• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    耦合甘油高選擇性轉(zhuǎn)化為甲酸鹽與制氫的酸堿雙電解液流動電解器

    2024-07-16 00:00:00馮辛郭可鑫賈春光劉博次素琴陳俊翔溫珍海
    物理化學(xué)學(xué)報 2024年5期
    關(guān)鍵詞:電催化制氫

    摘要:氫氣因其高能量密度、可持續(xù)性和燃燒后無污染等優(yōu)點,被認(rèn)為是取代傳統(tǒng)化石燃料的最具前途的新興能源載體之一。其中,電解水制氫技術(shù)因為其高效和綠色的特性而備受關(guān)注。然而電解水制氫過程通常受到陽極析氧反應(yīng)(OxygenEvolution Reaction,OER)的限制,因此這種方法的大規(guī)模應(yīng)用面臨重大挑戰(zhàn)??朔@一難題的一個有前途的解決方法是在陽極上使用電催化甘油氧化反應(yīng)(Glycerol Oxidation Reaction,GOR)代替OER,這種替代反應(yīng)可以實現(xiàn)節(jié)能降耗的同時提高電解水制氫的效率,進(jìn)一步推動氫氣作為清潔能源的發(fā)展。然而,這一目標(biāo)的實現(xiàn)需要高效、低成本且高選擇性的GOR電催化劑。在這篇文章中,我們報告了一種新型的酸堿雙電解質(zhì)流電解器(AADEF-electrolyzer),用于在堿性陽極GOR耦合酸性陰極析氫反應(yīng)(Hydrogen Evolution Reaction,HER)。我們通過一種簡單的水熱煅燒方法制備了一種在鎳泡沫(NF)上原位生長的自支撐的NiCo2O4納米針電極材料(NiCo2O4/NF)。該電極在GOR中表現(xiàn)出優(yōu)異的電催化性能,在低電位下實現(xiàn)了高的電解電流密度,對甲酸鹽的生產(chǎn)表現(xiàn)出優(yōu)異的選擇性,法拉第效率超過85%。密度泛函理論計算表明,NiCo2O4對GOR具有較低的反應(yīng)能壘,Ni的存在有利于降低Co的電子態(tài)密度,從而實現(xiàn)NiCo2O4與中間體的高效解離,促進(jìn)甲酸的生成?;贜iCo2O4/NF出色的GOR性能和電化學(xué)中和能(ENE)理論,我們構(gòu)建了一個新型的AADEF-electrolyzer,利用NiCo2O4/NF作為GOR的陽極,配合酸性陰極進(jìn)行析氫反應(yīng)(HER)。實驗結(jié)果表明,AADEFelectrolyzer對GOR具有低過電位和高選擇性產(chǎn)甲酸的優(yōu)異性能,僅需0.36 V的電壓即可實現(xiàn)10 mA?cm?2的電流密度,平均產(chǎn)甲酸的法拉第效率為85%。同時該電解槽表現(xiàn)出良好的長期穩(wěn)定性和輔助產(chǎn)氫性能,陰極產(chǎn)氫的法拉第效率接近100%。這種低成本、易于制備的自支撐電極材料和新型酸堿雙電解質(zhì)流動電解器為促進(jìn)化學(xué)品的增值轉(zhuǎn)化和開發(fā)新型混合電解系統(tǒng)或其他相關(guān)電化學(xué)反應(yīng)的混合電解裝置提供了創(chuàng)新策略。

    關(guān)鍵詞:制氫;甘油氧化;電催化;電解器

    中圖分類號:O646

    Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer

    Abstract: Owing to its high energy density, sustainability, and pollutionfreecombustion, hydrogen is considered one of the most promisingemerging energy carriers to replace conventional fossil fuels. Among thevarious hydrogen production technologies, electrolytic water splitting hasgained significant attention thanks to its high efficiency and environmentallyfriendly characteristics. However, the large-scale application of electrolyticwater splitting is often hindered by the limitations imposed by the anodicoxygen evolution reaction (OER). To overcome this challenge, a promisingalternative approach is to replace the OER with the electrocatalytic glyceroloxidation reaction (GOR) at the anode. This substitution can lead to energysavings and enhanced efficiency of electrolytic water splitting for hydrogen production, thereby further promoting thedevelopment of hydrogen as a clean energy source. However, the application of the GOR at anode requires efficient, costeffective,and highly selective electrocatalysts. To this end, we report the development of a novel acid-alkaline dualelectrolyteflow electrolyzer (AADEF-electrolyzer) by coupling the GOR at the alkaline anode with the hydrogen evolutionreaction (HER) at the acidic cathode. A self-supported NiCo2O4 nanoneedle electrode material (NiCo2O4/NF) has been insitu grown on nickel foam (NF) using a simple hydrothermal-calcination method. The electrode demonstrates excellentelectrocatalytic performance for the GOR, achieving high electrolysis current density at low potentials and exhibiting highselectivity for formate production, with the Faraday efficiency exceeding 85%. Density functional theory (DFT) calculationsimply that NiCo2O4 has a lower energy barrier for the reaction and that the presence of Ni facilitates the reduction of theCo state density, thereby promoting the GOR. An innovative AADEF-electrolyzer was constructed by utilizing NiCo2O4/NFas the anode for the GOR and an acidic cathode for the HER. Experimental results indicate that the AADEF-electrolyzerexhibits excellent GOR performance with a low overpotential and high selectivity toward formate production. It requires avoltage of only 0.36 V to achieve a current density of 10 mA·cm?2 and long-term stability with a Faraday efficiency close to100% for hydrogen production. The low-cost and easily fabricated self-supported electrode material, together with theacid–alkaline dual-electrolyte flow electrolyzer, provide an innovative strategy for developing hybrid electrolysis systems.

    Key Words: Hydrogen production; Glycerol oxidation; Electrocatalysis; Electrolyzer

    1 Introduction

    The global energy shortage and climate crisis, caused mainlyby the overuse of fossil fuels, have motivated an extensivepursuit of alternative and sustainable energy sources as well asnew energy storage and conversion systems. With its remarkableenergy density, renewability, and zero-emission combustionproperties, hydrogen has been considered as a highly promisingenergy carrier to replace fossil fuels 1–3. Nonetheless, hydrogenproduction still mainly relies on fossil fuel-derived gasreforming processes, which consume substantial amounts ofenergy and emit large quantities of carbon dioxide into theatmosphere 4–6. Despite the significant advantages ofelectrochemical hydrogen production via water splitting, whichis recognized as a highly efficient and green technology, thelarge-scale application of this approach faces major challengesdue to the costly nature of electrocatalysts and the slow kineticsof the anodic oxygen evolution reaction (OER) 7–11.

    Recent studies have indicated that using organic molecularoxidation in place of OER in the electrocatalytic anode is aneffective means of lowering the voltage required forelectrolyzing water. For instance, the oxidation of glucose,methanol, glycerol and 5-hydroxymethylfurfural can effectively reduce the potential required for the reaction and yield productswith greater added value compared to oxygen 12–22. Glycerol, anabundant and inexpensive resource 23,24, has a substantiallylower theoretical oxidation potential (0.003 V vs. RHE)compared to that of OER (1.23 V vs. RHE) 25,26. Moreover, theliquid-phase oxidation products of glycerol have higher addedvalue than oxygen 26–32. Therefore, using the glycerol oxidationreaction (GOR) in place of the OER not only reduces energyconsumption in hydrogen production systems but also facilitatesthe efficient collection of clean hydrogen while yielding liquidproducts with higher added value. Although the approachmentioned above has shown considerable success, it remainschallenging to use low-cost catalysts to simultaneously lower thepotential required for the reaction and produce value-addedproducts with high selectivity.

    To date, a majority of the electrocatalysts used have beenprecious metals. However, their high cost and limitedavailability have hindered their widespread practicalapplication 33–36. To address this issue, researchers have beenfocused on using abundant transition metal oxide catalysts toconstruct more economical and efficient hydrogen productionsystems through electrolytic water. Cobalt-based oxides have received significant attention as potential catalysts due to theirrelative abundance and lower cost, as well as their rich redoxchemical properties 37–39. Additionally, cobalt oxide can exist invarious oxidation states, facilitating rapid redox charge transferand exhibiting excellent electrocatalytic activity 39–41. However,the low inherent conductivity of bare transition metal oxides canlimit their practical application. Recent research suggests that theconductivity of bimetal NiCo2O4 is at least twice as high as thatof single metals Co3O4 and NiO, indicating a potentialsynergistic effect between nickel and cobalt ions 42–45. It has beenobserved that adding Ni to Co3O4 can enhance its catalyticactivity by creating more active sites 44,46. In addition, theelectrolyzer system is also a critical factor affecting GORassistedwater electrolysis.

    The concept of electrochemical neutralization energy (ENE)has provided a novel idea and method for a distinct class ofhydrogen production systems through electrolytic water 47. Arange of innovative electrolyzers based on ENE was built withthe cathode (pH = 0) and anode (pH = 14), and the pH gradientbetween the dual chambers can generate a considerable voltage(0.059 × ΔpH), which can significantly reduce the energyconsumption for electrolytic water cracking 25,48–51. Thisapproach provides an excellent solution for expanding the use ofelectrocatalysts and enriching the selection of electrolytes.

    This study investigates the use of a self-supported NiCo2O4nanoneedle electrode on a nickel foam substrate as a catalyst forGOR in a novel hydrogen production system for waterelectrolysis. The NiCo2O4/NF electrode shows high catalyticactivity and selective formate production in a broad voltagerange. The acid-alkaline dual-electrolyte flow electrolyzer(AADEF-electrolyzer) is developed using NiCo2O4/NF as analkaline anode for the GOR, while Pt/C/CC (Carbon Cloth)serves as an acid cathode for the HER. At a voltage as low as0.36 V, the AADEF-electrolyzer can attain an electrolyticcurrent density of 10 mA?cm?2, exhibiting remarkable stability,high auxiliary hydrogen production, and efficient formateproduction.

    2 Experimental section

    2.1 Reagents and chemicals

    Nickel nitrate hexahydrate (Ni(NO3)2?6H2O), Cobaltousnitrate hexahydrate (Co(NO3)2?6H2O), ammonium fluoride(NH4F), and potassium hydroxide (KOH) were procured fromMacklin. Ethanol (C2H5OH) and urea (CH4N2O) were obtainedfrom Shanghai Titan Technology Co., Ltd. hydrochloric acid(HCl) and Pt/C (20 wt%) were purchased from SinopharmChemical Reagent Co., Ltd. (Shanghai, China), while glycerol(C3H8O3) was sourced from Xilong Chemical Co., Ltd. Thedeionized water (DI water) utilized in the experiment wasproduced in-house within the laboratory. The nickel foamutilized in this study was acquired from Suzhou Taili FoamMetal Factory. All chemicals are of analytical purity and can beused without further purification.

    2.2 Preparation of catalyst

    The NiCo2O4 nanoneedle self-supported electrode grown insitu on nickel foam (NF) was obtained via a facile hydrothermalcalcinationmethod. Prior to synthesis, a piece of 2 cm × 3 cmNF underwent pretreatment consisting of ultrasonic cleaningwith 3 mol?L?1 HCl, ethanol, and DI water for 10 min each.Subsequently, the NF was dried in a vacuum drying oven andserved as the base material for the next steps. A solution wasprepared by dissolving Co(NO3)2?6H2O (2 mmol) andNi(NO3)2?6H2O (1 mmol) in 30 mL of DI water containing 6mmol of urea and 3 mmol of NH4F. The resulting solution wasthen stirred for 2 h. The pre-treated nickel foam was placed intoa 50 mL PTFE-lined stainless steel autoclave, and the mixedsolution was added. The reaction was conducted at 120 °C for 6h, followed by natural cooling to normal temperature. Theresulting NiCo-pre/NF was washed three times with DI waterand ethanol, then dried under vacuum at 60 °C for 12 h. Finally,the NiCo-pre/NF was heated at a rate of 2 °C?min?1 in a furnaceuntil it reached 350 °C and held for 2 h to form NiCo2O4/NF.Additionally, Co3O4/NF and NiOx/NF were also synthesized viaa similar process.

    2.3 Materials characterization

    The structure and crystal morphology of the material werecharacterized by X-ray diffraction (XRD) using an X-raydiffractometer (Cu Kα) (D8ADVANCE-A25, Bruker, Germany).Using a Nova NanoSEM 450 (FEI, USA), scanning electronmicroscope (SEM) pictures were taken. The images werecaptured on a Talos F200X (FEI, USA) using transmissionelectron microscopy (TEM) and energy-dispersive X-rayspectroscopy (EDS). X-ray photoelectron spectroscopy (XPS)was used to determine the surface compositions of the catalystsby an ESCALAB 250Xi (Thermo Scientific, USA).Additionally, superconducting nuclear magnetic resonancespectroscopy (NMR) on an AVANCE 400 (Jobin Yvon, France)was used to characterize the products of electrocatalytic glyceroloxidation.

    2.4 Reagents and chemicals

    The electrochemical measurements were conducted using athree-electrode system with a CHI 760E ElectrochemicalWorkstation in 1.0 mol?L?1 potassium hydroxide (KOH)electrolyte. To minimize the influence of dissolved oxygen onthe results, the electrolyte was purged with nitrogen for 30 minuntil it reached saturation before the test. The working electrodescomprised as-made nanofiber-based (NF-based) compositeswith dimensions of 1 cm × 1 cm. A carbon rod served as thecounter electrode, and Hg/HgO (1 mol?L?1 KOH) was used asthe reference electrode. The measured potentials were calibratedto the reversible hydrogen electrode (RHE) using the equation:E(RHE) = E(Hg/HgO) + 0.05916 × pH + 0.098. Prior to linearsweep voltammetry (LSV), cyclic voltammetry (CV)measurements were conducted several times to activate thesystem until the cycle stabilized. Both LSV and CV werescanned at a rate of 5 mV?s?1 without iR-compensation.Electrochemical impedance spectroscopy (EIS) was carried outwith the working electrode at a potential of 0.5 V vs. Hg/HgO,while the frequency was swept from 10 kHz to 0.1 Hz with asinusoidal voltage amplitude of 5 mV. To determine theelectrochemical double layer capacitance (Cdl) of the material,CV measurements were performed at various scan rates (20, 40,60, 80, 100 and 120 mV?s?1) in the non-Faraday reaction interval(?0.3 to ?0.2 V vs. Hg/HgO). The Cdl value was calculated fromthe slope of the current density difference (Δj = ja ? jc, where jcand ja are the cathodic and anodic current densities, respectively)plotted against the scan rate. The Cdl data were used to determinethe electrochemically active surface area (ECSA).

    2.5 Assembly and tests of the AADEF-electrolyzer

    An AADEF-electrolyzer was assembled using a NF compositematerial as the anode, 1 mol?L?1 KOH solution as the anolyte, aplatinum-carbon catalyst loaded on carbon cloth (Pt/C/CC) as thecathode, and 0.5 mol?L?1 H2SO4 as the catholyte. To preparePt/C/CC electrodes, Pt/C ink was prepared by dispersing 5.0 mgof 20 wt% Pt/C catalyst into a mixture of 50 μL Nafion, 50 μLethanol and 400 μL deionized water and sonicating for 15 min. 50μL of Pt/C ink was then applied to 1 cm?2 of CC and dried naturallyat normal temperature to obtain a Pt/C/CC electrode with a loadingof approximately 2 mg?cm?2. The anode and cathode chamberswere separated by a cation exchange membrane (CEM), with theelectrolyte circulated by a flow pump (Approx. 16.5 mL?min?1,NKCP-B08B, Kamoer). The electrochemical performance of theelectrolyzer was assessed by LSV with a scan rate of 5 mV?s?1.Additionally, the stability of the electrolyzer was assessed throughchronopotentiometry (CP).

    2.6 Product analysis

    The liquid products obtained by glycerol oxidation wereanalyzed through nuclear magnetic resonance (NMR) using theAVANCE 400 system manufactured by Jobin Yvon in France.The internal standard technique was implemented for everysolution analyzed, utilizing dimethyl sulfoxide (DMSO) servingas the internal standard. To be specific, a 2 mL sample of theelectrolyte to be tested was combined with 400 μL of D2O and3.4 μL of DMSO for NMR analysis.

    Moreover, the standard solution of glycerol and formate was subjected to the same conditions.

    The Faraday efficiency (FE) for the production of formate and hydrogen can be calculated by utilizing Eqs. (1) and (2):

    FE(formate yield) =N(fomate yield)/Q1/(z1 × F)× 100% (1)

    FE(H2 Production) =N(H2 Production)/Q2/(z2 × F)× 100% (2)

    where Q1 and Q2 are the total charges passed through theelectrodes, Z1 = 8/3 represents the number of electrons requiredto form a mole of formate, Z2 = 2 represents the number ofelectrons required to produce a molecule of H2, and F is theFaraday constant (96, 485 C?mol?1) 18,52,53.

    2.7 Reagents and chemicals

    The calculations were performed using PWSCF codes included in the Quantum ESPRESSO distribution 54. Weemployed spin-polarized density functional theory (DFT)calculations to compute periodic supercells using the Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradientapproximation (GGA) for exchange-correlation and ultrasoftpseudopotentials for both nuclei and core electrons. The Kohn-Sham orbitals were expanded using a plane-wave basis set witha kinetic energy cutoff of 30 Ry and a charge-density cutoff of300 Ry. To account for Fermi-surface effects, we employed theMethfessel and Paxton smearing technique with a smearingparameter of 0.02 Ry. For NiCo2O4 (001), a 2 × 2 supercell andfour-layer slab are utilized. For Co3O4 (100), a 2 × 1 supercelland four-layer slab are utilized. The bottom layer is fixed tomodel NiCo2O4 and Co3O4 bulk. To eliminate the interaction ofadjacent atomic slabs in the z direction, a vacuum layer ofapproximately 15 ? was utilized. During the geometricoptimization process, every atom, including the adsorbates,underwent relaxation until the Cartesian force components oneach atom fell below 10?3 Ry/Bohr and the total energyconverged to within 10?5 Ry. The Brillouin zones were sampledusing 1 × 1 × 1 k-point mesh.

    To calculate the Gibbs free energy differences, the adsorption free energy of the adsorbates was determined using Eq. (3):

    GA = EA + ZPE ? TS + ∫CpdT (3)

    where EA is the total energy of a particular molecule or adsorbateA*. If A represents a molecule, the total energies can becalculated directly. However, if A represents an adsorbate, it iscalculated as the difference between the DFT-basedsubstrate with (EA*DFT) and without adsorbate A (E*DFT), asshown in Eq. (4):

    EA = EA*DFT ? E*DFT (4)

    The corrections from zero-point energy, entropy, and heat capacity are denoted as ZPE, TS and ∫CpdT, respectively.

    3 Results and discussion

    3.1 Material characterization

    The superior catalytic oxidation characteristics of Ni and Co,as well as their synergistic influence on electrochemicalprocesses, have been widely recognized. Based on thisknowledge, our research focused on the development of a selfsupportedNiCo2O4 electrode grown in situ on a nickel foam(NF) substrate (NiCo2O4/NF). Fig. S1 (Supporting Information)demonstrates the procedure of synthesizing the electrodematerials. Initially, the precursor material (NiCo-pre/NF) (Fig.S2) was synthesized via an in situ hydrothermal growth method,utilizing a pretreated NF substrate (Fig. 1a) possessing a smoothsurface, followed by hydrothermal calcination to produce theself-supported NiCo2O4/NF electrode (Fig. 1b,c). It is noteworthythat the surface of the NF after hydrothermal calcination exhibitsa dense and uniform nanoneedle morphology, which is moreuniform than that of the precursor material (Fig. S2). The surfacecolor of the NF after calcination changes from brown to black, asshown in the digital photo (Fig. S3).

    Transmission electron microscopy (TEM) images ofNiCo2O4/NF (Fig. 1d) confirm the presence of the nanoneedlestructure. Furthermore, the lattice stripes at a lattice distance of0.245 nm, shown in Fig. 1e, correspond to the (311) crystal planeof NiCo2O4, as observed by high-resolution TEM (HRTEM)imaging. The uniform distribution of the three elementsthroughout the nanoneedles is demonstrated by the energydispersion spectroscopy (EDS) element mapping analysis, aspresented in Fig. 1f.

    The crystal structure of NiCo2O4/NF was thoroughlyexamined using X-ray diffraction (XRD) analysis. As presentedin Fig. 2a, the primary diffraction peaks observed in the XRDpattern perfectly match those of NiCo2O4 (JCPDS No. 20-0781)and Ni (JCPDS No. 04-0850), suggesting that the primaryconstituent of NF composite is composed of the NiCo2O4 phaseand Ni phase. In addition to the diffraction peaks at 44.5°, 51.8°and 76.4° of the NF substrate, diffraction peaks at 18.9°, 31.1°,36.7°, 59.1°, and 65.0° are ascribed to the (111), (220), (311),(511), and (440) crystal planes of NiCo2O4 (JCPDS No. 20-0718). XRD analysis also was conducted to determine the crystalstructures of the NiCo-pre/NF, Co3O4/NF, and NiOx/NFmaterials prepared using the same experimental approach (Fig.S4). The results indicate that the Co3O4/NF material exhibiteddistinct diffraction peaks of Co3O4 and Ni. On the other hand,both NiCo-pre/NF and NiOx/NF show only a single metal Nipeak due to the strong peak of nickel.

    X-ray photoelectron spectroscopy (XPS) measurements wereused to analyze the surface elemental composition ofNiCo2O4/NF. The presence of Ni, Co, and O elements inNiCo2O4/NF is confirmed by the XPS spectra (Fig. 2b), with thevalence states of these elements examined in further detail.Therefore, further analysis of Ni 2p, Co 2p, and O 1s spectra wascarried out. The Ni 2p spectrum (Fig. 2c) exhibits two satellitepeaks and two spin-orbit peaks, with binding energies of 854.2and 871.8 eV. The fitting peaks of 855 and 871.8 eV are assignedto Ni2+ 55. The Co 2p spectrum (Fig. 2d) shows two satellitepeaks and two spin-orbit peaks with binding energies of 779.5and 795 eV, which are attributed to Co3+. Additionally, two otherfitting peaks at 780.5 and 796.4 eV are assigned to Co2+ 56,57.Finally, The O 1s profile (Fig. 2e) reveals the contributions ofthree types of oxygen: O1 (529.9 eV), O2 (531.5 eV), and O3(533.4 eV), which are associated with metal-oxygen bonds,hydroxyl groups, and chemically adsorbed water, respectively 43.The appearance of C 1s in the spectra (Fig. 2f) is attributed to thepresence of ubiquitous carbon. The surface elementalcomposition of Co3O4/NF and NiOx/NF are also measured andanalyzed using XPS. (Figs. S5–6).

    3.2 Electrocatalytic performance of glycerol oxidationreaction

    To investigate the catalytic activity of the NiCo2O4/NFelectrode towards anodic electrocatalytic oxidation of glycerol,electrochemical tests were conducted in a three-electrodesystem. Fig. 3a demonstrates the LSV curves of the NiCo2O4/NFelectrode at OER and GOR. The LSV curves (Figs. 3a and S7)indicate that the NiCo2O4/NF electrode displays thedistinguished catalytic activity for GOR. In the absence ofglycerol, the NiCo2O4/NF electrode displays normal OERcatalytic activity, the catalytic current density of 10 mA?cm?2 canonly be achieved at a high potential of 1.51 V vs. RHE. It is worthnoting that with the mixing of 0.5 mol?L?1 glycerol in 1.0mol?L?1 KOH, the NiCo2O4/NF electrode requires only 1.15 Vvs. RHE to reach 10 mA?cm?2, indicating its superior GORcatalytic activity. Furthermore, Tafel slope derived from the LSVcurve shows that GOR has a slope of 128.9 mV?dec?1 comparedwith OER’s 145.7 mV?dec?1, suggesting faster catalytic reactionkinetics for GOR (Fig. 3b). Notably, the GOR activity of theNiCo2O4/NF electrode outperform those of Co3O4/NF, NiOx/NF,NiCo-pre/NF, and bare NF (Figs. 3c and S8), this may be relatedto the fact that NiCo2O4/NF has a higher ECSA and lowerimpedance. In addition, the influence of glycerol concentrationin the electrolyte on GOR catalytic activity was studied, and theoptimal glycerol concentration was found to be 0.5 mol?L?1 (Fig.S9). The results of EIS indicate that the NiCo2O4/NF electrodehas a lower charge transfer resistance than the other electrodesand a fast charge transfer rate (Fig. S10). The NiCo2O4/NFelectrode’s ECSA was determined through the calculation of double-layer capacitance (Cdl) from the CV curve of the non-Faraday interval. The Cdl value of NiCo2O4/NF (49.34 mF?cm?2)is found to be considerably higher than that of Co3O4/NF (33.42mF?cm?2) and NiOx/NF (1.08 mF?cm?2) (Fig. S11). Thesefindings suggest that the NiCo2O4/NF electrode has the largestECSA and exposes more active sites, further confirming itsexcellent GOR catalytic activity.

    By 1H NMR analysis of the oxidation products of glycerol onthe NiCo2O4/NF electrode, we added 0.5 mol?L?1 glycerol toa 1 mol?L?1 KOH electrolyte and carried out a 2 hchronoamperometry (i–t) test at various potentials (1.2–1.5 V vs.RHE) (Fig. S12). The results show that the NiCo2O4/NFelectrode is capable of producing formate with exceptionalselectivity across a broad range of potential (1.2 to 1.5 V vs.RHE), with an FE exceeding 85%. Moreover, the highestformate yield (91.2%) is achieved at 1.4 V vs. RHE (Figs. 3d andS13). The calculated FE for formate production was less than100%, presumably due to the generation of gaseous byproductssuch as CO2 and O2 during the electrolysis process. Notably,during electrolysis at a constant current density of 10 mA?cm?2,the NiCo2O4/NF electrode remains active for 12 h without anysignificant changes in the LSV curves before and after thestability test (Figs. 3e and S14) and also that SEM testing of thematerial after the stability test shows no significant change in thematerial (Fig. S15). Qualitative and quantitative analysis of theelectrolyte before and after the stability test using 1H NMRrevealed that only formate was present as the anodic glycerolelectrolytic product (Fig. 3f).

    3.3 Theoretical computation

    In order to elucidate the differences between Co3O4 andNiCo2O4 in GOR, we employed DFT calculations. Specifically,the computational hydrogen electrode (CHE) method was utilized to investigate the activities 58. The structures of NiCo2O4and Co3O4 are presented in Fig. 4a,b, with the corresponding freeenergy diagram (FED) plotted in Fig. 4c (see calculation detailsin Sections 1–2, Supporting Information). Our results suggestthat the reaction energy barrier of NiCo2O4 is less than that ofCo3O4, suggesting that it possesses superior catalytic activitytoward GOR. Furthermore, we calculated the projected densityof states of Co atoms on the surface of Co3O4 and NiCo2O4 to be?1.50 and ?1.65 eV, respectively (Fig. 4d,e). According to the dbandcenter theory, this indicates a decrease in the antibondingenergy state, which weakens the interaction between theintermediate and surface 59. The different positions of theNiCo2O4(001) cut surfaces are shown in Fig. S16. The freeenergy calculations for the Co surface and the Co/Ni surface areshown in Fig. S17. Their calculated structures are shown in Figs.S18–20. The results show that the Co surface of NiCo2O4(001)has a smaller decision speed step (RDS), which is morefavourable for the GOR reaction. The Ni/Co surface of NiCo2O4(001) has a better Co as active centre compared to Ni. Takentogether, these findings indicate that intermediates adsorbed onthe surface of NiCo2O4 are more likely to desorb, resulting in theproduction of formic acid, which is consistent with ourexperimental results (Fig. 3c).

    3.4 Performance of the AADEF-electrolyzer

    Considering the favorable electrochemical catalytic activityexhibited by the NiCo2O4/NF electrode and the underlyingprinciples of electrochemical neutralization energy (ENE)theory, we have designed an AADEF-electrolyzer, as illustratedin Figs. 5a and S21. In this electrolyzer, the anode was composedof NiCo2O4/NF, while the anode electrolyte comprises 0.5mol?L?1 glycerol and 1.0 mol?L?1 KOH. To separate the anodeand cathode chambers, a cation exchange membrane (CEM) was utilized, with the cathode comprising Pt/C and 0.5 mol?L?1H2SO4. The anodic oxidation of glycerol generated electrons,which then passed through the external circuit to the cathode,where H+ ions received these electrons and underwent reductionto form H2, while K+ ions migrated through the CEM into thecathode chamber to form a complete circuit. In the absence ofglycerol in the anode solution, a significant voltage (0.059 ×ΔpH) can be produced by the pH gradient between the anodechamber (pH = 14) and the cathode chamber (pH = 0) due to thepresence of ENE. As such, an AADEF-electrolyzer can generatea current density of 10 mA?cm?2 when the applied voltage was0.54 V (Fig. 5b), which was significantly lower than thetheoretical voltage required for hydrolysis (1.23 V). As expected,the introduction of 0.5 mol?L?1 glycerol resulted in a markedreduction in the required applied voltage for 10 mA?cm-2, with avalue of 0.36 V observed. This is notably lower than what istypically observed in traditional alkaline electrolytic cells (Figs.5b and S22). Moreover, bare NF was also examined as the anodeof the electrolyzer, further highlighting the modification andelectrocatalysis of NF by NiCo2O4 (Fig. S23). Subsequentexamination of the electrolyte products following the anodicreaction revealed the presence of exclusively liquid formateproducts, exhibiting an average Faradaic efficiency ofapproximately 85%. Meanwhile, the cathodic HER resulted inthe highly efficient production of hydrogen with nearly 100%Faraday efficiency, as depicted in Fig. 5c. Furthermore, thechronopotentiometry technique was employed to assess theenduring stability of the AADEF-electrolyzer at a constantcurrent density of 50 mA?cm?2. The results demonstrated that theAADEF-electrolyzer exhibited exceptional stability,maintaining steady electrolysis for 150 h with some minorpotential fluctuations (Fig. 5d). Replenishing the electrolyte canreverse the rise in potential induced by electrolysis, which canbe attributed to the depletion of H+, OH?, and glycerol in theelectrolyte.

    4 Conclusions

    In summary, we develop a self-supported NiCo2O4/NFelectrode through a simple hydrothermal-calcination method,which shows excellent electrocatalytic performance for GOR.The electrode achieves a high current density at low potentialsand displays remarkable selectivity towards formate production,with a Faraday efficiency over 85%. DFT calculations indicatethat the lower GOR reaction energy barrier of NiCo2O4/NFenhances its catalytic activity. We also develop an AADEFelectrolyzerthat is capable of producing hydrogen from water ata voltage as low as 0.36 V, while exhibiting excellent stability,high-efficiency formate production, and auxiliary hydrogenproduction performance. Our work offers a novel approach todesigning electrocatalysts with exceptional performance tofacilitate the value-added conversion of chemicals and thedevelopment of novel hybrid electrolytic systems or devices forrelated electrochemical reactions.

    Author Contributions: Xin Feng: Ideas, Conceptualization,Methodology, Data collection and curation, Data analysis andinterpretation, Writing-original draft. Kexin Guo: Graphicanalysis, Writing, Revision. Chunguang Jia: Theoreticalcalculations, Graphic analysis. Bowen Liu: Discussion, Graphicanalysis. Suqin Ci: Supervision, Editing, discussion andResources. Junxiang Chen: Guide Theoretical calculations,Revision. Zhenhai Wen: Writing: Review amp; Editing,Supervision.

    Supporting Information: available free of charge via theinternet at http://www.whxb.pku.edu.cn.

    References

    (1) Su, H.; Jiang, J.; Song, S.; An, B.; Li, N.; Gao, Y.; Ge, L. Chin. J.Catal. 2023, 44, 7. doi: 10.1016/s1872-2067(22)64149-4

    (2) Chen, H.; Chen, J.; He, H.; Chen, X.; Jia, C.; Chen, D.; Liang, J.; Yu,D.; Yao, X.; Qin, L.; et al. Appl. Catal. B 2023, 323, 122187. doi:10.1016/j.apcatb.2022.122187

    (3) Yin, F.; Qin, P.; Xu, J.; Cao, S. Acta Phys. -Chim. Sin. 2023, 39 (11),2212062. [殷方鑫, 秦品權(quán), 許景三, 曹少文. 物理化學(xué)學(xué)報,2023, 39 (11), 2212062.] doi: 10.3866/PKU.WHXB202212062

    (4) Moreira, R.; Bimbela, F.; Gandía, L. M.; Ferreira, A.; Sánchez, J. L.;Portugal, A. Renew. Sust. Energ. Rev. 2021, 148, 111299.doi: 10.1016/j.rser.2021.111299

    (5) Li, X.; Hao, X.; Abudula, A.; Guan, G. J. Mater. Chem. A 2016, 4(31), 11973. doi: 10.1039/c6ta02334g

    (6) Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45 (9), 2603.doi: 10.1039/c5cs00838g

    (7) Sun, L.; Dai, Z.; Zhong, L.; Zhao, Y.; Cheng, Y.; Chong, S.; Chen, G.;Yan, C.; Zhang, X.; Tan, H.; et al. Appl. Catal. B 2021, 297, 120477.doi: 10.1016/j.apcatb.2021.120477

    (8) Yang, S.; Du, R.; Yu, Y.; Zhang, Z.; Wang, F. Nano Energy 2020, 77,105057. doi: 10.1016/j.nanoen.2020.105057

    (9) Ding, M.; Chen, J.; Jiang, M.; Zhang, X.; Wang, G. J. Mater. Chem. A2019, 7 (23), 14163. doi: 10.1039/c9ta00708c

    (10) Liu, Y.; Wang, Y.; Liu, B.; Amer, M.; Yan, K. Acta Phys. -Chim. Sin.2023, 39 (2), 2205028. [劉瑤鈺, 王宇辰, 劉碧瑩, Mahmoud Amer,嚴(yán)凱. 物理化學(xué)學(xué)報, 2023, 39 (2), 2205028.]doi: 10.3866/PKU.WHXB202205028

    (11) Lü, L.; Zhang, L.; He, X.; Yuan, H.; Ouyang, S.; Zhang, T. ActaPhys. -Chim. Sin. 2021, 37 (7), 2007079. [呂琳, 張立陽, 何雪冰,原弘, 歐陽述昕, 張鐵銳. 物理化學(xué)學(xué)報, 2021, 37 (7), 2007079.]doi: 10.3866/PKU.WHXB202007079

    (12) Zhou, B.; Dong, C.-L.; Huang, Y.-C.; Zhang, N.; Wu, Y.; Lu, Y.; Yue,X.; Xiao, Z.; Zou, Y.; Wang, S. J. Energy Chem. 2021, 61, 179.doi: 10.1016/j.jechem.2021.02.026

    (13) Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M.Appl. Catal. B 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400

    (14) Xie, Y.; Zhou, Z.; Yang, N.; Zhao, G. Adv. Funct. Mater. 2021, 31(34), 2102886. doi: 10.1002/adfm.202102886

    (15) Li, J.; Wei, R.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.;Yang, Y.; Cabot, A.; Cui, C. Angew. Chem. Int. Ed. 2020, 59 (47),20826. doi: 10.1002/anie.202004301

    (16) Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu,Y.; Liu, J.; Wang, Y.;et al. Angew. Chem. Int. Ed. 2021, 60 (42),22908. doi: 10.1002/anie.202109211

    (17) Zheng, D.; Li, J.; Ci, S.; Cai, P.; Ding, Y.; Zhang, M.; Wen, Z. Appl.Catal. B 2020, 277, 119178. doi: 10.1016/j.apcatb.2020.119178

    (18) Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo,J. L.; Fu, X. Z. Adv. Funct. Mater. 2020, 30 (10), 1909610.doi: 10.1002/adfm.201909610

    (19) Liu, W. J.; Xu, Z.; Zhao, D.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.;Wang, W. K.; Zhao, G. H.; Jin, S.; et al. Nat. Commun. 2020, 11 (1),265. doi: 10.1038/s41467-019-14157-3

    (20) Han, X.; Sheng, H.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J.;Jin, S. ACS Catal. 2020, 10 (12), 6741. doi: 10.1021/acscatal.0c01498

    (21) Vo, T.-G.; Ho, P.-Y.; Chiang, C.-Y. Appl. Catal. B 2022, 300, 120723.doi: 10.1016/j.apcatb.2021.120723

    (22) Talebian-Kiakalaieh, A.; Amin, N. A. S.; Rajaei, K.; Tarighi, S. Appl.Energy 2018, 230, 1347. doi: 10.1016/j.apenergy.2018.09.006

    (23) Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A. H.; Al-Hinai, M. A; Baawain,M.; Rashid, U.; Ahmad, M. N. M. Rev. Chem. Eng. 2018, 34 (2), 267.doi: 10.1515/revce-2016-0026

    (24) Deng, C.-Q.; Deng, J.; Fu, Y. Green Chem. 2022, 24 (21), 8477.doi: 10.1039/d2gc03235j

    (25) Fan, L.; Ji, Y.; Wang, G.; Chen, J.; Chen, K.; Liu, X.; Wen, Z. J. Am.Chem. Soc. 2022, 144 (16), 7224. doi: 10.1021/jacs.1c13740

    (26) Fan, L.; Liu, B.; Liu, X.; Senthilkumar, N.; Wang, G.; Wen, Z. EnergyTechnol. 2020, 9 (2), 2000804. doi: 10.1002/ente.202000804

    (27) Duan, Y.; Liu, Z.; Zhao, B.; Liu, J. RSC Adv. 2020, 10 (27), 15769.doi: 10.1039/d0ra00564a

    (28) Bai, J.; Huang, H.; Li, F.-M.; Zhao, Y.; Chen, P.; Jin, P.-J.; Li, S.-N.;Yao, H.-C.; Zeng, J.-H.; Chen, Y. J. Mater. Chem. A 2019, 7 (37),21149. doi: 10.1039/c9ta08806g

    (29) Brix, A. C.; Morales, D. M.; Braun, M.; Jambrec, D.; Junqueira, J. R.;Cychy, S.; Seisel, S.; Masa, J.; Muhler, M.; Andronescu, C.; et al.ChemElectroChem 2021, 8 (12), 2336. doi: 10.1002/celc.202100739

    (30) Kim, H. J.; Kim, Y.; Lee, D.; Kim, J.-R.; Chae, H.-J.; Jeong, S.-Y.;Kim, B.-S.; Lee, J.; Huber, G. W.; Byun, J.; et al. ACS Sustain Chem.Eng. 2017, 5 (8), 6626. doi: 10.1021/acssuschemeng.7b00868

    (31) Dodekatos, G.; Schünemann, S.; Tüysüz, H. ACS Catal. 2018, 8 (7),6301. doi: 10.1021/acscatal.8b01317

    (32) Alaba, P. A.; Lee, C. S.; Abnisa, F.; Aroua, M. K.; Cognet, P.; Pérès,Y.; Wan Daud, W. M. A. Rev. Chem. Eng. 2021, 37 (7), 779.doi: 10.1515/revce-2019-0013

    (33) Yang, F.; Ye, J.; Yuan, Q.; Yang, X.; Xie, Z.; Zhao, F.; Zhou, Z.;Gu, L.; Wang, X. Adv. Funct. Mater. 2020, 30 (11), 1908235.doi: 10.1002/adfm.201908235

    (34) Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. Green Chem. 2017,19 (8), 1958. doi: 10.1039/c7gc00371d

    (35) Lee, S.; Kim, H. J.; Lim, E. J.; Kim, Y.; Noh, Y.; Huber, G. W.; Kim,W. B. Green Chem. 2016, 18 (9), 2877. doi: 10.1039/c5gc02865e

    (36) De Souza, M. B.; Vicente, R. A.; Yukuhiro, V. Y.; Pires, C. T.;Cheuquepán, W.; Bott-Neto, J. L.; Solla-Gullón, J.; Fernández, P. S.ACS Catal. 2019, 9 (6), 5104. doi: 10.1021/acscatal.9b00190

    (37) Zhou, Z.; Chen, C.; Gao, M.; Xia, B.; Zhang, J. Green Chem. 2019,21 (24), 6699. doi: 10.1039/c9gc02880c

    (38) Lu, Y.; Liu, T.; Dong, C. L.; Yang, C.; Zhou, L.; Huang, Y. C.; Li, Y.;Zhou, B.; Zou, Y.; Wang, S. Adv. Mater. 2022, 34 (2), e2107185.doi: 10.1002/adma.202107185

    (39) Wang, Y.; Zhu, Y.-Q.; Xie, Z.; Xu, S.-M.; Xu, M.; Li, Z.; Ma, L.;Ge, R.; Zhou, H.; Li, Z.; et al. ACS Catal. 2022, 12432.doi: 10.1021/acscatal.2c03162

    (40) Lv, J.; Wang, L.; Li, R.; Zhang, K.; Zhao, D.; Li, Y.; Li, X.; Huang,X.; Wang, G. ACS Catal. 2021, 14338.doi: 10.1021/acscatal.1c03960

    (41) Zhou, H.; Zheng, M.; Pang, H. Chem. Eng. J. 2020, 38, 127884.doi: 10.1016/j.cej.2020.127884

    (42) Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C.C. Adv. Mater.2010, 22 (3), 347. doi: 10.1002/adma.200902175

    (43) Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wang, Y.; Zhang, L.; Yue, L.;Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18 (13), e2106961.doi: 10.1002/smll.202106961

    (44) Jo, H. J.; Shit, A.; Jhon, H. S.; Park, S. Y. J. Ind. Eng. Chem. 2020,89, 485. doi: 10.1016/j.jiec.2020.06.028

    (45) Hu, L.; Wu, L.; Liao, M.; Hu, X.; Fang, X. Adv. Funct. Mater. 2012,22 (5), 998. doi: 10.1002/adfm.201102155

    (46) Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Chem. Rev. 2017, 117 (15),10121. doi: 10.1021/acs.chemrev.7b00051

    (47) Ding, Y.; Cai, P.; Wen, Z. Chem. Soc. Rev. 2021, 50 (3), 1495.doi: 10.1039/d0cs01239d

    (48) Zhang, C.; Ci, S.; Peng, X.; Huang, J.; Cai, P.; Ding, Y.; Wen, Z.J. Energy Chem. 2021, 54, 30. doi: 10.1016/j.jechem.2020.04.073

    (49) Wang, G.; Chen, J.; Cai, P.; Jia, J.; Wen, Z. J. Mater. Chem. A 2018,6 (36), 17763. doi: 10.1039/c8ta06827e

    (50) Zhang, M.; Chen, J.; Li, H.; Cai, P.; Li, Y.; Wen, Z. Nano Energy2019, 61, 576. doi: 10.1016/j.nanoen.2019.04.050

    (51) Liu, B.; Wang, G.; Feng, X.; Dai, L.; Wen, Z.; Ci, S. Nanoscale 2022,14, 12841. doi: 10.1039/d2nr02689a

    (52) Li, Y.; Wei, X.; Chen, L.; Shi, J.; He, M. Nat. Commun. 2019, 10 (1),5335. doi: 10.1038/s41467-019-13375-z

    (53) Xu, Y.; Liu, M.; Wang, S.; Ren, K.; Wang, M.; Wang, Z.; Li, X.;Wang, L.; Wang, H. Appl. Catal. B 2021, 298, 120493.doi: 10.1016/j.apcatb.2021.120493

    (54) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.;Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo,I.; et al. J. Phys. Condens. Matter 2009, 21 (39), 395502.doi: 10.1088/0953-8984/21/39/395502

    (55) Yan, X.; Zhang, W.-D.; Hu, Q.-T.; Liu, J.; Li, T.; Liu, Y.; Gu, Z.-G.Int. J. Hydrogen Energy 2019, 44 (51), 27664.doi: 10.1016/j.ijhydene.2019.09.004

    (56) Sun, B.; Miao, F.; Tao, B.; Wang, Y.; Zang, Y.; Chu, P. K. J. Phys.Chem. Solids 2021, 158, 110255. doi: 10.1016/j.jpcs.2021.110255

    (57) Qian, L.; Luo, S.; Wu, L.; Hu, X.; Chen, W.; Wang, X. Appl. Surf. Sci.2020, 503, 144306. doi: 10.1016/j.apsusc.2019.144306

    (58) Norskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108 (46), 17886.doi: 10.1021/jp047349j

    (59) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat.Chem. 2009, 1 (1), 37. doi: 10.1038/nchem.121

    國家自然科學(xué)基金(22168025)和江西省自然科學(xué)基金(20192BAB203013, 20202ACBL203003)資助項目

    猜你喜歡
    電催化制氫
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    贏創(chuàng)全新膜技術(shù)有望降低電解水制氫的成本
    上海建材(2020年12期)2020-04-13 05:57:52
    TP347制氫轉(zhuǎn)油線焊縫裂紋返修
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    電催化氧化法處理抗生素制藥廢水的實驗研究
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    制氫工藝技術(shù)比較
    電催化氧化技術(shù)深度處理染料廢水研究
    高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
    電解制氫設(shè)備開發(fā)入選“863”
    低溫與特氣(2014年4期)2014-03-20 13:36:50
    我的女老师完整版在线观看| 少妇人妻 视频| 美女国产视频在线观看| 久久综合国产亚洲精品| 久久99热这里只频精品6学生| 亚洲一级一片aⅴ在线观看| 国产日韩一区二区三区精品不卡 | 免费久久久久久久精品成人欧美视频 | 黑人巨大精品欧美一区二区蜜桃 | 欧美一级a爱片免费观看看| 日韩熟女老妇一区二区性免费视频| 男人舔奶头视频| 亚州av有码| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线不卡| 在线免费观看不下载黄p国产| 熟妇人妻不卡中文字幕| 最近中文字幕2019免费版| 欧美bdsm另类| 亚洲情色 制服丝袜| 日韩 亚洲 欧美在线| 久久国产精品男人的天堂亚洲 | 亚洲久久久国产精品| 国产亚洲5aaaaa淫片| 丰满乱子伦码专区| 少妇 在线观看| 一级毛片aaaaaa免费看小| 亚洲欧美一区二区三区黑人 | 秋霞伦理黄片| 日产精品乱码卡一卡2卡三| av一本久久久久| 国产淫片久久久久久久久| 黑人巨大精品欧美一区二区蜜桃 | 欧美变态另类bdsm刘玥| 国产精品国产三级专区第一集| 我的女老师完整版在线观看| 精品一区二区三区视频在线| 国产精品人妻久久久久久| 22中文网久久字幕| 91aial.com中文字幕在线观看| 2022亚洲国产成人精品| 综合色丁香网| 丝瓜视频免费看黄片| 内射极品少妇av片p| 国产精品福利在线免费观看| 久久97久久精品| 亚洲国产欧美日韩在线播放 | 嫩草影院入口| 亚洲国产精品国产精品| 最近中文字幕2019免费版| 日日撸夜夜添| 曰老女人黄片| 大又大粗又爽又黄少妇毛片口| 人妻 亚洲 视频| 少妇高潮的动态图| 国产成人91sexporn| 亚洲国产最新在线播放| 国产成人精品一,二区| 永久网站在线| 日韩强制内射视频| 黄色视频在线播放观看不卡| 亚洲无线观看免费| 免费播放大片免费观看视频在线观看| 高清不卡的av网站| 久久久国产欧美日韩av| 亚洲精品aⅴ在线观看| 日韩av免费高清视频| av女优亚洲男人天堂| 久久狼人影院| a级毛片在线看网站| 亚洲精品国产成人久久av| 一级黄片播放器| 国产精品人妻久久久久久| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 另类精品久久| 亚洲成人av在线免费| 久久久久久伊人网av| 亚洲精品国产av成人精品| 少妇精品久久久久久久| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久av| 欧美3d第一页| 大陆偷拍与自拍| 日日撸夜夜添| 日韩免费高清中文字幕av| 久久精品国产a三级三级三级| 18+在线观看网站| 日本免费在线观看一区| 大片电影免费在线观看免费| 少妇人妻精品综合一区二区| 大香蕉久久网| 极品人妻少妇av视频| 午夜老司机福利剧场| 国产高清三级在线| 汤姆久久久久久久影院中文字幕| 中国国产av一级| 三级国产精品片| 精品人妻熟女毛片av久久网站| 色94色欧美一区二区| 哪个播放器可以免费观看大片| 一本色道久久久久久精品综合| 久久ye,这里只有精品| 国产69精品久久久久777片| 欧美+日韩+精品| 日韩中字成人| 在线 av 中文字幕| 在线精品无人区一区二区三| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 91成人精品电影| 精品国产一区二区三区久久久樱花| 婷婷色麻豆天堂久久| 久久99精品国语久久久| 亚洲国产精品专区欧美| 久久午夜福利片| 在线观看www视频免费| 亚洲精品乱码久久久v下载方式| 美女中出高潮动态图| 少妇高潮的动态图| 欧美精品一区二区大全| 日韩一本色道免费dvd| 亚洲精品日韩av片在线观看| 国产国拍精品亚洲av在线观看| 嫩草影院新地址| 欧美xxxx性猛交bbbb| 高清在线视频一区二区三区| 国产精品国产av在线观看| 国产av精品麻豆| 自拍偷自拍亚洲精品老妇| 五月玫瑰六月丁香| 国产成人免费无遮挡视频| 久久精品久久久久久久性| 99re6热这里在线精品视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频 | 久久久久久人妻| 免费观看在线日韩| 亚洲情色 制服丝袜| 精品99又大又爽又粗少妇毛片| 亚洲av二区三区四区| 亚洲自偷自拍三级| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 99国产精品免费福利视频| 亚洲美女视频黄频| 在线 av 中文字幕| 伊人久久精品亚洲午夜| av又黄又爽大尺度在线免费看| 欧美日韩av久久| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美日韩另类电影网站| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 男女无遮挡免费网站观看| freevideosex欧美| 亚洲综合精品二区| 久久久久久久久久成人| 大码成人一级视频| 欧美日韩亚洲高清精品| 你懂的网址亚洲精品在线观看| xxx大片免费视频| 天堂俺去俺来也www色官网| 黄色日韩在线| 国产视频首页在线观看| 十八禁高潮呻吟视频 | 在线观看www视频免费| av福利片在线观看| 成人影院久久| 国产精品熟女久久久久浪| 男人添女人高潮全过程视频| 91久久精品电影网| 少妇的逼好多水| 下体分泌物呈黄色| h视频一区二区三区| 午夜福利网站1000一区二区三区| 各种免费的搞黄视频| 午夜福利影视在线免费观看| 日本91视频免费播放| 久久人妻熟女aⅴ| 国产精品免费大片| 韩国av在线不卡| 人人妻人人爽人人添夜夜欢视频 | 久久久久人妻精品一区果冻| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 丰满人妻一区二区三区视频av| 亚洲国产精品成人久久小说| av福利片在线观看| 欧美日韩视频高清一区二区三区二| 自线自在国产av| 91久久精品电影网| 国产成人免费无遮挡视频| 九九爱精品视频在线观看| 精品视频人人做人人爽| 成人毛片60女人毛片免费| 我的女老师完整版在线观看| 一级二级三级毛片免费看| 男人爽女人下面视频在线观看| 亚洲国产成人一精品久久久| 两个人免费观看高清视频 | 欧美性感艳星| 黄色视频在线播放观看不卡| 两个人免费观看高清视频 | 黄色怎么调成土黄色| 人妻系列 视频| kizo精华| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| a 毛片基地| 久久久精品免费免费高清| 亚洲av二区三区四区| 少妇丰满av| 久久精品久久精品一区二区三区| 国产精品一二三区在线看| 99re6热这里在线精品视频| 日韩三级伦理在线观看| 嘟嘟电影网在线观看| 男女免费视频国产| av国产久精品久网站免费入址| 秋霞伦理黄片| 日韩三级伦理在线观看| 亚洲国产精品国产精品| av福利片在线| 韩国高清视频一区二区三区| 伊人亚洲综合成人网| 啦啦啦视频在线资源免费观看| 国产深夜福利视频在线观看| 免费观看在线日韩| 色视频在线一区二区三区| av线在线观看网站| 制服丝袜香蕉在线| 国精品久久久久久国模美| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 美女视频免费永久观看网站| 亚洲精品久久久久久婷婷小说| 久久6这里有精品| 99久久精品一区二区三区| 亚洲国产精品专区欧美| 国产91av在线免费观看| 蜜臀久久99精品久久宅男| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡 | 亚洲欧美成人精品一区二区| 国产成人精品婷婷| 国产色爽女视频免费观看| 国产一区二区三区av在线| 久久久久精品性色| 国产黄片美女视频| 日本av手机在线免费观看| 男女无遮挡免费网站观看| 日本wwww免费看| 国产亚洲一区二区精品| 永久免费av网站大全| 大片免费播放器 马上看| 熟女av电影| 日韩中文字幕视频在线看片| 日日啪夜夜爽| 少妇人妻一区二区三区视频| 建设人人有责人人尽责人人享有的| 99精国产麻豆久久婷婷| 热re99久久国产66热| 97超碰精品成人国产| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产av蜜桃| 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 91精品一卡2卡3卡4卡| 久久久久视频综合| 日本91视频免费播放| 99热国产这里只有精品6| 日韩 亚洲 欧美在线| 熟女电影av网| 午夜老司机福利剧场| 欧美日本中文国产一区发布| 美女xxoo啪啪120秒动态图| 精品视频人人做人人爽| 亚洲av福利一区| 91精品国产九色| 亚洲电影在线观看av| 久久久久人妻精品一区果冻| 亚洲人成网站在线观看播放| 日韩av免费高清视频| 中文在线观看免费www的网站| 国产一区二区三区av在线| 亚洲欧美一区二区三区国产| 美女大奶头黄色视频| 成人无遮挡网站| 看免费成人av毛片| 久久青草综合色| 人人妻人人看人人澡| 成人国产av品久久久| 午夜福利视频精品| 亚洲精华国产精华液的使用体验| 免费久久久久久久精品成人欧美视频 | 亚洲av男天堂| 久久99热6这里只有精品| 尾随美女入室| 一本—道久久a久久精品蜜桃钙片| 天堂俺去俺来也www色官网| 伊人亚洲综合成人网| 中文字幕精品免费在线观看视频 | 熟女av电影| 亚洲欧洲日产国产| 日韩欧美一区视频在线观看 | 午夜免费观看性视频| 一本色道久久久久久精品综合| 国产精品蜜桃在线观看| 亚洲熟女精品中文字幕| 日韩一区二区三区影片| 久久99精品国语久久久| 韩国高清视频一区二区三区| av播播在线观看一区| 免费观看无遮挡的男女| 99re6热这里在线精品视频| 国产高清国产精品国产三级| 久久久精品免费免费高清| 啦啦啦在线观看免费高清www| 狠狠精品人妻久久久久久综合| 日韩一本色道免费dvd| 男人和女人高潮做爰伦理| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| 国产成人一区二区在线| 观看美女的网站| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级 | 国产高清国产精品国产三级| 在线播放无遮挡| 欧美少妇被猛烈插入视频| 国产免费又黄又爽又色| xxx大片免费视频| 十八禁高潮呻吟视频 | 久久久久精品性色| 亚洲国产精品一区二区三区在线| 插阴视频在线观看视频| 高清午夜精品一区二区三区| 我要看黄色一级片免费的| 九九在线视频观看精品| 一本大道久久a久久精品| 亚洲成人av在线免费| av卡一久久| 精品人妻熟女毛片av久久网站| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 久久久久人妻精品一区果冻| 国产成人一区二区在线| 一级二级三级毛片免费看| 91精品一卡2卡3卡4卡| 成人影院久久| 欧美+日韩+精品| 美女xxoo啪啪120秒动态图| a级片在线免费高清观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩中文字幕视频在线看片| 少妇熟女欧美另类| 精品酒店卫生间| 亚洲一级一片aⅴ在线观看| 亚洲成人一二三区av| 国产成人精品福利久久| 久久久久久久久大av| 国产69精品久久久久777片| 成年美女黄网站色视频大全免费 | 亚洲国产av新网站| 亚洲人与动物交配视频| 一个人看视频在线观看www免费| 少妇人妻 视频| 午夜激情福利司机影院| 黄色日韩在线| 精品一区在线观看国产| 精品人妻一区二区三区麻豆| 最新的欧美精品一区二区| 女性被躁到高潮视频| 精品酒店卫生间| 亚洲精品国产色婷婷电影| 又爽又黄a免费视频| av播播在线观看一区| 女性被躁到高潮视频| h日本视频在线播放| 成人特级av手机在线观看| 国产深夜福利视频在线观看| 日日啪夜夜撸| 一级毛片我不卡| 人妻一区二区av| 日本猛色少妇xxxxx猛交久久| 极品教师在线视频| 熟女电影av网| 91久久精品国产一区二区三区| 国产精品伦人一区二区| 男女啪啪激烈高潮av片| 日本欧美国产在线视频| 国产av码专区亚洲av| 少妇裸体淫交视频免费看高清| 精品久久久噜噜| 极品人妻少妇av视频| 久久久久久人妻| 男女边摸边吃奶| 嫩草影院新地址| 美女中出高潮动态图| 国内揄拍国产精品人妻在线| 久久精品夜色国产| 美女脱内裤让男人舔精品视频| 久久久久人妻精品一区果冻| 国产成人精品一,二区| 久久精品久久久久久噜噜老黄| 国产片特级美女逼逼视频| 亚洲av二区三区四区| 在线观看美女被高潮喷水网站| 久久久久久久亚洲中文字幕| 日韩中字成人| 人妻系列 视频| 男的添女的下面高潮视频| 国产免费一区二区三区四区乱码| 国产精品人妻久久久久久| 777米奇影视久久| 日日啪夜夜爽| 观看av在线不卡| 曰老女人黄片| 亚洲av中文av极速乱| 欧美3d第一页| 极品人妻少妇av视频| 久久久久久久久久久丰满| av播播在线观看一区| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 嫩草影院新地址| 国产伦理片在线播放av一区| 亚洲色图综合在线观看| 精品国产一区二区三区久久久樱花| 最后的刺客免费高清国语| 永久网站在线| 亚洲人与动物交配视频| 国产熟女午夜一区二区三区 | 岛国毛片在线播放| 中文字幕精品免费在线观看视频 | av天堂中文字幕网| 国产精品熟女久久久久浪| 男女边摸边吃奶| 超碰97精品在线观看| 搡女人真爽免费视频火全软件| 精品亚洲乱码少妇综合久久| 在线观看三级黄色| 中文资源天堂在线| 卡戴珊不雅视频在线播放| 黑丝袜美女国产一区| 国产老妇伦熟女老妇高清| 这个男人来自地球电影免费观看 | 精品少妇黑人巨大在线播放| 毛片一级片免费看久久久久| 我的老师免费观看完整版| 最近的中文字幕免费完整| 亚洲熟女精品中文字幕| videos熟女内射| 亚洲内射少妇av| 国产成人一区二区在线| av国产久精品久网站免费入址| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 少妇熟女欧美另类| 亚洲欧美成人综合另类久久久| 高清在线视频一区二区三区| 夫妻午夜视频| 欧美激情极品国产一区二区三区 | 综合色丁香网| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 日本av免费视频播放| 国产一级毛片在线| 国产精品成人在线| 天堂俺去俺来也www色官网| 91aial.com中文字幕在线观看| 亚洲国产欧美日韩在线播放 | 日韩精品免费视频一区二区三区 | 亚洲美女黄色视频免费看| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 日韩中字成人| 精品久久久噜噜| 99九九线精品视频在线观看视频| 亚洲欧美日韩东京热| 亚洲va在线va天堂va国产| 亚洲精品亚洲一区二区| 自线自在国产av| 久久人人爽人人爽人人片va| 国产成人一区二区在线| 亚洲综合精品二区| 亚洲真实伦在线观看| 老熟女久久久| 久久久精品94久久精品| 五月开心婷婷网| 日韩亚洲欧美综合| av播播在线观看一区| 极品少妇高潮喷水抽搐| av一本久久久久| 成人免费观看视频高清| 国产 精品1| 日韩中字成人| 久久狼人影院| 亚洲,一卡二卡三卡| 亚洲第一区二区三区不卡| 在线免费观看不下载黄p国产| 亚洲天堂av无毛| 丝袜喷水一区| 青春草亚洲视频在线观看| 国产白丝娇喘喷水9色精品| 五月天丁香电影| 亚洲美女黄色视频免费看| 精品亚洲成国产av| 噜噜噜噜噜久久久久久91| 久久女婷五月综合色啪小说| 久久精品夜色国产| 日韩制服骚丝袜av| 成人综合一区亚洲| 一区二区三区四区激情视频| 我的老师免费观看完整版| 亚洲精品456在线播放app| 黑人高潮一二区| 尾随美女入室| 中文字幕精品免费在线观看视频 | 午夜福利在线观看免费完整高清在| 水蜜桃什么品种好| 亚洲av成人精品一二三区| 国产伦精品一区二区三区四那| 观看美女的网站| 免费观看av网站的网址| 亚洲av综合色区一区| 黑人高潮一二区| 在线精品无人区一区二区三| 热99国产精品久久久久久7| 久久99蜜桃精品久久| 一个人免费看片子| 色视频在线一区二区三区| 天堂中文最新版在线下载| 欧美丝袜亚洲另类| 日本wwww免费看| 国产成人精品一,二区| 色哟哟·www| 国产精品人妻久久久久久| 日韩强制内射视频| 91精品一卡2卡3卡4卡| 激情五月婷婷亚洲| 久久精品国产亚洲av涩爱| 嫩草影院入口| av.在线天堂| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| av不卡在线播放| 亚洲av二区三区四区| 高清欧美精品videossex| 亚洲av欧美aⅴ国产| 亚洲人与动物交配视频| 久久久久国产网址| 国产日韩一区二区三区精品不卡 | 精品一区二区三区视频在线| 亚洲精品亚洲一区二区| 亚洲欧美一区二区三区国产| 国内少妇人妻偷人精品xxx网站| 熟女人妻精品中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲欧美中文字幕日韩二区| 日韩av不卡免费在线播放| 韩国av在线不卡| 久久99蜜桃精品久久| 中文字幕制服av| 亚洲怡红院男人天堂| 国产一区有黄有色的免费视频| 日韩中文字幕视频在线看片| 国产欧美日韩精品一区二区| 伦理电影免费视频| 亚洲在久久综合| 少妇猛男粗大的猛烈进出视频| 三级经典国产精品| 国产亚洲精品久久久com| av网站免费在线观看视频| 99热这里只有是精品在线观看| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| 国产亚洲午夜精品一区二区久久| 男女无遮挡免费网站观看| 久久午夜综合久久蜜桃| www.av在线官网国产| 亚洲国产最新在线播放| 美女大奶头黄色视频| 美女视频免费永久观看网站| 国产成人91sexporn| 中文资源天堂在线| 在线 av 中文字幕| 国产精品秋霞免费鲁丝片| 国产毛片在线视频| 亚洲精品日本国产第一区| 九九久久精品国产亚洲av麻豆| 秋霞伦理黄片| 一区二区三区乱码不卡18| 日本午夜av视频| av视频免费观看在线观看| 亚洲国产最新在线播放| 免费观看a级毛片全部| 午夜视频国产福利| 亚洲国产最新在线播放| 免费观看a级毛片全部| 赤兔流量卡办理| 亚洲四区av| 国产伦精品一区二区三区视频9| kizo精华| 成年人午夜在线观看视频| 少妇人妻久久综合中文| 亚洲,欧美,日韩| 简卡轻食公司| 国产成人免费观看mmmm|