肖衛(wèi)紅,張青梅,尤翔宇,劉湛(湖南省環(huán)境保護科學研究院水污染控制湖南省重點實驗室,長沙410004)
鎂鋁水滑石的合成及其對VO3-的吸附特性
肖衛(wèi)紅,張青梅,尤翔宇,劉湛
(湖南省環(huán)境保護科學研究院水污染控制湖南省重點實驗室,長沙410004)
摘要:水熱合成層間陰離子為CO32-的Mg-Al型水滑石并經(jīng)過焙燒處理,測試了焙燒前后水滑石對水溶液中VO3-的吸附行為.結果表明:焙燒后的水滑石C-HT對VO3-在35℃時最大吸附量可達95.21 mg/g,遠遠高于焙燒前水滑石最大吸附容量(31.59 mg/g),可見焙燒處理對水滑石的吸附性能影響顯著.VO3-在C-HT上的吸附6 h內(nèi)可達到吸附平衡,吸附后的C-HT采用碳酸鈉溶液脫附可再生,脫附效率達97 %.C-HT對水中VO3-的吸附能力主要在于VO3-與層板間填充的CO32-交換吸附.
關鍵詞:鎂鋁水滑石;焙燒;陰離子交換;吸附;VO3-
近年來,隨著釩工業(yè)的快速發(fā)展,沉釩等工序的含釩廢水排放導致釩水污染嚴重.含釩廢水處理的方法多達10余種[1-5],而應用較多的為化學沉淀法,如氯化銨沉淀法[6]、鐵屑沉淀法[7],以及吸附法,如沸石吸附法[8]、活性炭吸附法[9]、陰離子樹脂吸附法[10]、殼聚糖[11]等.
1.1水滑石的合成
溶液A:將0.3 mol Mg(NO3)2·6H2O及0.1 molAl(NO3)3·9H2O完全溶解在150 mL水中;
溶液B:將50 mL 3 mol/L的Na2CO3溶液和100 mL 3 mol/L的NaOH溶液混合,攪拌均勻;
HT合成:以1滴/秒的速度向B溶液中逐滴加入溶液A,至加入A后的B溶液pH=10左右;滴加完畢后攪拌1 h,再將該溶液轉入反應釜中,120℃反應24 h后水洗至中性;過濾,80℃烘干;
C-HT的合成:采用450℃焙燒HT 5 h,得到焙燒后的水滑石,簡寫為C-HT.
1.2HT及C-HT對水中釩的吸附與脫附
1)吸附等溫線測試.分別稱取0.1 g HT和0.1 g C-HT作為吸附劑,加入待吸附的100 mL含釩溶液中,pH值為7,分別于15℃、25℃、35℃恒溫振蕩24 h. VO3-在HT和C-HT上的平衡吸附量Qe可用式(1)計算:
式(2)中:n為吸附劑對VO3-的去除效率.
式(6)中:η為脫附率.
1.3分析方法
2.1吸附等溫線
圖1 HT對VO3-的吸附等溫線Fig.1 Adsorption isotherms of VO3-onto the HT
圖2 C-HT對的吸附等溫線Fig.2 Adsorption isotherms of VO3-onto the C-HT
圖3 HT和C-HT對VO3-的吸附效率Fig.3 The adsorption efficiency of VO3-onto HT and C-HT
2.2吸附動力學
圖4 C-HT對VO3-的吸附量隨接觸時間的變化Fig.4 Adsorption amount of VO3-onto the C-HT
2.3吸附機理探討
圖5(a)為HT的XRD譜圖,各衍射峰峰窄而尖,雜峰少而低,表明合成的HT晶相結構完整,結晶度高,具有2個明顯的衍射峰(003)和(006),根據(jù)已有報道(003)和(006)為層狀結構的特征衍射峰[16-17]. 圖5(b)為C-HT的XRD譜圖,焙燒后(003)和(006)消失,出現(xiàn)了(400)和(440),根據(jù)標準JCPDS卡(JCPDS22-700),(400)和(440)為氧化鎂和氧化鋁的特征峰.
圖5 HT(a)、C-HT(b)和V-C-HT(c)的XRD譜圖Fig.5 XRD patterns of HT(a),C-HT(b)and V-C-HT(c)
表1 吸附等溫線擬合參數(shù)Table 1 Adsorption isotherm parameters
圖6 Na2CO3溶液對被吸附釩的脫附效率Fig.6 The Desorption efficiency of Na2CO3solution
1)采用水熱法合成的鎂鋁水滑石具有完整的晶相結構,經(jīng)450℃焙燒5 h形成結晶度較低的氧化鎂和氧化鋁雙金屬氧化物固溶體.
參考文獻:
[1]Kaczala F,Marques M,Hogland W. Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus[J]. Bioresource Technology,2009,100(1):235-243.
[2]Abigail P R,Jose A H,Jose R P,et al. Synthesis of protonated chitosan flakes for the removal of vanadium(III,IV and V)oxyanionsfromaqueoussolutionsy[J]. Microchemical Journal,2015,118(5):1-11.
[3]Nosrati S,Jayakumar N S,Hashim M A,et al. Performance evaluation of vanadium(IV)transport through supported ionic liquid membrane[J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44(3):337-342.
[4]王英.沉釩廢水處理技術的研究現(xiàn)狀[J].鐵合金,2012(6):41-45. [5]包申旭,張一敏,劉濤,等.電滲析處理石煤提釩廢水[J].中國有色金屬學報,2010,20(7):1440-1445.
[6]關洪亮,王杏林,張璐,等.氯化銨處理含釩廢水的研究[J].環(huán)境科學與技術,2014,37(5):122-125.
[7]歐陽玉祝,王繼徽.鐵屑微電解-共沉淀法處理含釩廢水[J].化工環(huán)保,2002,22(3):165-168.
[8]陳昕,張漪麗.亞鐵離子改性沸石對廢水中釩(V)的吸附研究[J].湖南師范大學學報(醫(yī)學版),2009,6(2):5-8.
[9]成應向,羅詠,戴友芝,等.改性活性炭對石煤提釩廢水中低濃度NH3-N和V等的吸附[J].環(huán)境工程學報,2013,7(9):3455-3460.
[10]張報清,雷霆,方樹銘,等.鉬酸銨溶液化學沉淀法和離子交換法除釩研究[J].稀有金屬,2012,36(3):466-471.
[11]Abigail P R,José A H V,José R P V,et al. Synthesis of protonated chitosan flakes for the removal of vanadium(III,IV and V)oxyanions from aqueous solutions[J]. Microchemical Journal,2015,118(1):1-11.
[12]Miyata S. Physico-chemical properties of synthetic hydrotalcites in relation to composition[J]. Clays Clay Miner. 1980,28:50-55.
[13]任志峰,何靜,張春起,等.焙燒水滑石去除氯離子性能研究[J].精細化工,2002,19(6):339-342.
[14]Lazaridis N K,Pandi T A,MatisK A. Chromium(VI)removal from aqueous solutions by Mg-Al-CO3hydrotalcite:sorption-desorption kinetic and equilibrium studies[J]. Industrial and Engineering Chemistry Research,2004,43(9):2209-2215.
[15]范杰,許昭怡,鄭壽榮,等. Mg-Al型水滑石對水溶液中F-的吸附[J].環(huán)境化學,2006,25(4):425-428.
[16]王莉娟,焦飛鵬,蔣新宇.焙燒態(tài)水滑石吸附水中釩酸根的研究[J].材料導報,2012,26(19):310-316.
[17]鄭麗波,葉瑛,季珊珊. Mg/Al型雙金屬氧化物對六價鉻的吸附作用[J].地球化學,2004,33(2):208-214.
Synthesis of the Mg-Al hydrotalcite and its adsorption properties for VO3-
XIAO Weihong,ZHANG Qingmei,YOU Xiangyu,LIU Zhan
(Hunan Research Academy of Environmental Science, Changsha 410004, China)
Abstract:Mg-Al-CO32-hydrotalcite was prepared by hydrothermal method and then calcined. The adsorption behaviors of hydrotalcite for VO3-in the solution before and after calcination were investigated. The results were summarized as follows: The maximum adsorption capacity of hydrotalcite C-HT after calcination for VO3-is 95.21 mg/g at 35℃, much lager than that of hydrotalcite before calcination which is 31.59 mg/g. It shows significant influence of calcination on the adsorption capacity of hydrotalcite. The kinetics of VO3-adsorption onto CHT shows that the time until equilibrium is 6 hour, and C-HT after adsorption is reproducible by desorption of sodium carbonate solution with desorption efficiency of up to 97 %. The adsorption capacity of C-HT for VO3-in the solution is mainly due to the exchange adsorption of VO3-and the CO32-filling between the layers.
Key words:hydrotalcite; synthesis; roasting; sdsorption; VO3-.
作者簡介:肖衛(wèi)紅(1966-),女,助理工程師,主要從事水污染控制方面的研究,E-mail:94616944@qq.com.
基金項目:國家環(huán)保技術管理項目(2110109);國家科技重大專項“水體污染控制與治理”(2013ZX07504-001-03)
收稿日期:2015-05-20
DOI:10.13264/j.cnki.ysjskx.2015.04.008
文章編號:1674-9669(2015)04-0037-04
中圖分類號:TF111.52
文獻標志碼:A