• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WO3/Zn0.5Cd0.5S S 型異質(zhì)結(jié)光催化產(chǎn)氫耦合有機(jī)物轉(zhuǎn)化機(jī)理研究

    2024-07-16 00:00:00曹爽鐘博別傳彪程蓓徐飛燕
    物理化學(xué)學(xué)報(bào) 2024年5期
    關(guān)鍵詞:產(chǎn)氫

    摘要:開發(fā)新型納米材料實(shí)現(xiàn)光催化產(chǎn)氫耦合有機(jī)物轉(zhuǎn)化、提高太陽能到化學(xué)能的轉(zhuǎn)換效率,在解決能源和環(huán)境危機(jī)方面具有巨大潛力。三元金屬硫化物具有可調(diào)控的帶隙和優(yōu)異的可見光響應(yīng),在光催化分解水產(chǎn)氫方面引起了廣泛關(guān)注。其中,Zn0.5Cd0.5S是一種帶隙較窄、導(dǎo)帶位置較高、耐光腐蝕的還原型光催化劑;然而,單一Zn0.5Cd0.5S中光生電子和空穴的復(fù)合率較高,只有少部分光生載流子參與光催化反應(yīng),導(dǎo)致量子效率較低而無法達(dá)到實(shí)際需求。WO3是一種典型的氧化型光催化劑,具有較低的價帶位置和較強(qiáng)的氧化能力,是與Zn0.5Cd0.5S耦合構(gòu)建S型異質(zhì)結(jié)的理想半導(dǎo)體?;诖?, 本文通過靜電紡絲和水熱方法將Zn0.5Cd0.5S納米片垂直生長在WO3納米纖維上, 制備了具有核殼結(jié)構(gòu)的WO3/Zn0.5Cd0.5S異質(zhì)結(jié)。功函數(shù)的差異驅(qū)動Zn0.5Cd0.5S的電子轉(zhuǎn)移到WO3上,在界面處形成內(nèi)建電場并使能帶彎曲。通過原位光照X射線光電子能譜、電子順磁共振和時間分辨熒光光譜分析,發(fā)現(xiàn)在內(nèi)建電場、彎曲能帶和庫侖吸引力的作用下,WO3導(dǎo)帶上的光生電子遷移到Zn0.5Cd0.5S價帶上并與其光生空穴復(fù)合,表明WO3和Zn0.5Cd0.5S之間形成了S型異質(zhì)結(jié),實(shí)現(xiàn)了具有強(qiáng)氧化還原能力的載流子的高效分離。得益于獨(dú)特的S型光催化機(jī)制以及反應(yīng)物在催化劑表面的有效吸附與活化,沒有貴金屬助催化劑的情況下,WO3/Zn0.5Cd0.5S異質(zhì)結(jié)在產(chǎn)氫(715 μmol?g?1?h?1)和乳酸轉(zhuǎn)化為丙酮酸方面表現(xiàn)出增強(qiáng)的光催化活性,實(shí)現(xiàn)了光生電子和空穴的高效利用。原位漫反射傅里葉變換紅外光譜和密度泛函理論計(jì)算揭示了光催化產(chǎn)氫和有機(jī)物轉(zhuǎn)化的反應(yīng)機(jī)理。本工作為設(shè)計(jì)和研究新型S型異質(zhì)結(jié)光催化劑、實(shí)現(xiàn)高效產(chǎn)氫耦合有機(jī)物轉(zhuǎn)化提供了新的見解。

    關(guān)鍵詞:三氧化鎢;S型異質(zhì)結(jié);產(chǎn)氫;有機(jī)物轉(zhuǎn)化;化學(xué)吸附與活化

    中圖分類號:O643

    Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction

    Abstract: Developing novel nanostructures to enhance the efficiency of solar-tochemicalconversion through integrated photocatalytic hydrogen (H2) evolution andorganic transformation holds great promise in addressing pressing energy andenvironmental crises. Ternary metal sulfides have garnered considerable attention inphotocatalytic H2 production due to their tunable bandgap and excellent visible lightresponse. Among them, Zn0.5Cd0.5S stands out as a reduction photocatalyst with anarrow bandgap, a high conduction band level, and excellent resistance tophotocorrosion. However, unitary Zn0.5Cd0.5S suffers from a high recombination rate ofphotogenerated electron/hole pairs, resulting in only a small fraction of charge carriersbeing involved in the photoreactions, leading to a low quantum efficiency that falls shortof practical demand. WO3, a typical oxidation photocatalyst with a lower valence bandposition and strong oxidization ability, is an ideal candidate for constructing an S-scheme heterojunction with Zn0.5Cd0.5S.Herein, a core-shell structured WO3/Zn0.5Cd0.5S heterojunction with Zn0.5Cd0.5S nanosheets vertically growing out of WO3nanofibers is fabricated through electrospinning and hydrothermal methods. The distinct disparity in work functions leadsto the transfer of electrons from Zn0.5Cd0.5S to WO3 upon contact, creating an interfacial electric field (IEF) andsimultaneously bending the energy bands at the interface. As a consequence of IEF, bent energy bands, and coulombattraction, the photogenerated electrons in the conduction band of WO3 migrate to the valence band of Zn0.5Cd0.5S andrecombine with its photoinduced holes, signifying the formation of an S-scheme heterojunction between WO3 andZn0.5Cd0.5S and enabling efficient separation of powerful charge carriers, as evidenced by in situ irradiated X-rayphotoelectron spectroscopy, electron paramagnetic resonance, and time-resolved fluorescence spectroscopy analyses.Benefiting from the unique S-scheme photocatalytic mechanism, along with the effective chemisorption and activation ofreactants on the catalyst, the optimized WO3/Zn0.5Cd0.5S heterostructures exhibit exceptional photocatalytic performancein H2 production (715 μmol?g?1?h?1) and the transformation from lactic acid to pyruvic acid without the need for any noblemetal cocatalyst, achieving the full utilization of photoinduced electrons and holes. In situ diffuse reflectance infraredFourier transform spectroscopy, as well as density functional theory simulations, reveal the photoreaction mechanism ofH2 production and organic transformation. This work offers valuable insights into the design and investigation of themechanism behind novel S-scheme heterojunction photocatalysts, enabling high-performance H2 production andsimultaneous organic transformation.

    Key Words: Tungsten oxide; S-scheme heterojunction; Hydrogen production; Organic transformation;Chemisorption and activation

    1 Introduction

    The overuse of fossil fuels in recent decades has led to theongoing energy and environmental crises, posing a significantthreat to the sustainable development of human society 1–5. Cleanhydrogen (H2) energy has emerged as a compelling alternativedue to its regenerative nature, minimal pollution, and highenergy density 6?11. Solar-driven photocatalytic water splittingoffers a host of advantages, including harnessing inexhaustiblesolar energy, ensuring sustainability, cost-effectiveness, andachieving reasonable solar-to-hydrogen efficiency. It stands outas one of the most promising and economically viableapproaches to reduce fossil fuel consumption and associatedgreenhouse gas emissions 12?15. Currently, significant researchefforts are dedicated to the photocatalytic half-reaction for H2production from water. This involves introducing holescavengers, such as methanol and triethanolamine, into thesystem to extend the lifespan of photogenerated electrons,thereby enhancing H2 production performance 16–20. However,the presence of molecular scavengers hinders the effectiveutilization of energetic holes, resulting in inefficient energydissipation. Additionally, using sacrificial agents for H2production is environmentally unfriendly and increases the costof photocatalytic processes. Thus, making full use ofphotogenerated electrons and holes upon light illumination is anurgent challenge that needs to be addressed 21–26.

    Ternary metal sulfides have attracted considerable attention inphotocatalytic H2 production due to their tunable bandgap andexcellent visible light response. Among them, ZnxCd1?xS standsout as an n-type reduction photocatalyst with a narrow bandgap,a high conduction band (CB) level, and excellent resistance tophotocorrosion 27–31. By adjusting the ratio of Zn2+ and Cd2+ions, photocatalysts with optimal band structures can besynthesized, with Zn0.5Cd0.5S demonstrating the highestphotocatalytic performance. However, similar to othermonocomponent photocatalysts, unitary Zn0.5Cd0.5S suffersfrom a high recombination rate of photoinduced electron/holepairs 32–34. Only a small fraction of electrons and holes areinvolved in the photoreactions, resulting in a low quantumefficiency that falls short of practical demand 35–38. Therefore, itis desirable, yet challenging, to develop Zn0.5Cd0.5S-basedheterojunction photocatalysts with efficient separation ofphotogenerated electron/hole pairs and high quantumefficiency 39–43.

    The construction of S-scheme heterojunctions involvingZn0.5Cd0.5S for integrated photocatalytic H2 production andorganic photosynthesis is acknowledged as a potential solutionto address the aforementioned challenges 44–46. In this process,ineffective photoinduced electrons and holes tend to recombine,while the powerful photoelectrons in the CB of the reductionphotocatalyst and photoholes in the valence band (VB) of the oxidation photocatalyst are preserved to reduce H2O to yield H2and drive the oxidative organic transformation to produce valueaddedchemicals, respectively. Such a strategy enables theefficient separation of charge carriers with strong redox abilitiesand maximizes the utilization of the reactive electrons and holesderived from solar conversion 47–53. Tungsten oxide (WO3), atypical oxidation photocatalyst with a lower VB position andstrong oxidization ability, is an ideal candidate for constructingan S-scheme heterojunction with Zn0.5Cd0.5S 54. Specifically,one-dimensional (1D) WO3 nanofibers, prepared throughelectrospinning, have garnered significant interest owing to theirimproved specific surface areas, reduced charge transport length,inert aggregation and increased active sites, etc. In this work, wesynthesized electrospun WO3 nanofibers and then grewZn0.5Cd0.5S nanosheets on the nanofiber surface via a simplelow-temperature hydrothermal method to constructWO3/Zn0.5Cd0.5S nanostructures for photocatalytic H2production and organic transformation. Density functionaltheory (DFT) calculations, in situ X-ray photoelectronspectroscopy (XPS), electron paramagnetic resonance (EPR),and time-resolved fluorescence spectroscopy (TRPL) analysesconfirmed the formation of an S-scheme heterojunction betweenWO3 nanofibers and Zn0.5Cd0.5S nanosheets, endowing thecomposite with exceptional photocatalytic performance for H2Oreduction and lactic acid (LA) oxidation. This work providesvaluable insights into the design of novel S-schemeheterojunction photocatalysts for high-performance H2production and concurrent organic transformation.

    2 Experimental details

    2.1 Preparation of photocatalysts

    WO3 nanofibers were synthesized via the electrospinningmethod. Firstly, tungsten hexachloride (WCl6, 1.0 g) andpolyacrylonitrile (PAN, 0.5 g) were dissolved in 5 mL of N,Ndimethylformamide(DMF) through magnetic stirring for 12 h atroom temperature. The resulting dark-blue solution was thenloaded into an electrospinning setup using a syringe. Theelectrical potential and solution-feeding rate were set at 20 kVand 0.2 mL?h?1, respectively. Subsequently, the obtained WO3nanofiber precursors were calcinated at 300 °C for 1 h in air,followed by further heating at 500 °C for another 5 h to obtainpale yellow WO3 nanofibers.

    For the synthesis of WO3/Zn0.5Cd0.5S nanohybrids, zincacetate dihydrate (0.8 mmol), cadmium acetate dihydrate (0.8mmol) and thiourea (3.2 mmol) were dissolved in 40 mL ofethanol to form a homogeneous solution. Then, 60 mg of WO3nanofibers were added to the solution. After vigorous stirring for10 min, the resulting suspension was transferred to a Teflonlinedstainless-steel autoclave and heated at 120 °C for 12 h.Upon cooling, the yellow WO3/Zn0.5Cd0.5S product wasseparated by centrifugation, thoroughly washed with water andethanol, and then dried in an oven at 60 °C. For comparison, pureZn0.5Cd0.5S was also prepared under the same conditions without the addition of WO3 nanofibers. The synthesizedWO3/Zn0.5Cd0.5S photocatalysts are denoted as WZCx (x = 20,30, 40), where W and ZC represent WO3 and Zn0.5Cd0.5S,respectively; x indicates the mass percentage of WO3 toZn0.5Cd0.5S.

    2.2 H2O photoreduction integrated with organicphotooxidation

    The performance of the photoreduction of H2O coupled withthe photooxidation of organics was evaluated using a sealed andN2-filled 150 mL three-necked Pyrex flask. Typically, 20 mg ofphotocatalysts were dispersed in 50 mL of an aqueous solutioncontaining LA at a concentration of 0.1 vol% (volume fraction)under magnetic stirring. To maintain an anaerobic condition, thesystem was purged with N2 for 30 min using a multi-channelatmosphere controller (PLA-MAC1005, Beijing Perfectlight,China). Subsequently, the system was irradiated for 1 h using a300 W Xenon arc lamp (PLS-SXE300+, Beijing Perfectlight,China). After the photocatalytic reaction, the generated gas wasanalyzed using a gas chromatograph (GC-14C, Shimadzu,Japan), and the liquid products were detected using highperformanceliquid chromatography equipped with a UV-visiblelight detector (SPD-20A, Shimadzu, Japan), a column oven(CTO-20A, Shimadzu, Japan), a low-pressure gradient unit (LC-20AD, Shimadzu, Japan), and a degasser (DGU-20A5R,Shimadzu, Japan). The mobile phase consisted of a 10 mmol?L?1potassium dihydrogen phosphate solution with a flow rate of 1.0mL?min?1.

    3 Results and discussion

    3.1 Characterization of WO3/Zn0.5Cd0.5S nanostructures

    The field emission scanning electron microscopy (FESEM)image of pristine WO3 unveils a uniform nanofibrousmorphology characterized by diameters ranging from 200 to 300nm and a conspicuously rough surface (Fig. 1a). Subsequent tothe solvothermal process, an abundance of vertically alignedZn0.5Cd0.5S nanosheets emerges from the WO3 nanofibers, asexemplified in Fig. 1b,c. The high-resolution transmissionelectron microscopy (HRTEM) image of the WO3/Zn0.5Cd0.5Snanostructure (inset of Fig. 1c) reveals an interplanar crystalspacing of 0.31 nm, precisely coinciding with the (111) facet ofZn0.5Cd0.5S. No observable lattice spacing of WO3 is detected asit resides within the composite nanofibers. The energy dispersiveX-ray spectroscopy (EDS) elemental mappings (Fig. 1d)demonstrate a homogeneous distribution of W, O, Zn, Cd and Selements, thus validating the successful hybridization of WO3and Zn0.5Cd0.5S.

    The X-ray diffraction (XRD) pattern of pristine WO3nanofibers exhibits characteristic peaks corresponding to themonoclinic phase (JCPDS No.20-1324) (Fig. 1e). The obtainedpure Zn0.5Cd0.5S displays crystal properties associated with thehexagonal wurtzite phase of CdS (JCPDS No.41-1049) 55,56 andZnS (JCPDS No.36-1450) 57, albeit with slight peak shifts. This occurrence arises from the larger atomic radius of Cd comparedto Zn, which induces changes in the lattice constant andinterplanar spacing during the formation of a solid solution (Fig.S1). For the composite WZCx, diffraction peaks of both WO3and Zn0.5Cd0.5S are detected, further confirming the formation ofWO3/Zn0.5Cd0.5S nanohybrids and agreeing well with the aboveanalyses. The optical absorption capabilities of WO3,Zn0.5Cd0.5S, and WO3/Zn0.5Cd0.5S heterojunctions wereinvestigated via ultraviolet-visible diffuse reflectance spectrum(UV-Vis DRS). As shown in Fig. 1f, bare WO3 and Zn0.5Cd0.5Sexhibit intrinsic absorption edges at around 510 and 480 nm,indicating bandgaps (Eg) of 2.40 and 2.62 eV, respectively. Theobtained WZC30 demonstrates enhanced absorption of visiblelight due to the strong light absorption properties of WO3, whichis beneficial for efficient light harvesting to improve thephotocatalytic performance.

    XPS was employed to investigate the chemical states andsurface composition of WO3, Zn0.5Cd0.5S, and theWO3/Zn0.5Cd0.5S heterostructure. Fig. 2a illustrates the presenceof W, O, Zn, Cd, and S elements in WZC30. The high-resolutionXPS spectra of W 4f in Fig. 2b display two pairs of doublets,where the peaks at 35.7 and 37.8 eV are assigned to W6+, whilethe others located at 35.2 and 37.3 eV are attributed to W5+ 28,58.Deconvolution of the O 1s XPS spectra (Fig. 2c) uncoversdistinct peaks corresponding to lattice oxygen (530.5 eV),surface-adsorbed oxygen ( ― OH) (532.1 eV), and vacancyoxygen (533.3 eV) in the samples. Additionally, the detection ofZn 2p, Cd 3d, and S 2p doublets in pure Zn0.5Cd0.5S and WZC30composite (Fig. 2d–f) provides compelling evidence for theexistence of Zn2+, Cd2+, and S2? in both samples. It is worth noting that in the dark, the binding energies (BEs) of W 4f andO 1s in WZC30 shift negatively compared to pure WO3, whilethe peaks of Zn 2p, Cd 3d, and S 2p exhibit positive shifts withrespect to pristine Zn0.5Cd0.5S. Such an interesting phenomenonsuggests the transfer of electrons from Zn0.5Cd0.5S to WO3 uponhybridization.

    3.2 Insights into charge transfer and separationmechanism

    To investigate the mechanism of charge transfer and separationin the WO3/Zn0.5Cd0.5S heterostructures, the band structure ofWO3 and Zn0.5Cd0.5S was initially examined. The VB-XPSspectra (Fig. S2) reveal that the difference between the VBmaximum and the flat band potential (Efb) of WO3 andZn0.5Cd0.5S is determined to be 2.43 and 1.30 eV, respectively.According to the Mott-Schottky plots as depicted in Fig. S3, theEfb values of WO3 and Zn0.5Cd0.5S are derived to be +0.1 and?0.5 V (vs. RHE), respectively. By incorporating the bandgapsdisclosed in the inset of Fig. 1f, the band structure of WO3 andZn0.5Cd0.5S is calculated and illustrated in Fig. S4, where WO3functions as the oxidation photocatalyst and Zn0.5Cd0.5S acts asthe reduction photocatalyst.

    The work function (Φ) plays a crucial role in exploring thepathway of charge transfer. Analysis of the electrostatic potentialprofiles reveals that the Φ values of WO3 (001) and Zn0.5Cd0.5S(100) are determined to be 6.8 and 5.1 eV, respectively,suggesting a lower Fermi level (EF) of WO3 compared toZn0.5Cd0.5S (Fig. 3a,b). Furthermore, the results obtained fromultraviolet photoelectron spectroscopy (UPS) estimate the EFvalues of WO3 and Zn0.5Cd0.5S to be ?4.22 and ?1.02 eV,respectively, relative to the vacuum level (Fig. S5), which alignswith the above DFT simulation. As a consequence of thedifference in work function and Fermi level, electrons will migrate from Zn0.5Cd0.5S to WO3 upon their contact untilequilibrium is reached at the interface. Such charge transferresults in the formation of an internal electric field (IEF) directedfrom Zn0.5Cd0.5S to WO3, and meanwhile bends their energybands at the nanostructure interfaces (Fig. 3c), corroborating theabove XPS analysis.

    Under light irradiation, electrons in both WO3 and Zn0.5Cd0.5Sare initially excited from the VB to the CB. Driven by the IEF,band bending, and coulomb interactions, the photogeneratedelectrons in the WO3 CB preferentially transfer to the Zn0.5Cd0.5SVB and recombine with its photoexcited holes, therebypreserving powerful photoelectrons in the Zn0.5Cd0.5S CB andphotoholes in the WO3 VB to participate in the photoreactions.This distinctive charge transfer and separation mechanism signify the formation of an S-scheme heterojunction betweenWO3 and Zn0.5Cd0.5S, enabling efficient separation ofphotogenerated carriers and imparting the heterojunction withexceptional redox ability (Fig. 3c). In situ irradiated XPS spectrareveal that the BEs of W 4f and O 1s in WZC30 exhibit positiveshifts, while the peaks of Zn 2p, Cd 3d and S 2p shift towardslower binding energy with reference to those recorded in the dark(Fig. 2b–f). These intriguing findings demonstrate the transportof photoelectrons from WO3 to Zn0.5Cd0.5S, reaffirming the Sschemephotocatalytic mechanism 59–61.

    EPR measurements were conducted using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trapping agent to elucidatethe charge transfer pathway within the WO3/Zn0.5Cd0.5Sheterostructure. As depicted in Fig. 3d, the mono-componentWO3 and Zn0.5Cd0.5S exhibit relatively weaker DMPO-·O2? andDMPO-·OH signals, which can be attributed to their bandstructures and the rapid recombination of charge carriers. Incontrast, the WZC30 composite displays stronger DMPO-·O2?and DMPO-·OH signals, indicating the effective separation andpreservation of highly energetic electrons in the Zn0.5Cd0.5S CBand holes in the WO3 VB, providing further compelling evidencefor the S-scheme charge separation mechanism. The deeperinsights into the charge separation efficiency and charge transferdynamics of S-scheme heterojunctions were further investigatedvia TRPL. According to the steady-state photoluminescencespectra of pure WO3 and Zn0.5Cd0.5S (Fig. S6), TRPL spectrawere recorded at an emission wavelength of 630 nm, where thefluorescence signal is predominantly contributed by Zn0.5Cd0.5S.As depicted in Fig. 3e, the heterostructure WZC30 exhibitslonger lifetimes compared to pristine Zn0.5Cd0.5S, indicating themigration of photogenerated electrons from the WO3 CB to theZn0.5Cd0.5S VB, where they recombine with holes.Consequently, a greater accumulation of photoelectrons occursin the Zn0.5Cd0.5S CB, extending the lifetime and furtheraffirming the S-scheme charge transfer route within theWO3/Zn0.5Cd0.5S heterojunctions. Notably, the introduction oflactic acid (LA) to the system significantly reduces the averagelifetime of WZC30, indicating the efficient photoreduction ofH2O integrated with the photooxidation of LA, thereby leavingfew photocarriers available for the recombination. Furthermore,the photoelectrochemical results (Fig. S7) demonstrate thatWZC30 exhibits a higher photocurrent density and smallerradius of Nyquist plots with respect to pure WO3 andZn0.5Cd0.5S, testifying the enhanced charge separation efficiencyand reduced charge transfer resistance in the WO3/Zn0.5Cd0.5Sheterojunction. These analyses suggest that the formation of anS-scheme heterojunction between WO3 nanofibers andZn0.5Cd0.5S nanosheets promotes efficient charge transfer andenables effective separation of powerful electrons and holes,thereby boosting the photocatalytic performance.

    3.3 Photocatalytic performance towards H2Oreductionand LA-oxidation

    The adsorption and activation of reactants on catalysts play a molecule exhibits strong chemical adsorption on the Zn0.5Cd0.5Ssurface, characterized by an adsorption energy (Eads) of ?1.65eV, along with charge transfer as revealed in the charge densitydifference (Fig. S8a). The integrated crystal orbital Hamiltonpopulation (ICOHP) value of O-H pairs in free H2O is predictedto be ?7.39 eV (Fig. S8b). Upon adsorption on the Zn0.5Cd0.5Ssurface, the ICOHP value increases to ?7.01 eV, and new O-Cdspecies are formed with an ICOHP value of ?0.50 eV (Fig. S8c),providing further evidence of the activation of the H2O moleculeon the Zn0.5Cd0.5S surface. Furthermore, when the LA moleculeadsorbs onto the WO3 surface, LA donates 0.15 electrons toWO3 with an Eads of ?1.91 eV (Fig. S9), indicating a strongchemisorption interaction between LA and WO3. These DFTresults suggest that Zn0.5Cd0.5S and WO3 are the preferred activesites for H2O photoreduction and LA photooxidation,respectively.

    The photocatalytic performance of all the samples in H2Oreduction and LA oxidation was evaluated through experimentsin which water was split in a 0.1 vol% LA solution under UVvisiblelight irradiation. Control experiments were carried out toverify that no products were detectable in the absence ofphotocatalysts or light irradiation. Fig. 4a illustrates that theWO3/Zn0.5Cd0.5S S-scheme heterojunctions exhibit significantlyenhanced H2 production performance compared to pure WO3and Zn0.5Cd0.5S, achieving a maximum production rate of 14.3μmol?h?1 (715 μmol?g?1?h?1 at 20 mg of photocatalysts) overWZC30 with an apparent quantum efficiency (AQE) of 8.3% at420 nm. Further analysis of the liquid products unveils a gradualoxidation of LA to pyruvic acid (PA) accompanied by thegeneration of H2 (Fig. 4b). The conversion of LA and theselectivity of PA over WO3, WZCx, and Zn0.5Cd0.5S after a sixhourirradiation demonstrate that the composite WZC30 exhibitsthe highest LA conversion and PA production, with a PAselectivityof ~82% (Fig. 4c,d). Such outstanding performancetowards H2O reduction and LA oxidation of theWO3/Zn0.5Cd0.5S nanohybrids aligns with our expectation and ismainly attributed to the efficient activation of reactants on thecatalyst surface, as well as the unique S-scheme chargeseparation mechanism.

    Gibbs free energy calculations and in situ diffuse reflectanceinfrared Fourier transform spectroscopy (DRIFTS) wereemployed to investigate the reaction mechanism of H2Ophotoreduction and LA photooxidation. The Gibbs free energyof H* (ΔGH*) was first analyzed to assess the efficiency ofphotocatalytic H2 production. A ΔGH* value approaching zeroindicates a more favorable condition for H* adsorption, therebyenhancing the evolution of H2. Fig. 4e demonstrates that activeH* exhibits a preference for adsorption on S sites, with a ΔGH*value of 0.91 eV, compared to Zn and Cd (instability) sites,suggesting that S serves as the active site for H2Ophotoreduction.

    In situ DRIFTS spectra (Fig. 4f) reveal that after introducing H2O and LA into the system in the dark, the detectedcharacteristic peaks assigned to the out-of-plane bendingvibration of ―OH (675 cm?1), the deformation vibration ofmethylene (1300 cm?1), the symmetric bending of ―CH3 (1360cm?1), the stretching vibration of ―COOH (1550 cm?1), thestretching vibration of the carbonyl group (1730 cm?1), thestretching vibration of hypomethyl (3000 cm?1), the stretchingvibration of ―OH (3200 cm?1), and the H2O signal (3500 cm?1)strongly support the chemisorption of reactants on the WZC30surface. Upon light irradiation, the peaks at 1300, 3000, 3200,and 3500 cm?1 diminish, while a new signal corresponding topyruvate emerges at 1210 cm?1, suggesting continuousconsumption of the adsorbed H2O and LA, leading to thegeneration of H2 and PA. Furthermore, Gibbs free energy change(ΔG) calculations were performed to investigate the elementaryreactions involved in the conversion of LA to PA. As depicted in Figs. 4g and S10, the rate-limiting step for both WO3 as thecatalyst and the reaction without a catalyst is thedehydrogenation of the adsorbed LA. Notably, WO3 has a lowerΔG value compared to the reaction with no catalyst (0.71 vs. 1.73eV), highlighting the feasibility of LA photooxidation over theWO3 surface.

    A cyclic H2 production test was conducted to investigate thephotostability of the nanohybrids. As revealed in Fig. S11, theWO3/Zn0.5Cd0.5S heterojunction (WZC30) shows a negligibledecrease in H2 production after four cycles, indicating thesatisfactory stability of the composite. The XRD pattern andFESEM image (Fig. S12) of the spent WZC30 demonstrate nosignificant alterations in phase and morphology when comparedto the fresh one, reaffirming the photostability ofWO3/Zn0.5Cd0.5S heterostructures. Comparing the XPS spectraof WZC30 before and after photoreaction (Fig. S13), it can beobserved that the BEs of S 2p and O 1s shift negatively andpositively, respectively, which is attributed to the weakened IEFfollowing the photoreaction. The chemical states of all elementsreveal negligible change, underscoring the satisfying stability ofthe WO3/Zn0.5Cd0.5S heterojunction photocatalyst. Generally,the severe photocorrosion of sulfides mainly results from theoxidation of S2? ions by photogenerated holes. However, in theWO3/Zn0.5Cd0.5S heterojunction, the S-scheme charge transfermechanism enables the photogenerated electrons in the WO3 CBto effectively recombine with the holes in the Zn0.5Cd0.5S VB,thereby preventing the oxidation of S2? in Zn0.5Cd0.5S and thusmitigating the issue of photocorrosion to improve thephotostability.

    4 Conclusion

    In conclusion, unique WO3/Zn0.5Cd0.5S S-schemeheterojunction photocatalysts were synthesized usingelectrospinning and low-temperature hydrothermal methods.DFT calculations and UPS results demonstrated that the Fermilevel of WO3 was lower than that of Zn0.5Cd0.5S, resulting inelectron transfer from Zn0.5Cd0.5S to WO3 upon contact, therebygenerating an IEF and bending the energy bands at the interface.Under light irradiation, the photogenerated electrons migratedfrom the WO3 CB to the Zn0.5Cd0.5S VB driven by the IEF, bentenergy bands and coulomb attraction, as supported by in situXPS and TRPL analysis. Such charge transfer mechanismresulted in the formation of an S-scheme heterojunction betweenWO3 and Zn0.5Cd0.5S, facilitating efficient separation ofphotoinduced charge carriers with high redox capabilities.Thanks to this unique S-scheme photocatalytic mechanism,combined with the effective chemisorption and activation ofreactants on the catalyst surface, the resulting WO3/Zn0.5Cd0.5SS-scheme heterostructures exhibited outstanding photocatalyticperformance in H2O reduction and LA oxidation, without theneed for any noble metal cocatalysts, thus fully utilizingphotogenerated electrons and holes. In situ DRIFTS, togetherwith DFT simulations, provided insights into the photoreaction mechanism involved in the production of H2 and PA. This studypresents a fresh perspective on the design and fabrication ofnovel S-scheme heterojunction photocatalysts, enabling theenhancement of solar-to-chemical conversion efficiency throughthe integration of H2 evolution with value-added chemicalsproduction.

    Author Contribution: S.C. and F.X. conceived anddesigned the experiments. S.C. conducted material synthesis andphotocatalytic test, and wrote the draft. S.C., B.Z., C.B., B.C.and F.X. contributed to data analysis. F.X. supervised theproject, performed DFT calculations, and revised themanuscript. All authors discussed the results and commented onthe manuscript.

    References

    (1) Domaschke, M.; Zhou, X.; Wergen, L.; Romeis, S.; Miehlich, M. E.;Meyer, K.; Peukert, W.; Schmuki, P. ACS Catal. 2019, 9, 3627.doi: 10.1021/acscatal.9b00578

    (2) Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu,H.; Li, H.; Li, Y.; et al. Appl. Catal. B 2019, 248, 84.doi: 10.1016/j.apcatb.2019.02.020

    (3) Tuna Gen?, M.; Sarilmaz, A.; Dogan, S.; Aksoy ?ekceo?lu, ?.; Ozen,A.; Aslan, E.; Saner Okan, B.; Jaafar, J.; Ozel, F.; Ersoz, M.; et al. Int.J. Hydrog. Energy 2023, 38, 253.doi: 10.1016/j.ijhydene.2023.04.185

    (4) Lin, K.; Wang, Z.; Hu, Z.; Luo, P.; Yang, X.; Zhang, X.; Rafiq, M.;Huang, F.; Cao, Y. J. Mater. Chem. A 2019, 7, 19087.doi: 10.1039/c9ta06219j

    (5) Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci.Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016

    (6) Gao, R.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42,15. doi: 10.1016/s1872-2067(20)63614-2

    (7) Lei, Y.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Hoong Ng, K.; Lai, Y.Chem. Eng. J. 2021, 425, 131478. doi: 10.1016/j.cej.2021.131478

    (8) Liu, Y.; Sun, Z.; Hu, Y. H. Chem. Eng. J. 2021, 409, 128250.doi: 10.1016/j.cej.2020.128250

    (9) Wageh, S.; Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Alotaibi, M. F.;Wang, L. Chin. J. Catal. 2022, 43, 586.doi: 10.1016/s1872-2067(21)63925-6

    (10) Wageh, S.; Al-Ghamdi, A. A.; Xu, Q. Acta Phys. -Chim. Sin. 2022,38, 2202001. [Wageh, S., Al-Ghamdi, A. A., 徐全龍. 物理化學(xué)學(xué)報(bào), 2022, 38, 2202001.] doi: 10.3866/PKU.WHXB202202001

    (11) Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q.Chin. J. Catal. 2022, 43, 2720.doi: 10.1016/S1872-2067(22)64133-0

    (12) Lin, S.; Zhang, N.; Wang, F.; Lei, J.; Zhou, L.; Liu, Y.; Zhang, J. ACSSustain. Chem. Eng. 2020, 9, 481.doi: 10.1021/acssuschemeng.0c07753

    (13) Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci.Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034

    (14) Zhen, W.; Ning, X.; Yang, B.; Wu, Y.; Li, Z.; Lu, G. Appl. Catal. B2018, 221, 243. doi: 10.1016/j.apcatb.2017.09.024

    (15) Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022,34, 2108475. doi: 10.1002/adma.202108475

    (16) Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi,J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174.doi: 10.1039/d2ta05181h

    (17) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater.2021, 33, 2100317. doi: 10.1002/adma.202100317

    (18) Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J.Angew. Chem. Int. Ed. 2023, 62, e202304559.doi: 10.1002/anie.202304559

    (19) Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim.Sin. 2022, 38, 2108028. [黃悅, 梅飛飛, 張金鋒, 代凱, Dawson, G.物理化學(xué)學(xué)報(bào), 2022, 38, 2108028.]doi: 10.3866/PKU.WHXB202108028

    (20) Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022,38, 2110049. [雷卓楠, 馬心怡, 胡曉云, 樊君, 劉恩周. 物理化學(xué)學(xué)報(bào), 2022, 38, 2110049.] doi: 10.3866/PKU.WHXB202110049

    (21) Liu, K.; Peng, L.; Zhen, P.; Chen, L.; Song, S.; Garcia, H.; Sun, C.J. Phys. Chem. C 2021, 125, 14656.doi: 10.1021/acs.jpcc.1c03535

    (22) Wang, K.; Li, S.; Wang, G.; Li, Y.; Li, Y.; Jin, Z. Int. J. Energy Res.2022, 46, 19508. doi: 10.1002/er.8522

    (23) Zou, Y.; Guo, C.; Cao, X.; Chen, T.; Kou, Y.; Zhang, L.; Wang, T.;Akram, N.; Wang, J. Int. J. Hydrog. Energy 2022, 47, 25289.doi: 10.1016/j.ijhydene.2022.05.251

    (24) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew.Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688

    (25) Xia, Y.; Zhu, B.; Li, L.; Ho, W.; Wu, J.; Chen, H.; Yu, J. Small 2023,19, 2301928. doi: 10.1002/smll.202301928

    (26) Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121.doi: 10.1016/j.jmst.2022.11.001

    (27) Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. J. ColloidInterface Sci. 2022, 605, 311. doi: 10.1016/j.jcis.2021.07.113

    (28) He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41,9. doi: 10.1016/s1872-2067(19)63382-6

    (29) Huang, D.; Wen, M.; Zhou, C.; Li, Z.; Cheng, M.; Chen, S.; Xue, W.;Lei, L.; Yang, Y.; Xiong, W.; Wang, W. Appl. Catal. B 2020, 267,118651. doi: 10.1016/j.apcatb.2020.118651

    (30) Li, H.; Hao, X.; Liu, Y.; Li, Y.; Jin, Z. J. Colloid Interface Sci. 2020,572, 62. doi: 10.1016/j.jcis.2020.03.052

    (31) Ye, H.-F.; Shi, R.; Yang, X.; Fu, W.-F.; Chen, Y. Appl. Catal. B 2018,233, 70. doi: 10.1016/j.apcatb.2018.03.060

    (32) Cai, M.; Liu, Y.; Dong, K.; Wang, C.; Li, S. J. Colloid Interface Sci.2023, 629, 276. doi: 10.1016/j.jcis.2022.08.136

    (33) Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci.Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009

    (34) Cai, M.; Wang, C.; Liu, Y.; Yan, R.; Li, S. Sep. Purif. Technol. 2022,300, 121892. doi: 10.1016/j.seppur.2022.121892

    (35) Dai, D.; Xu, H.; Ge, L.; Han, C.; Gao, Y.; Li, S.; Lu, Y. Appl. Catal. B2017, 217, 429. doi: 10.1016/j.apcatb.2017.06.014

    (36) Shao, Z.; He, Y.; Zeng, T.; Yang, Y.; Pu, X.; Ge, B.; Dou, J. J. Alloy.Compd. 2018, 769, 889. doi: 10.1016/j.jallcom.2018.08.064

    (37) Wang, P.; Zhan, S.; Wang, H.; Xia, Y.; Hou, Q.; Zhou, Q.; Li, Y.;Kumar, R. R. Appl. Catal. B 2018, 230, 210.doi: 10.1016/j.apcatb.2018.02.043

    (38) Zhang, L.; Zhang, F.; Xue, H.; Gao, J.; Peng, Y.; Song, W.; Ge, L.Chin. J. Catal. 2021, 42, 1677.doi: 10.1016/S1872-2067(21)63791-9

    (39) Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem.Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488

    (40) Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X. Chem.Eng. J. 2022, 429, 132587. doi: 10.1016/j.cej.2021.132587

    (41) Wang, Y.; Ying, M.; Zhang, M.; Ren, X.; Kim, I. S. Macromol. Mater.Eng. 2021, 306, 2100587. doi: 10.1002/mame.202100587

    (42) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668.doi: 10.1002/adma.202107668

    (43) Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015

    (44) Dai, Z.; Zhen, Y.; Sun, Y.; Li, L.; Ding, D. Chem. Eng. J. 2021, 415,129002. doi: 10.1016/j.cej.2021.129002

    (45) Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol.2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016

    (46) Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. Chin. J.Catal. 2023, 46, 167. doi: 10.1016/S1872-2067(22)64201-3

    (47) Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol.2022, 122, 231. doi: 10.1016/j.jmst.2022.02.014

    (48) Kumar, A.; Khosla, A.; Kumar Sharma, S.; Dhiman, P.; Sharma, G.;Gnanasekaran, L.; Naushad, M.; Stadler, F. J. Fuel 2023, 333,126267. doi: 10.1016/j.fuel.2022.126267

    (49) Wang, L.; Bie, C.; Yu, J. Trends in Chem. 2022, 4, 973.doi: 10.1016/j.trechm.2022.08.008

    (50) Xi, Y.; Chen, W.; Dong, W.; Fan, Z.; Wang, K.; Shen, Y.; Tu, G.;Zhong, S.; Bai, S. ACS Appl. Mater. Interfaces 2021, 13, 39491.doi: 10.1021/acsami.1c11233

    (51) Zhang, B.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2021, 42, 1519.doi: 10.1016/S1872-2067(20)63765-2

    (52) Wang, X.; Sayed, M.; Ruzimuradov, O.; Zhang, J.; Fan, Y.; Li, X.;Bai, X.; Low, J. Appl. Mater. Today 2022, 29, 101609.doi: 10.1016/j.apmt.2022.101609

    (53) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal.2022, 43, 2652. doi: 10.1016/s1872-2067(22)64106-8

    (54) Dutta, V.; Sharma, S.; Raizada, P.; Thakur, V. K.; Khan, A. A. P.;Saini, V.; Asiri, A. M.; Singh, P. J. Environ. Chem. Eng. 2021, 9,105018. doi: 10.1016/j.jece.2020.105018

    (55) Xiang, X.; Zhu, B.; Zhang, J.; Jiang, C.; Chen, T.; Yu, H.; Yu, J.;Wang, L. Appl. Catal. B 2023, 324, 122301.doi: 10.1016/j.apcatb.2022.122301

    (56) Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.;Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006.doi: 10.14102/j.cnki.0254-5861.2022-0124

    (57) Jiang, J.; Wang, G.; Shao, Y.; Wang, J.; Zhou, S.; Su, Y. Chin. J.Catal. 2022, 43, 329. doi: 10.1016/S1872-2067(21)63889-5

    (58) Wei, Y.; Zhang, Q.; Zhou, Y.; Ma, X.; Wang, L.; Wang, Y.; Sa, R.;Long, J.; Fu, X.; Yuan, R. Chin. J. Catal. 2022, 43, 2665.doi: 10.1016/S1872-2067(22)64124-X

    (59) Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13,8462. doi: 10.1021/acs.jpclett.2c02125

    (60) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater.2022, 34, 2203225. doi: 10.1002/adma.202203225

    (61) Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023,39, 2212009. [孫濤, 李晨曦, 鮑鈺鵬, 樊君, 劉恩周. 物理化學(xué)學(xué)報(bào), 2023, 39, 2212009.] doi: 10.3866/PKU.WHXB202212009

    國家重點(diǎn)研究與發(fā)展計(jì)劃(2022YFB3803600, 2022YFE0115900), 國家自然科學(xué)基金(52003213, 22238009, 22261142666, 52073223, 22278324, 51932007)以及湖北省自然科學(xué)基金(2022CFA001)資助

    猜你喜歡
    產(chǎn)氫
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進(jìn)光催化產(chǎn)氫
    底物濃度對光合產(chǎn)氫過程動力學(xué)的影響
    鈷氮共摻雜多孔碳材料的制備及電催化產(chǎn)氫性能研究
    變壓吸附制氫解吸氣壓縮機(jī)選型方案探討
    光合細(xì)菌利用秸稈解聚液制氫的優(yōu)化研究
    第四周期過渡金屬催化硼氫化鈉分解制氫研究*
    復(fù)合催化劑NiS/g-C3N4的制備及光催化產(chǎn)氫性能
    “表面光化學(xué)動力學(xué)研究”2013年度報(bào)告
    有機(jī)廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    十六烷基三甲基溴化銨強(qiáng)化產(chǎn)氫發(fā)酵
    欧美+亚洲+日韩+国产| 精品人妻在线不人妻| 一级黄片播放器| 亚洲欧美精品综合一区二区三区| 国产精品熟女久久久久浪| 中文乱码字字幕精品一区二区三区| 一级毛片我不卡| av国产久精品久网站免费入址| 亚洲国产欧美网| 在线 av 中文字幕| 下体分泌物呈黄色| 国产在视频线精品| 王馨瑶露胸无遮挡在线观看| a 毛片基地| 亚洲欧美色中文字幕在线| 亚洲av电影在线进入| 久9热在线精品视频| 成人影院久久| 热re99久久精品国产66热6| 国产午夜精品一二区理论片| 伊人亚洲综合成人网| 日韩中文字幕视频在线看片| 黄色毛片三级朝国网站| 50天的宝宝边吃奶边哭怎么回事| 91精品伊人久久大香线蕉| 飞空精品影院首页| 国产在线免费精品| 久久久精品国产亚洲av高清涩受| 国产在视频线精品| 男女无遮挡免费网站观看| 国产熟女欧美一区二区| xxx大片免费视频| 亚洲情色 制服丝袜| 欧美另类一区| 国产亚洲一区二区精品| 国产欧美日韩精品亚洲av| 十八禁人妻一区二区| 丰满人妻熟妇乱又伦精品不卡| 成年人午夜在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 在线av久久热| 男人爽女人下面视频在线观看| 日韩视频在线欧美| 免费看十八禁软件| 亚洲国产精品一区三区| 免费在线观看影片大全网站 | 波多野结衣一区麻豆| 青青草视频在线视频观看| 国产精品一二三区在线看| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| 国产男女内射视频| 丰满饥渴人妻一区二区三| a级片在线免费高清观看视频| 国产精品 国内视频| 美女扒开内裤让男人捅视频| 亚洲欧美激情在线| 国产在线视频一区二区| 国产国语露脸激情在线看| 真人做人爱边吃奶动态| 国产在线一区二区三区精| 国产亚洲欧美在线一区二区| 七月丁香在线播放| 手机成人av网站| 亚洲国产看品久久| 纵有疾风起免费观看全集完整版| 国产精品一区二区在线不卡| 另类精品久久| 日本黄色日本黄色录像| 亚洲国产av影院在线观看| 美女福利国产在线| 丝瓜视频免费看黄片| 国产免费现黄频在线看| 91麻豆av在线| 亚洲欧美激情在线| 国产亚洲欧美在线一区二区| 日韩中文字幕视频在线看片| 中文乱码字字幕精品一区二区三区| 精品福利永久在线观看| 男女国产视频网站| 免费在线观看影片大全网站 | 一边亲一边摸免费视频| 九色亚洲精品在线播放| 国产在线视频一区二区| 国产成人91sexporn| 丰满少妇做爰视频| 巨乳人妻的诱惑在线观看| 男女免费视频国产| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 亚洲男人天堂网一区| 午夜av观看不卡| 看免费av毛片| 好男人电影高清在线观看| 老鸭窝网址在线观看| 中文字幕色久视频| 手机成人av网站| 男人添女人高潮全过程视频| 欧美日韩成人在线一区二区| 人人澡人人妻人| 每晚都被弄得嗷嗷叫到高潮| 香蕉丝袜av| 国产男人的电影天堂91| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 国产成人91sexporn| 夜夜骑夜夜射夜夜干| 97在线人人人人妻| a级毛片在线看网站| 国产高清国产精品国产三级| 国产高清视频在线播放一区 | 日韩伦理黄色片| 中文字幕高清在线视频| 欧美97在线视频| 色精品久久人妻99蜜桃| 国产成人a∨麻豆精品| 中文字幕亚洲精品专区| 男女之事视频高清在线观看 | 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 亚洲精品国产一区二区精华液| 久久久久国产精品人妻一区二区| 国产亚洲欧美在线一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲精品第二区| 午夜福利,免费看| av福利片在线| 亚洲国产精品成人久久小说| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡动漫免费视频| 国产片特级美女逼逼视频| 国产不卡av网站在线观看| 成人黄色视频免费在线看| 精品高清国产在线一区| h视频一区二区三区| 免费高清在线观看视频在线观看| 美女福利国产在线| 赤兔流量卡办理| 亚洲天堂av无毛| 99久久99久久久精品蜜桃| 亚洲第一av免费看| 丝袜人妻中文字幕| 精品国产国语对白av| 国产成人系列免费观看| 欧美成狂野欧美在线观看| 国产1区2区3区精品| 精品亚洲成国产av| 永久免费av网站大全| 青春草亚洲视频在线观看| 女人被躁到高潮嗷嗷叫费观| 在线看a的网站| 欧美精品av麻豆av| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| 日本五十路高清| 人成视频在线观看免费观看| 黄色怎么调成土黄色| 久久久久久免费高清国产稀缺| 日韩视频在线欧美| 精品久久久久久久毛片微露脸 | 青春草亚洲视频在线观看| 男人舔女人的私密视频| 一级,二级,三级黄色视频| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 欧美激情 高清一区二区三区| 国产亚洲精品久久久久5区| 免费高清在线观看视频在线观看| 美女扒开内裤让男人捅视频| 自线自在国产av| 亚洲七黄色美女视频| 成人影院久久| 亚洲第一av免费看| 国产精品成人在线| 亚洲成人手机| 成年动漫av网址| 男人操女人黄网站| 一本综合久久免费| 捣出白浆h1v1| 午夜久久久在线观看| 悠悠久久av| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 新久久久久国产一级毛片| 男女边摸边吃奶| 91精品伊人久久大香线蕉| avwww免费| 麻豆国产av国片精品| 中文字幕精品免费在线观看视频| 九草在线视频观看| 精品一区在线观看国产| 男女午夜视频在线观看| 波多野结衣一区麻豆| 国产精品一区二区在线不卡| 国产高清视频在线播放一区 | 亚洲av欧美aⅴ国产| 青春草亚洲视频在线观看| 日本五十路高清| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 午夜福利乱码中文字幕| 亚洲欧洲国产日韩| 日韩 亚洲 欧美在线| 大香蕉久久网| 男女高潮啪啪啪动态图| 亚洲国产精品国产精品| 欧美精品一区二区免费开放| 美女国产高潮福利片在线看| 亚洲av电影在线进入| 久久久精品94久久精品| 午夜福利视频在线观看免费| 久9热在线精品视频| 女性被躁到高潮视频| 亚洲久久久国产精品| 成年女人毛片免费观看观看9 | 国产成人精品无人区| 国产99久久九九免费精品| 男人添女人高潮全过程视频| 日韩一卡2卡3卡4卡2021年| 99热全是精品| 久久99一区二区三区| 脱女人内裤的视频| 精品视频人人做人人爽| 最新在线观看一区二区三区 | 丝袜美腿诱惑在线| 成人国产av品久久久| www.自偷自拍.com| 国产免费现黄频在线看| 狂野欧美激情性xxxx| 美国免费a级毛片| 男人舔女人的私密视频| 性高湖久久久久久久久免费观看| 又大又黄又爽视频免费| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 看十八女毛片水多多多| 日韩伦理黄色片| 国产成人免费无遮挡视频| 欧美日韩黄片免| 精品少妇黑人巨大在线播放| 婷婷色综合大香蕉| 午夜日韩欧美国产| 国产在线观看jvid| 亚洲美女黄色视频免费看| 99国产精品99久久久久| 国产在线一区二区三区精| 亚洲av日韩精品久久久久久密 | 久久久久久亚洲精品国产蜜桃av| 真人做人爱边吃奶动态| 乱人伦中国视频| 美女脱内裤让男人舔精品视频| av片东京热男人的天堂| 在现免费观看毛片| 久久狼人影院| 色精品久久人妻99蜜桃| 搡老乐熟女国产| 超碰97精品在线观看| 久久精品国产亚洲av涩爱| 日本色播在线视频| 丝袜美足系列| 午夜影院在线不卡| 一级毛片 在线播放| 久久久久久免费高清国产稀缺| 永久免费av网站大全| 好男人视频免费观看在线| 亚洲,欧美精品.| 国产一区亚洲一区在线观看| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 久久国产精品影院| 亚洲av欧美aⅴ国产| 亚洲欧美一区二区三区久久| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 热99久久久久精品小说推荐| √禁漫天堂资源中文www| 午夜福利视频在线观看免费| 国产成人91sexporn| 美女视频免费永久观看网站| 欧美日韩成人在线一区二区| 一级黄片播放器| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲 | 人妻 亚洲 视频| 操美女的视频在线观看| 亚洲av在线观看美女高潮| 后天国语完整版免费观看| 国产精品久久久久久精品电影小说| 成人免费观看视频高清| av在线播放精品| 蜜桃在线观看..| 啦啦啦在线观看免费高清www| 成年av动漫网址| 香蕉国产在线看| 又黄又粗又硬又大视频| 美女脱内裤让男人舔精品视频| 日日爽夜夜爽网站| www.av在线官网国产| 欧美精品av麻豆av| 国产精品久久久人人做人人爽| 亚洲成国产人片在线观看| 婷婷成人精品国产| 欧美成狂野欧美在线观看| 久久国产精品影院| 免费看十八禁软件| 一级黄片播放器| av网站免费在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 日本黄色日本黄色录像| 久久久久久久精品精品| 亚洲成av片中文字幕在线观看| 色综合欧美亚洲国产小说| 精品亚洲成a人片在线观看| 国产极品粉嫩免费观看在线| 中文字幕制服av| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 伊人亚洲综合成人网| 久久精品亚洲熟妇少妇任你| 亚洲九九香蕉| 中文字幕最新亚洲高清| 国产日韩欧美亚洲二区| 母亲3免费完整高清在线观看| 一本色道久久久久久精品综合| 国产免费一区二区三区四区乱码| 中文字幕亚洲精品专区| 亚洲av日韩在线播放| 黄色a级毛片大全视频| 免费黄频网站在线观看国产| 欧美日韩成人在线一区二区| 久久精品国产综合久久久| 亚洲国产看品久久| 婷婷色综合大香蕉| 好男人视频免费观看在线| 精品一品国产午夜福利视频| 国产黄频视频在线观看| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 制服诱惑二区| 欧美 亚洲 国产 日韩一| 国产不卡av网站在线观看| 少妇人妻 视频| 亚洲精品一卡2卡三卡4卡5卡 | 天天躁日日躁夜夜躁夜夜| 青春草视频在线免费观看| 久久天躁狠狠躁夜夜2o2o | 中文字幕人妻丝袜一区二区| 少妇人妻久久综合中文| 亚洲欧美精品综合一区二区三区| videosex国产| 国产男女内射视频| 999久久久国产精品视频| 大型av网站在线播放| av国产精品久久久久影院| 精品一区二区三卡| 免费观看a级毛片全部| av不卡在线播放| 高清视频免费观看一区二区| 亚洲精品乱久久久久久| 色婷婷久久久亚洲欧美| 亚洲,欧美精品.| 七月丁香在线播放| www.自偷自拍.com| 黄色片一级片一级黄色片| 另类精品久久| 精品熟女少妇八av免费久了| 亚洲专区中文字幕在线| 亚洲国产av新网站| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 欧美中文综合在线视频| 亚洲国产欧美日韩在线播放| 亚洲欧美一区二区三区黑人| 欧美乱码精品一区二区三区| 国产亚洲精品久久久久5区| 国产在视频线精品| 99国产精品一区二区蜜桃av | 免费人妻精品一区二区三区视频| 天堂俺去俺来也www色官网| 91国产中文字幕| 久久久久久免费高清国产稀缺| 中文欧美无线码| 久久久精品区二区三区| 99精品久久久久人妻精品| 亚洲精品国产av蜜桃| 国产成人av教育| 日韩制服丝袜自拍偷拍| 老司机午夜十八禁免费视频| 久久久国产欧美日韩av| 久热爱精品视频在线9| 亚洲精品自拍成人| 亚洲欧美清纯卡通| 大香蕉久久网| 久久久久视频综合| 欧美少妇被猛烈插入视频| 欧美 日韩 精品 国产| 丝袜人妻中文字幕| 亚洲欧美中文字幕日韩二区| 成人亚洲精品一区在线观看| 精品一区在线观看国产| av在线app专区| 99精品久久久久人妻精品| 建设人人有责人人尽责人人享有的| 久久天躁狠狠躁夜夜2o2o | 久久鲁丝午夜福利片| 男女高潮啪啪啪动态图| 国产淫语在线视频| 狂野欧美激情性xxxx| av天堂在线播放| 最黄视频免费看| 亚洲五月色婷婷综合| 精品国产乱码久久久久久男人| 人人妻人人添人人爽欧美一区卜| 国产精品香港三级国产av潘金莲 | 久久精品成人免费网站| av国产精品久久久久影院| 一区二区日韩欧美中文字幕| 国产精品秋霞免费鲁丝片| 欧美成人午夜精品| 久久精品国产亚洲av高清一级| 国产成人a∨麻豆精品| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 一个人免费看片子| 18禁黄网站禁片午夜丰满| 秋霞在线观看毛片| 大型av网站在线播放| 9191精品国产免费久久| 在线精品无人区一区二区三| www.熟女人妻精品国产| av在线app专区| 国产欧美日韩综合在线一区二区| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 美国免费a级毛片| 视频区欧美日本亚洲| 欧美日韩视频高清一区二区三区二| 精品人妻在线不人妻| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 视频区图区小说| 欧美日韩黄片免| 视频区图区小说| 一个人免费看片子| 国产人伦9x9x在线观看| 美女高潮到喷水免费观看| av电影中文网址| 美女大奶头黄色视频| 亚洲精品第二区| 日本午夜av视频| 极品少妇高潮喷水抽搐| 多毛熟女@视频| 熟女av电影| 久久青草综合色| 国产成人精品在线电影| 在线 av 中文字幕| 两性夫妻黄色片| 韩国精品一区二区三区| 成人三级做爰电影| 夫妻午夜视频| 少妇被粗大的猛进出69影院| 高潮久久久久久久久久久不卡| 看十八女毛片水多多多| 成年人午夜在线观看视频| 免费人妻精品一区二区三区视频| www.自偷自拍.com| 国产男女内射视频| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区久久| 日韩av不卡免费在线播放| 国产无遮挡羞羞视频在线观看| 亚洲欧洲国产日韩| avwww免费| 天堂8中文在线网| 国产成人精品在线电影| a 毛片基地| 成人黄色视频免费在线看| 亚洲少妇的诱惑av| av一本久久久久| 国产一区二区激情短视频 | 精品亚洲成国产av| 国产人伦9x9x在线观看| 亚洲成色77777| 中文乱码字字幕精品一区二区三区| 只有这里有精品99| 新久久久久国产一级毛片| svipshipincom国产片| 精品人妻熟女毛片av久久网站| 咕卡用的链子| 久久久亚洲精品成人影院| 午夜视频精品福利| 成人三级做爰电影| 欧美日本中文国产一区发布| 国产精品熟女久久久久浪| 在线观看免费日韩欧美大片| 精品人妻一区二区三区麻豆| 精品欧美一区二区三区在线| 亚洲av综合色区一区| www.自偷自拍.com| 午夜av观看不卡| 在线观看www视频免费| 51午夜福利影视在线观看| 午夜91福利影院| 国产在线视频一区二区| 午夜免费鲁丝| 欧美人与善性xxx| 黄片播放在线免费| 在线精品无人区一区二区三| 久久综合国产亚洲精品| 中文字幕人妻丝袜一区二区| 我的亚洲天堂| 国产精品二区激情视频| 亚洲精品av麻豆狂野| 性高湖久久久久久久久免费观看| 国产成人免费无遮挡视频| 亚洲,欧美,日韩| 黄色a级毛片大全视频| 久久鲁丝午夜福利片| 久久国产亚洲av麻豆专区| 人人妻人人澡人人爽人人夜夜| 好男人视频免费观看在线| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 欧美激情高清一区二区三区| 超碰成人久久| 天天操日日干夜夜撸| 一级黄色大片毛片| 欧美日韩成人在线一区二区| 亚洲精品中文字幕在线视频| 精品熟女少妇八av免费久了| 国产爽快片一区二区三区| 99热网站在线观看| 在线观看一区二区三区激情| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品| 免费在线观看日本一区| 久久精品人人爽人人爽视色| 99久久综合免费| 欧美在线一区亚洲| 少妇粗大呻吟视频| 精品国产一区二区久久| 丝袜喷水一区| 国产男女内射视频| 女人被躁到高潮嗷嗷叫费观| 成在线人永久免费视频| 亚洲人成电影观看| 91字幕亚洲| 性少妇av在线| 午夜福利影视在线免费观看| 啦啦啦 在线观看视频| 久久久久久久久免费视频了| 黄片小视频在线播放| 校园人妻丝袜中文字幕| 欧美激情极品国产一区二区三区| 一区二区三区乱码不卡18| 欧美激情高清一区二区三区| 国产成人a∨麻豆精品| 你懂的网址亚洲精品在线观看| 亚洲欧美日韩高清在线视频 | 伊人亚洲综合成人网| 一级毛片女人18水好多 | 国产成人a∨麻豆精品| 国产伦人伦偷精品视频| 国产精品久久久久久精品电影小说| 国产免费福利视频在线观看| 97精品久久久久久久久久精品| 9色porny在线观看| 亚洲av美国av| 91精品伊人久久大香线蕉| 国产成人精品久久久久久| 亚洲精品成人av观看孕妇| 亚洲五月婷婷丁香| 韩国精品一区二区三区| 可以免费在线观看a视频的电影网站| 久久久国产欧美日韩av| xxx大片免费视频| a级片在线免费高清观看视频| 黄色毛片三级朝国网站| 少妇裸体淫交视频免费看高清 | 亚洲情色 制服丝袜| 九草在线视频观看| 2021少妇久久久久久久久久久| 美女脱内裤让男人舔精品视频| 国产老妇伦熟女老妇高清| 成人免费观看视频高清| 亚洲精品日本国产第一区| 成人手机av| 午夜视频精品福利| 各种免费的搞黄视频| 午夜福利一区二区在线看| 久久综合国产亚洲精品| 久久国产精品大桥未久av| 中文字幕精品免费在线观看视频| 日韩一本色道免费dvd| 热re99久久精品国产66热6| 国产麻豆69| 男女无遮挡免费网站观看| av天堂久久9| 国产欧美亚洲国产| 夜夜骑夜夜射夜夜干| 日韩av不卡免费在线播放| 久久久久久免费高清国产稀缺| 日本wwww免费看| 久久国产精品男人的天堂亚洲| 伦理电影免费视频| 日韩熟女老妇一区二区性免费视频| 超碰成人久久| 欧美精品一区二区免费开放| 日本五十路高清| av一本久久久久|