 欧美人与性动交α欧美精品济南到| 亚洲人成77777在线视频| 在线永久观看黄色视频| 又紧又爽又黄一区二区| 美国免费a级毛片| 黄色片一级片一级黄色片| 这个男人来自地球电影免费观看| 人人妻人人爽人人添夜夜欢视频| 免费在线观看视频国产中文字幕亚洲| 黄片大片在线免费观看| 999久久久精品免费观看国产| 欧美成人性av电影在线观看| 成人特级黄色片久久久久久久| 日韩大码丰满熟妇| 亚洲av成人av| 成人精品一区二区免费| 亚洲人成77777在线视频| 黄网站色视频无遮挡免费观看| 免费看十八禁软件| 午夜精品国产一区二区电影| 国产区一区二久久| 黄色女人牲交| 日韩大尺度精品在线看网址 | 免费在线观看黄色视频的| 少妇粗大呻吟视频| av福利片在线| 水蜜桃什么品种好| 嫩草影院精品99| 看免费av毛片| 亚洲av日韩精品久久久久久密| 97人妻天天添夜夜摸| 黄片播放在线免费| 国产亚洲欧美98| 久久久久久久午夜电影 | 久久精品国产清高在天天线| 动漫黄色视频在线观看| 很黄的视频免费| 免费人成视频x8x8入口观看| 男女床上黄色一级片免费看| av在线播放免费不卡| 黄片小视频在线播放| 久久婷婷成人综合色麻豆| 精品久久久精品久久久| 真人做人爱边吃奶动态| 国产人伦9x9x在线观看| 久久久久九九精品影院| 国产精品久久久人人做人人爽| 老司机在亚洲福利影院| 人妻丰满熟妇av一区二区三区| 久久久精品国产亚洲av高清涩受| 露出奶头的视频| 一进一出好大好爽视频| 亚洲美女黄片视频| 国产精品综合久久久久久久免费 | 久久天躁狠狠躁夜夜2o2o| 亚洲熟妇熟女久久| 深夜精品福利| 另类亚洲欧美激情| 一级黄色大片毛片| 精品高清国产在线一区| 看片在线看免费视频| 国产精品 欧美亚洲| 免费女性裸体啪啪无遮挡网站| 亚洲三区欧美一区| 亚洲免费av在线视频| 国产一区二区激情短视频| 国产男靠女视频免费网站| 黑人操中国人逼视频| 大香蕉久久成人网| 免费高清在线观看日韩| 美女午夜性视频免费| 亚洲 欧美 日韩 在线 免费| 女人爽到高潮嗷嗷叫在线视频| av天堂久久9| 很黄的视频免费| 亚洲色图 男人天堂 中文字幕| 久久99一区二区三区| 久久久国产精品麻豆| 黄色女人牲交| 国产成人系列免费观看| 黄色成人免费大全| 欧美最黄视频在线播放免费 | 一夜夜www| 黑人巨大精品欧美一区二区蜜桃| 国产高清videossex| 亚洲五月天丁香| 男女床上黄色一级片免费看| 身体一侧抽搐| 国产激情欧美一区二区| 两性夫妻黄色片| 国产精品二区激情视频| 嫩草影视91久久| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 久久狼人影院| 又紧又爽又黄一区二区| 欧美日韩国产mv在线观看视频| 亚洲欧洲精品一区二区精品久久久| 欧美成人性av电影在线观看| 亚洲 欧美 日韩 在线 免费| 窝窝影院91人妻| √禁漫天堂资源中文www| 久99久视频精品免费| 欧美日韩乱码在线| 日韩免费高清中文字幕av| www.精华液| 国产精品成人在线| 亚洲人成77777在线视频| 老汉色av国产亚洲站长工具| 超碰97精品在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产区一区二久久| 免费人成视频x8x8入口观看| 免费av毛片视频| 搡老熟女国产l中国老女人| 成人黄色视频免费在线看| 嫩草影院精品99| 波多野结衣高清无吗| 99精品在免费线老司机午夜| 十八禁人妻一区二区| 国产成人精品在线电影| 黑人猛操日本美女一级片| 一个人观看的视频www高清免费观看 | 视频区图区小说| 99香蕉大伊视频| 久99久视频精品免费| 日韩av在线大香蕉| 波多野结衣av一区二区av| 精品久久久精品久久久| 伦理电影免费视频| 一区二区三区精品91| 1024香蕉在线观看| 一区二区三区国产精品乱码| 免费看十八禁软件| 国产成人精品在线电影| 亚洲第一av免费看| 精品少妇一区二区三区视频日本电影| 夜夜躁狠狠躁天天躁| 18美女黄网站色大片免费观看| 亚洲激情在线av| 搡老熟女国产l中国老女人| 男人操女人黄网站| av在线天堂中文字幕 | 99国产极品粉嫩在线观看| 久久精品亚洲熟妇少妇任你| 91大片在线观看| 大码成人一级视频| 香蕉国产在线看| 国产精品综合久久久久久久免费 | 成人精品一区二区免费| 性少妇av在线| 久久午夜亚洲精品久久| 国产亚洲欧美在线一区二区| 嫩草影视91久久| 亚洲精品成人av观看孕妇| 高清在线国产一区| 久久伊人香网站| 亚洲av成人av| 宅男免费午夜| 999精品在线视频| 亚洲第一欧美日韩一区二区三区| 一二三四社区在线视频社区8| 亚洲精品久久成人aⅴ小说| 水蜜桃什么品种好| 日韩一卡2卡3卡4卡2021年| 视频在线观看一区二区三区| 亚洲av电影在线进入| 精品电影一区二区在线| 欧美 亚洲 国产 日韩一| 精品久久蜜臀av无| 精品一区二区三区四区五区乱码| 在线观看日韩欧美| 午夜福利在线免费观看网站| 国产又爽黄色视频| 动漫黄色视频在线观看| 国产精品国产高清国产av| 高清av免费在线| 亚洲五月婷婷丁香| 高清黄色对白视频在线免费看| 日韩欧美免费精品| 99精国产麻豆久久婷婷| 精品久久久久久久毛片微露脸| 国产一区二区激情短视频| 亚洲中文av在线| 欧美日韩亚洲综合一区二区三区_| 淫秽高清视频在线观看| 国产蜜桃级精品一区二区三区| 亚洲精品在线观看二区| 亚洲专区国产一区二区| 久久人妻av系列| 成人三级做爰电影| 欧美日韩一级在线毛片| 高清黄色对白视频在线免费看| 日本免费a在线| 免费在线观看日本一区| 性欧美人与动物交配| 久久人妻熟女aⅴ| 久久久精品欧美日韩精品| 十八禁网站免费在线| 天天躁夜夜躁狠狠躁躁| 久久久久国产精品人妻aⅴ院| 丰满人妻熟妇乱又伦精品不卡| 校园春色视频在线观看| 久久这里只有精品19| 中文欧美无线码| 亚洲av熟女| 欧美日韩乱码在线| 夜夜爽天天搞| 久久久国产精品麻豆| 国产精品国产av在线观看| 村上凉子中文字幕在线| 亚洲精品国产区一区二| 日韩精品中文字幕看吧| 中文字幕高清在线视频| 日本wwww免费看| 亚洲色图 男人天堂 中文字幕| 国产成年人精品一区二区 | 久久 成人 亚洲| 亚洲欧美激情综合另类| 91成年电影在线观看| 深夜精品福利| 搡老岳熟女国产| 国产高清视频在线播放一区| 三上悠亚av全集在线观看| 丰满饥渴人妻一区二区三| 不卡一级毛片| 国产精品98久久久久久宅男小说| 亚洲午夜精品一区,二区,三区| 久久国产精品影院| 999精品在线视频| 波多野结衣高清无吗| av天堂在线播放| 日本欧美视频一区| 97碰自拍视频| 亚洲成人精品中文字幕电影 | 欧美黄色淫秽网站| 久久久久国内视频| 黑丝袜美女国产一区| 午夜福利一区二区在线看| 人人妻,人人澡人人爽秒播| 欧美成人午夜精品| 久久香蕉精品热| 中文亚洲av片在线观看爽| 久久国产精品影院| 亚洲欧美激情在线| 一级黄色大片毛片| 日本黄色视频三级网站网址| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕在线视频| 国产精品一区二区精品视频观看| 老熟妇乱子伦视频在线观看| 欧美性长视频在线观看| 悠悠久久av| 色在线成人网| 日本黄色日本黄色录像| a在线观看视频网站| 亚洲成a人片在线一区二区| 欧美久久黑人一区二区| 老司机亚洲免费影院| 精品电影一区二区在线| 在线观看66精品国产| 精品福利观看| 无限看片的www在线观看| 亚洲午夜精品一区,二区,三区| 动漫黄色视频在线观看| 国产高清视频在线播放一区| 黑人巨大精品欧美一区二区蜜桃| 亚洲专区中文字幕在线| 国产免费av片在线观看野外av| 91精品三级在线观看| 久久久精品欧美日韩精品| 黑丝袜美女国产一区| 制服诱惑二区| 国产单亲对白刺激| 国产av一区在线观看免费| 丁香六月欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品秋霞免费鲁丝片| 亚洲aⅴ乱码一区二区在线播放 | 亚洲激情在线av| 伊人久久大香线蕉亚洲五| 欧美人与性动交α欧美精品济南到| 交换朋友夫妻互换小说| 国产成人影院久久av| 99在线视频只有这里精品首页| 老司机午夜福利在线观看视频| 成人18禁高潮啪啪吃奶动态图| 色播在线永久视频| 少妇 在线观看| 色在线成人网| 岛国视频午夜一区免费看| 亚洲av日韩精品久久久久久密| 在线看a的网站| 在线观看免费日韩欧美大片| 美女 人体艺术 gogo| 欧美成狂野欧美在线观看| 午夜精品久久久久久毛片777| 国产伦一二天堂av在线观看| 脱女人内裤的视频| 757午夜福利合集在线观看| 亚洲一区二区三区色噜噜 | 国产又色又爽无遮挡免费看| 久久久水蜜桃国产精品网| 亚洲七黄色美女视频| 别揉我奶头~嗯~啊~动态视频| 免费av中文字幕在线| 亚洲av片天天在线观看| 久久久久久人人人人人| av在线播放免费不卡| 亚洲成av片中文字幕在线观看| 亚洲一区二区三区欧美精品| av网站在线播放免费| 欧美日韩瑟瑟在线播放| 国产av在哪里看| 日韩视频一区二区在线观看| 国产精品美女特级片免费视频播放器 | 香蕉久久夜色| 国产精品一区二区精品视频观看| av视频免费观看在线观看| 欧美成人性av电影在线观看| 久久久精品国产亚洲av高清涩受| www国产在线视频色| 看片在线看免费视频| 老汉色∧v一级毛片| 人人妻人人爽人人添夜夜欢视频| www.www免费av| 多毛熟女@视频| 岛国在线观看网站| 男人舔女人的私密视频| 黄色视频不卡| 后天国语完整版免费观看| 久久青草综合色| 每晚都被弄得嗷嗷叫到高潮| 成年人免费黄色播放视频| 欧美精品一区二区免费开放| 欧美久久黑人一区二区| 亚洲 欧美 日韩 在线 免费| 18禁国产床啪视频网站| 久久久久国内视频| 黄色丝袜av网址大全| 亚洲专区国产一区二区| 在线永久观看黄色视频| 亚洲黑人精品在线| 免费av中文字幕在线| 精品少妇一区二区三区视频日本电影| 不卡一级毛片| 午夜福利一区二区在线看| 天堂√8在线中文| 视频在线观看一区二区三区| 国产极品粉嫩免费观看在线| 男女高潮啪啪啪动态图| 日日爽夜夜爽网站| 免费在线观看影片大全网站| 精品国产国语对白av| 乱人伦中国视频| 黄色视频,在线免费观看| 国产97色在线日韩免费| 欧美人与性动交α欧美软件| 在线观看一区二区三区| 中亚洲国语对白在线视频| 级片在线观看| 欧美日韩黄片免| 国产有黄有色有爽视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 久久中文字幕人妻熟女| 久9热在线精品视频| 黄色怎么调成土黄色| 麻豆久久精品国产亚洲av | 中文欧美无线码| 国产人伦9x9x在线观看| 国产乱人伦免费视频| 日韩成人在线观看一区二区三区| videosex国产| 国产麻豆69| 丝袜美足系列| www.自偷自拍.com| 久久久久久久午夜电影 | 亚洲色图av天堂| 欧美在线黄色| 久久久久久久精品吃奶| 高清av免费在线| 777久久人妻少妇嫩草av网站| 免费少妇av软件| 中文字幕另类日韩欧美亚洲嫩草| 成人国语在线视频| 高清欧美精品videossex| 午夜免费成人在线视频| 黑丝袜美女国产一区| 国产欧美日韩综合在线一区二区| 免费一级毛片在线播放高清视频 | 午夜精品在线福利| 亚洲精品久久午夜乱码| 女人高潮潮喷娇喘18禁视频| 久久久久久久久久久久大奶| 亚洲在线自拍视频| www.自偷自拍.com| 99国产精品一区二区蜜桃av| 久久青草综合色| 涩涩av久久男人的天堂| 亚洲一码二码三码区别大吗| 精品第一国产精品| 少妇粗大呻吟视频| 欧美黄色片欧美黄色片| 国产精品久久久久久人妻精品电影| 可以免费在线观看a视频的电影网站| 99国产精品一区二区三区| 黄色女人牲交| 男人操女人黄网站| 精品久久久精品久久久| 成人三级黄色视频| 日韩av在线大香蕉| 久久人妻av系列| 三上悠亚av全集在线观看| 狠狠狠狠99中文字幕| 欧美大码av| 好男人电影高清在线观看| 亚洲欧美一区二区三区黑人| √禁漫天堂资源中文www| 动漫黄色视频在线观看| 久久久久久大精品| 午夜久久久在线观看| 亚洲三区欧美一区| 亚洲久久久国产精品| 免费不卡黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 最近最新免费中文字幕在线| 大码成人一级视频| 亚洲一区二区三区不卡视频| 身体一侧抽搐| 欧美黄色片欧美黄色片| 麻豆av在线久日| 国内久久婷婷六月综合欲色啪| 老司机亚洲免费影院| 精品一区二区三卡| 少妇裸体淫交视频免费看高清 | 亚洲久久久国产精品| 久久午夜亚洲精品久久| 男男h啪啪无遮挡| 免费看a级黄色片| 欧美成人性av电影在线观看| 黄片播放在线免费| 一级a爱片免费观看的视频| 欧美精品一区二区免费开放| 亚洲成人国产一区在线观看| 最新在线观看一区二区三区| 岛国在线观看网站| 亚洲,欧美精品.| 丝袜人妻中文字幕| 老司机福利观看| 久久 成人 亚洲| 国产99白浆流出| 日本 av在线| 91精品三级在线观看| 免费看十八禁软件| 欧美日韩亚洲国产一区二区在线观看| 亚洲午夜理论影院| 亚洲成人免费电影在线观看| 男人舔女人的私密视频| 久久欧美精品欧美久久欧美| 丰满的人妻完整版| 香蕉丝袜av| tocl精华| 午夜久久久在线观看| 91九色精品人成在线观看| 黄网站色视频无遮挡免费观看| 丁香欧美五月| 国产三级黄色录像| tocl精华| 国产成人免费无遮挡视频| 在线观看www视频免费| 亚洲片人在线观看| 91精品三级在线观看| 视频在线观看一区二区三区| 久久久国产一区二区| 91九色精品人成在线观看| 大型黄色视频在线免费观看| 久久久水蜜桃国产精品网| 久久久久国内视频| 夜夜躁狠狠躁天天躁| 国产又爽黄色视频| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 宅男免费午夜| 美女扒开内裤让男人捅视频| 悠悠久久av| 久久精品国产亚洲av高清一级| 丝袜美足系列| 他把我摸到了高潮在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 91字幕亚洲| 国产黄色免费在线视频| 在线十欧美十亚洲十日本专区| 色综合站精品国产| 久久影院123| 免费少妇av软件| 精品熟女少妇八av免费久了| 在线观看免费视频日本深夜| 一区二区三区国产精品乱码| 国产成人系列免费观看| 如日韩欧美国产精品一区二区三区| 国产成+人综合+亚洲专区| 在线永久观看黄色视频| 国产国语露脸激情在线看| 久久国产精品影院| 99精国产麻豆久久婷婷| 国产成人av激情在线播放| 午夜影院日韩av| 国产av又大| 老熟妇乱子伦视频在线观看| 国产一区二区在线av高清观看| 黑人猛操日本美女一级片| 国产野战对白在线观看| 成人手机av| 成年版毛片免费区| 中文字幕人妻丝袜制服| xxxhd国产人妻xxx| 午夜福利一区二区在线看| 免费在线观看亚洲国产| 亚洲一区二区三区色噜噜 | 国产精品九九99| 久久午夜综合久久蜜桃| 亚洲美女黄片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 嫩草影院精品99| xxxhd国产人妻xxx| 他把我摸到了高潮在线观看| 可以免费在线观看a视频的电影网站| 亚洲专区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| avwww免费| 极品人妻少妇av视频| 免费日韩欧美在线观看| 欧美黑人欧美精品刺激| 在线av久久热| 久久国产精品影院| 久久久久久久精品吃奶| 级片在线观看| 99国产极品粉嫩在线观看| 国产精品成人在线| av电影中文网址| 久热这里只有精品99| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 亚洲九九香蕉| 一级毛片高清免费大全| 欧美老熟妇乱子伦牲交| 日韩欧美在线二视频| 丁香欧美五月| 可以免费在线观看a视频的电影网站| 91字幕亚洲| 1024视频免费在线观看| 国产精品国产高清国产av| 男女之事视频高清在线观看| 成人永久免费在线观看视频| 国产精品九九99| 成年女人毛片免费观看观看9| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久久久久久大奶| 欧美激情久久久久久爽电影 | 久久久久久久久中文| 久久国产乱子伦精品免费另类| 日韩有码中文字幕| 久久国产精品人妻蜜桃| 免费av毛片视频| 久9热在线精品视频| 久久精品亚洲熟妇少妇任你| 日本免费a在线| 国产精品一区二区免费欧美| av视频免费观看在线观看| 很黄的视频免费| 美女国产高潮福利片在线看| 免费在线观看完整版高清| 色婷婷av一区二区三区视频| 色婷婷久久久亚洲欧美| 国产精品爽爽va在线观看网站 | 精品国产乱码久久久久久男人| 黄片播放在线免费| 国产99白浆流出| 日韩大码丰满熟妇| 中文字幕av电影在线播放| 日韩欧美三级三区| 亚洲成国产人片在线观看| 999久久久国产精品视频| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 欧美日本亚洲视频在线播放| 久久这里只有精品19| 女同久久另类99精品国产91| 中亚洲国语对白在线视频| 久久久久久久久中文| 久久久水蜜桃国产精品网| 中文字幕色久视频| www.自偷自拍.com| 亚洲人成电影观看| 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| 国产成人精品久久二区二区免费| 国产精品久久久人人做人人爽| 99久久国产精品久久久| 国产深夜福利视频在线观看| a在线观看视频网站| 夜夜看夜夜爽夜夜摸 | 精品久久久久久久毛片微露脸| 久久久久久久久中文| 国产xxxxx性猛交| 亚洲成a人片在线一区二区| 97碰自拍视频| 一级,二级,三级黄色视频|