• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Robust Adaptive Neural Network Backstepping Control for Single Machine Infinite Power System With TCSC

    2020-02-29 14:13:52YanhongLuoShengnanZhaoDongshengYangandHuaguangZhang
    IEEE/CAA Journal of Automatica Sinica 2020年1期
    關鍵詞:良幣劣幣市場秩序

    Yanhong Luo,, Shengnan Zhao, Dongsheng Yang,, and Huaguang Zhang,

    Abstract—For a single machine infinite power system with thyristor controlled series compensation (TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network (RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness (UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme.

    I. INTRODUCTION

    WITH the increasing scale and complexity of modern power systems, the issue of grid security and stability has become increasingly prominent. Undoubtedly, all power systems are driven by dynamic safety and stable operation,which makes research and development of power systems.The safety control theory and technology are becoming more and more important [1]. In recent years, thyristor controlled series capacitor (TCSC) has been used as a flexible AC transmission system (FACTS) device to change the apparent reactance smoothly and quickly. It has the function of reducing the subsynchronous resonance (SSR), suppressing the damping low-frequency oscillation and improving the transient stability in the operation and control of the power system [2]-[4].

    In the actual operation, the single machine infinite power system is often affected by external unknown disturbance and parameter uncertainty, which leads to the decline of system dynamic stability and poor robustness. Therefore, it is necessary to design a nonlinear robust controller to improve the dynamic response performance of the system. At present,research on control algorithms in power systems containing TCSC has yielded many scientific research results. In [5], a robust nonlinear co-ordinated generator excitation and TCSC controller is proposed to enhance the transient stability of power systems. Reference [6] uses the linear quadratic Gaussian (LQG) to design the robust TCSC controller for power system oscillation damping enhancement, which can effectively dampen power system oscillations. The above methods ignore the nonlinear characteristics of the power system, and require that the system model must be accurate and the operating conditions are unchanged. In [7], the nonlinear optimal predictive control theory is applied to improve the transient stability and dynamic performance of the power system. The influence of system parameter uncertainties on the control algorithm is not considered. In [8],the nonlinear PI predictive control method is applied, and the uncertainties of the power system are considered to ensure the stability of the closed-loop system under the nonlinear controller. The influence of external unknown disturbances on the system is not considered. References [9] and [10] apply the backstepping method to design the control law, which is adaptive to unknown parameters, uncertain disturbances and model errors. The traditional inversion control is based on the principle of deterministic-equivalence and is used for the control of special structures. In the system, using this method in the recursive design process of the robust controller, there will be a large number of differential operations. In [11], an indirect fuzzy adaptive backstepping control method is applied to design a nonlinearL2gain disturbance attenuation controller with parameter update law. The design process is complex and the storage function of the constructed system is also a difficult problem. In [12], the sliding mode adaptive control method is applied to avoid the state oscillation caused by the coupling of the parameter estimator and the system state. Compared with the adaptive backstepping control, the time to reach the steady state is greatly shortened. When the sliding mode control is close to the sliding surface, factors such as speed, inertia, acceleration, and switching surface need to be considered, and the switching function has a dead zone. An unpredictable chattering interval may be formed in the actual control process.

    The combination of artificial neural network and nonlinear control has become a research hotspot in recent years. In [13],the adaptive neuro-fuzzy inference system and the Levenberg Marquardt (LM) artificial neural network algorithm are used to suppress the frequency oscillation and improve the dynamic performance of the power system. In [14], the traditional PID control combined with the radial basis function neural network (RBFNN) is applied to design nonlinear adaptive damping controllers. The controller not only has the characteristics of traditional PID, but also can adjust the parameters of the PID controller online by using the Jacobian matrix information identified by RBFNN, and has strong adaptability to changes in system operating conditions.

    In this paper, considering the above problems, an RBFNNbased robust adaptive backstepping controller is proposed.And through the numerical simulation, the dynamic response performance of the proposed controller is compared with that of the general backstepping controller. The results show that the obtained system states converge faster than that by the general backstepping method.

    The contribution of this paper can be summarized as follows:

    1) It is the first time that the RBFNN is introduced to the robust adaptive backstepping control scheme for the single machine infinite power system with TCSC, which is applied to approximate complex nonlinear functions including system model uncertainty, nonlinear time-delay and external unknown disturbance without knowing the upper bound of the disturbance and uncertainty terms.

    2) An online updating robust term is proposed to reduce the residual error of the system to ensure the uniform ultimate boundedness of all the weight parameters and states of the whole closed-loop system without knowing the upper bound of the adaptive parameter. The ideal weights of neural networks and the adjusting rule of the adaptive parameter can also be updated online.

    3) Introducing inequalities 0 ≤|x|-xtanh(x/?)≤0.2785?,for ? >0, avoids the appearance of chattering and obtains a smooth robust adaptive control law.

    A. Modeling of Single Machine Infinite Power System with TCSC

    Fig. 1. A single machine infinite power system structure diagram with TCSC.

    Consider the single machine infinite power system with TCSC shown in Fig. 1 . Assuming that the generator is represented by a constant voltage source after transient reactance, and the TCSC device can be regarded as an adjustable reactance connected in series to a node of the power system transmission line, the mathematical model of the TCSC system can be established as follows [15]:

    whereThe generator q-axis transient potentialand the prime mover output mechanical powerPmare set as constants in the normal modeling process. The electromagnetic transient process on the transmission line and the active power loss on the transformer transmission line resistance are negligible. The physical meanings represented by the parameters in(1) are given in Table I.

    TABLE 1 THE PHYSICAL MEANING OF EACH PARAMETER

    λis the TCSC controller gain factor (λ >0) anduis the equivalent control input for the TCSC controller.

    In physical significance of parameters, time-delaydis caused by the differences between triggering time and turn-on time of its thyristor controller [16], [17].

    Considering that the generator damping coefficientDis difficult to measure accurately in the actual operation of the power system,Dcan be regarded as an uncertain parameter,that is, θ is an uncertain term.

    Considering that the power system may be affected by external unknown disturbances during operation, such as superposition perturbation on the system admittance and uncertain disturbances on the generator rotor due to aging of the circuit components of the system, when the rotor of the generator is displaced, an axial thrust is generated. If it is not adjusted in time, it will affect the normal operation of the generator rotor, and if it is serious, it will damage the generator. This is not conducive to the safe and stable operation of the power grid. Based on the above considerations, letA=[A1,A2]Tbe the unknown disturbances superimposed on the generator rotor and the system admittance, whereA1andA2are unknown disturbance functions in spaceL2, and satisfy |Ai|≤Λi,i=1,2, Λi>0.

    Define the state variable of the system asx1=δ-δ0,x2=ω-ω0,x3=ytcsc-ytcsc0. According to the structure of (1),

    Therefore, the mathematical model (1) of the TCSC system can be transformed into the following model:

    The stable operating balance of the system isand the system state variable isx=[x1,x2,x3]T. For the case where the system has uncertainty and is affected by external unknown disturbances, we propose a robust adaptive backstepping controllerubased on RBFNN, the state variablex(t)of the system asymptotically converges to 0, i.e.,limt→∞x(t)=0. That is to say, whether the system is changed in operating conditions, the parameters are uncertain, or is subject to external unknown disturbances, the rotor power angle δ, the rotor angular velocity ω and the system admittanceytcscasymptotically converge to their corresponding operational steady-state values δ0, ω0,ytcsc0. At this time, the dynamic stability of the single machine infinite power system is guaranteed.

    B. RBFNN-Based Robust Adaptive Backstepping Controller Design

    The robust control model of a single machine infinite power system with TCSC (2) has uncertainty and is affected by external unknown disturbances, therefore, an RNFNN-based robust adaptive backstepping control scheme is proposed.Meanwhile a sufficient condition for stable operation of the system and an adaptive update law of RBFNN estimation error are obtained. The overall structure of the control system is shown in Fig. 2.

    The first step is to define the coordinate transformation of the state variable as follows:

    α1and α2are intermediate virtual control quantities.Construct the first Lyapunov function as follows:

    Fig. 2. Overall structure diagram of control system.

    Deriving the timeton both sides of (4), we obtain

    Define intermediate virtual control α1=-c1z1, wherec1is a constant to be designed andc1>0 . Substituting α1with (3)into (5) yields

    According to (2) and (3),z2is derived with respective to timetto obtain

    In the second step, construct the second Lyapunov function as follows:

    wherek1is a constant to be designed andk1>0.

    The two sides of (8) are simultaneously derived with respective to timetto obtain

    Based on (3), we can obtain

    Then

    Due to the uncertainty of the system and the influence of external unknown disturbances, the complex nonlinear part of(11) is set as a nonlinear function separately as follows:

    Then (11) is converted to:

    The neural network can be used to approximate the characteristics of any nonlinear function, and the nonlinear functionf1in the model is estimated by the neural network[18]-[20].

    Remark 2: Disturbances and uncertainties widely exist in almost all physical systems in the real world, in the form of unknown system dynamics or external perturbations. For the control of such systems, a disturbance observer and related techniques have provided a powerful tool to dynamically estimate and compensate the diverse disturbances and offer desired control performances [21], [22]. Compared with the extended state observer (ESO) [23], neural networks have stronger ability to approximate nonlinear functions and fault tolerance, and, therefore, are especially suitable for multiinput and multi-output systems. In addition, neural networks do not need to model the system, and therefore the neural network model is unlikely becoming very complicated due to the increased complexity of the system. Therefore, the neural network can be used as a black box model of the actual system, using the input and output data of the system for training without knowing the exact system structure.

    RBFNN is the popular network in the forward network.Under the condition that there are enough hidden layer nodes,after sufficient learning, any nonlinear function can be approximated with an arbitrary precision, and it has the best approximation ability. In addition, it has a fast convergence speed, powerful noise immunity and repairing capabilities,and the learning method also avoids the local optimal problem[24]-[27]. Therefore, this paper uses an RBFNN to approximate the nonlinear functionf1as follows:

    where ε is the estimated error of the RBFNN, and |ε|≤ε*,ε*is an unknown constant.W1is the optimal weight matrix of the RBFNN, which satisfies

    where φ (xj) is the basis function of RBFNN [22], and

    wherecjis the center of thejth basis function, σjis the width of the basis function, andjis the number of hidden layer nodes. Therefore, (13) can be expressed as

    Define the intermediate virtual control amount α2as follows:

    wherec2is a constant to be designed andis the estimated value of RBFNN.

    Substituting (18) into (17) gives

    α2is derived with respect to timetto obtain

    According to (2), (3), and (20),z3is derived with respect to timetto obtain

    The weight learning rule for the first neural network is given by

    where Ξ is a positive definite diagonal matrix to be designed,γ1>0 is a constant to be designed,W10is the initial weight of the RBFNN.

    The third step is to construct the third Lyapunov function as follows:

    wherek2is a constant to be designed andk2>0.andW~1is the approximate error.q(x(τ)) is a nonnegative function.

    The two sides of (23) are simultaneously derived with respect to timetto obtain

    Substituting (19)-(22) into (24) gives

    當前,政府、企業(yè)、社會多元共治新格局仍未全面形成,打擊侵權假冒工作與人民的殷切期盼還有差距,政府維護市場秩序的公信力仍有待提高。在依法打擊侵權假冒案件基礎上,及時完善我國相關法律法規(guī)和體制機制,營造良好市場營商環(huán)境,防止劣幣驅逐良幣,避免逆向淘汰,從國家、社會、企業(yè)和個人視角,多層面、多維度、全方位促進消費市場的健康穩(wěn)定發(fā)展,多措并舉保護廣大消費者合法權益,已迫在眉睫、勢在必行。

    Due to the influence of external unknown disturbances,there is a nonlinear term in (25). Since the known terms in(25) are too complicated and difficult to calculate, we put them together to form a nonlinear function as follows:

    Then (25) is converted to

    Similarly, we use the second RBFNN to approximate the nonlinear functionf2as follows:

    where η is the estimated error of the RBFNN, and |η|≤η*,η*is an unknown constant.W2is the optimal weight matrix of the RBFNN.

    Therefore, (27) can be expressed as

    Define a nonnegative functionq(x(t))=|a2k2(x3z3)(t)|, and then we can obtainq(x(t-d))=|a2k2(x3z3)(t-d)|. An inequality is established as

    Since neural networks are used to approximate the unknown nonlinear function, the system has residual error, then we letbe the reconstruction error term as follows:

    Due to the existence of the error term, we introduce a robust termurto reduce the reconstruction error to ensure the stability of the system as follows:

    In summary, we design the final robust control inputufor the system as

    wherec3is a constant to be designed andis the estimated value of RBFNN.is the approximate error.

    Substituting (30)-(33) into (29) gives

    The weight learning rule for the second neural network and the adaptive law for the robust term are given by

    where Θ is a positive definite diagonal matrix to be designed,ρ >0 is the learning rate, γ2>0, κ >0 are the constants to be designed,W20is the initial weight of the RBFNN.

    Remark 4: Sensor (measurement) and actuator faults have a significant impact on the control of linear systems, nonlinear systems, and discrete time systems. During the actual operation of the control system, sensor and actuator selfvalidation is a critical step in system control and fault diagnostics. If sensors do not work properly, one cannot rely on their outputs to further deduce system status. Similarly,faulty actuators will not satisfy system performance objectives and may cause disasters in feedback control systems. The reliability of a process machine can be significantly enhanced by introducing a fault-tolerant control system in it [28]-[33].In the next step, we will introduce the sensor (measurement)and actuator faults into the proposed control method and conduct a detailed study.

    C. Proof of Stability

    Theorem: The robust control model for a single machine infinite power system with TCSC (2), if the control law is(33), and the adaptive learning law of the RBFNN weight online learning algorithm and the adaptive law for robust term are (32), (35) and (36), it can ensure that all parameters and states of the closed-loop system are uniformly and ultimately bounded.

    Proof: Select the Lyapunov function as

    The two sides of (37) are simultaneously derived with respect to timetto obtain

    Substituting (34)-(36) into (38), and usingwe get

    Substituting (40)-(42) into (39) gives

    Multiply both sides of (44) byectto get

    Integrate both sides of (45) on [ 0,t] [37]-[39] to get

    Combining equations (4), (8), (23) and (37), we can get

    Accordi ng towe can get

    Accor ding to the definitions of α1, α2, (3) and (48), we can get

    According to (46) and letting μ*=2μ/c, we can get

    Similarly, the uniform ultimate boundedness of the state variable of the closed-loop system and the weight parameters of the neural network can be derived as follows:

    Remark 5: It can be seen from the above proof that the convergence domain of the tracking error, neural network weight parameter and the robust term can be changed by adjusting the parametersc1,c2,c3,k1,k2, γ1, γ2, κ , ?. For example, increasingc1or decreasing ? can reduce the tracking error and the convergence of the neural network weight parameters to the radius, and other parameters can be selected according to needs. So we conclude that the tracking error and neural network weight parameters can converge to an arbitrarily small neighborhood near zero by adjusting above parameters.

    D. Numerical Simulation

    In order to verify the effectiveness of the proposed method,the presented controller and adaptive updating law are numerically simulated by the MATLAB/Simulink software.

    The parameters of a single machine infinite power system containing a TCSC are as follows:H=8,Vs=1.99,=1,Xd=0.88,XT=0.88,XL=0.48,BL-Bc=0.25. We select the controller parameters as follows:λ=1,c1=3,c2=6 ,c3=12 ,k1=1.5,k2=100. The equilibrium states corresponding to δ, ω andytcscare δ0=57.2°, ω0=314.159 rad/s andytcsc0=0.6p.u.. Let the unknown disturbance in theL2space beA1=e-3tsin(4t)sin(5t),A2=e-4tcos(6t)cos(8t), and let the disturbance begin to act on the controlled system (2) at timet.

    The number of neurons in the hidden layer of RBFNNs is 9,the center point of the basis function is evenly distributed in interval [-2,+2], the learning gain is ρ=3, the parameters γ1=2, γ2=3, κ=3, the initial value of the neural network

    weight isW10=0,W20=0.

    Four case studies are performed to simulate the nonlinear TCSC systems with different time delaysdor friction damping coefficientsD. Cases 1-3 aim to compare the stability and robustness of TCSC control systems designed by the proposed RBFNN-based robust adaptive bakstepping(RRAB) method, and the adaptive backstepping (AB) method in [40].dandDare set to 0.01 s and 0.8 p.u. in Case 1, 0.02 s and 0.8 p.u. in Case 2, and 0.04 s and 0.8 p.u. in Case 3,respectively. In Case 4, simulations of our designed TCSC system withd= 0.02 s are performed atD= 0.4 p.u. andD=1.2 p.u., respectively.

    The system state variable initial value is set to the following non-zero initial conditions:x1(0)=0.5,x2(0)=2.5,x3(0)=0.1.

    Fig. 3 shows the transient response comparisons of δ, ω,

    ytcscin Case 1. It can be seen that the transient responses of the state variables of the RRAB controller are faster than those of the AB controller.

    Fig. 4 shows the transient response comparisons of δ, ω,ytcscin Case 2. The transient trajectories of the RRAB controller fluctuate less strongly and quickly converge to steady state than those of the AB controller in finite time,suggesting that the proposed RRAB method results in better system performances.

    Fig. 5 shows the transient response comparisons of δ, ω,ytcscin Case 3. The result of Case 3 reveals that the proposed method can guarantee that the state variables of the nonlinear TCSC system are globally bounded and transient responses will eventually converge to a stable value regardless of what delay time is considered. A comparison of the transient responses of the RRAB controller in the three cases shows that the transient responses in Case 3 converge more slowly and the system stability is attained in a longer finite time.Similar comparative results are obtained for the AB controller.

    Fig. 6 shows the transient response comparisons of δ, ω,ytcscin Case 4. The simulation results are compared to investigate the effect of the friction damping coefficientDon the stability and robustness of TCSC control systems. It can be seen that althoughDtakes different values, the transient responses of the state variables eventually converge to the stable value. The above results show that the proposed RRAB controller has good robustness.

    Fig. 3. Transient responses in Case 1.

    Fig. 4. Transient responses in Case 2.

    Fig. 5. Transient responses in Case 3.

    Fig. 6. Transient responses in Case 4.

    II. CONCLUSION

    In this paper, aiming at the stability control problem of the single machine infinite power system with TCSC, considering the model uncertainty, nonlinear time-delay and the influence of external unknown disturbance, an RBFNN-based robust adaptive backstepping control method is proposed. The simulation results show that the designed controller can achieve stable control of the single machine infinite power system with TCSC and has good robust performance.

    猜你喜歡
    良幣劣幣市場秩序
    莫讓電動自行車頭盔“劣幣驅逐良幣”
    公民與法治(2022年6期)2022-07-26 06:16:02
    成都市金牛區(qū):高質量清理整頓人力資源市場秩序
    劣幣一定會驅逐良幣嗎
    關于規(guī)范奶源市場秩序促進奶業(yè)健康發(fā)展的建議
    云南持續(xù)凈化旅游市場秩序推進行業(yè)復工復產
    云南畫報(2020年9期)2020-10-27 02:03:06
    舊幣總是被先花出去
    當代工人(2020年7期)2020-05-20 15:05:15
    良幣被劣幣驅逐之后它欲何往?
    公民導刊(2016年5期)2016-06-11 23:11:40
    維護藥品市場秩序 為縣域經濟保駕護航
    一区二区av电影网| 免费黄网站久久成人精品| 男女无遮挡免费网站观看| 欧美最新免费一区二区三区| 草草在线视频免费看| 欧美一区二区亚洲| 最近的中文字幕免费完整| 久久久午夜欧美精品| 少妇丰满av| 人人妻人人添人人爽欧美一区卜 | 五月开心婷婷网| 国产精品偷伦视频观看了| 国产精品三级大全| 日韩 亚洲 欧美在线| 最近最新中文字幕大全电影3| 国产精品.久久久| 只有这里有精品99| 亚洲精品久久午夜乱码| 亚洲国产成人一精品久久久| 人妻制服诱惑在线中文字幕| 汤姆久久久久久久影院中文字幕| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩另类电影网站 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久久免| 国产白丝娇喘喷水9色精品| 成人黄色视频免费在线看| 亚洲av电影在线观看一区二区三区| 51国产日韩欧美| 久久这里有精品视频免费| 亚洲欧美一区二区三区黑人 | 久久久久网色| 国产伦精品一区二区三区四那| 身体一侧抽搐| 国产亚洲91精品色在线| 日韩 亚洲 欧美在线| 秋霞伦理黄片| 国产女主播在线喷水免费视频网站| 亚洲精品色激情综合| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 久久久久国产网址| 精品久久久久久久久亚洲| 综合色丁香网| 亚洲美女搞黄在线观看| 性高湖久久久久久久久免费观看| 少妇人妻久久综合中文| 国产在视频线精品| 观看免费一级毛片| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| 国产黄色视频一区二区在线观看| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 深爱激情五月婷婷| 建设人人有责人人尽责人人享有的 | 亚洲性久久影院| 日产精品乱码卡一卡2卡三| 久久影院123| 秋霞在线观看毛片| 国产成人freesex在线| 成人黄色视频免费在线看| 校园人妻丝袜中文字幕| 老熟女久久久| 欧美xxⅹ黑人| 欧美少妇被猛烈插入视频| 国产成人aa在线观看| 久热这里只有精品99| av网站免费在线观看视频| 免费久久久久久久精品成人欧美视频 | 久久久久久久亚洲中文字幕| 日韩欧美 国产精品| 高清av免费在线| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 日韩av在线免费看完整版不卡| a级毛片免费高清观看在线播放| 国产精品99久久99久久久不卡 | 青春草视频在线免费观看| 欧美精品一区二区大全| 国产综合精华液| 美女高潮的动态| 国产伦理片在线播放av一区| 日韩精品有码人妻一区| 一本一本综合久久| 亚洲av中文字字幕乱码综合| 91aial.com中文字幕在线观看| 日韩成人av中文字幕在线观看| 国产精品久久久久久久久免| 国产成人一区二区在线| 一区二区av电影网| 国产片特级美女逼逼视频| 联通29元200g的流量卡| 国产精品偷伦视频观看了| 亚洲精品久久午夜乱码| 又黄又爽又刺激的免费视频.| 永久网站在线| 激情 狠狠 欧美| 色视频www国产| 久久精品国产亚洲av涩爱| 精华霜和精华液先用哪个| 色婷婷久久久亚洲欧美| kizo精华| 又大又黄又爽视频免费| 久久久久网色| 国产在线视频一区二区| 精品一区二区免费观看| 简卡轻食公司| 精品少妇黑人巨大在线播放| 一本—道久久a久久精品蜜桃钙片| 日本欧美国产在线视频| 久久av网站| 日韩伦理黄色片| 久久午夜福利片| 又黄又爽又刺激的免费视频.| 纵有疾风起免费观看全集完整版| 久久久久人妻精品一区果冻| 男人狂女人下面高潮的视频| 一级毛片黄色毛片免费观看视频| 国产成人精品婷婷| 妹子高潮喷水视频| av天堂中文字幕网| 成人特级av手机在线观看| 久久精品久久久久久久性| 大香蕉久久网| 色哟哟·www| 国产视频内射| 精品国产一区二区三区久久久樱花 | 日韩免费高清中文字幕av| 精品久久久噜噜| 91午夜精品亚洲一区二区三区| 老女人水多毛片| 一区二区三区免费毛片| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 最近手机中文字幕大全| 小蜜桃在线观看免费完整版高清| 少妇人妻 视频| 婷婷色综合www| av专区在线播放| 日本与韩国留学比较| 一二三四中文在线观看免费高清| 欧美97在线视频| 男人舔奶头视频| 免费观看性生交大片5| av在线app专区| 国产女主播在线喷水免费视频网站| 搡老乐熟女国产| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 国产黄片视频在线免费观看| 在线观看人妻少妇| 深夜a级毛片| 18禁在线无遮挡免费观看视频| 日本欧美视频一区| 久久精品国产自在天天线| 亚洲精品国产av成人精品| 久热这里只有精品99| 亚洲天堂av无毛| 亚洲国产最新在线播放| 国产伦精品一区二区三区四那| 欧美日韩在线观看h| 国产精品女同一区二区软件| 麻豆乱淫一区二区| 精品熟女少妇av免费看| 国产男女内射视频| 午夜福利影视在线免费观看| 欧美+日韩+精品| 亚洲国产精品专区欧美| 日韩一区二区三区影片| 亚洲欧美一区二区三区黑人 | 嫩草影院入口| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区| 久久久久久久精品精品| 联通29元200g的流量卡| 99久久精品热视频| 99热6这里只有精品| 亚洲丝袜综合中文字幕| 草草在线视频免费看| 亚洲精品国产av成人精品| 18+在线观看网站| 免费播放大片免费观看视频在线观看| 久久人人爽人人片av| 大香蕉久久网| 国产精品人妻久久久影院| 国产精品一二三区在线看| 免费av不卡在线播放| 一级a做视频免费观看| 国产精品久久久久久久久免| 国产乱人视频| 亚洲高清免费不卡视频| 91狼人影院| 99久久中文字幕三级久久日本| 久久久久性生活片| 天堂中文最新版在线下载| 一级毛片久久久久久久久女| 国产淫语在线视频| 国内揄拍国产精品人妻在线| 三级国产精品片| 国产男女超爽视频在线观看| 丰满乱子伦码专区| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| 国产精品一区www在线观看| 色综合色国产| 亚洲av电影在线观看一区二区三区| 精品人妻一区二区三区麻豆| av免费观看日本| 在线 av 中文字幕| 国产男女超爽视频在线观看| av国产精品久久久久影院| 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 中文字幕精品免费在线观看视频 | 美女cb高潮喷水在线观看| 成人黄色视频免费在线看| 18禁在线无遮挡免费观看视频| 国产av一区二区精品久久 | 天堂俺去俺来也www色官网| 人人妻人人澡人人爽人人夜夜| 久久久精品94久久精品| 亚洲第一av免费看| 色婷婷av一区二区三区视频| 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| 国产精品久久久久久av不卡| kizo精华| 十分钟在线观看高清视频www | 久久精品国产a三级三级三级| 亚洲av欧美aⅴ国产| 亚洲高清免费不卡视频| 亚洲国产日韩一区二区| 黑人猛操日本美女一级片| 蜜桃久久精品国产亚洲av| 亚洲激情五月婷婷啪啪| 女性被躁到高潮视频| 色综合色国产| 一级毛片久久久久久久久女| 大又大粗又爽又黄少妇毛片口| 亚洲熟女精品中文字幕| 韩国av在线不卡| 欧美区成人在线视频| 亚洲国产精品一区三区| 97在线人人人人妻| 男女下面进入的视频免费午夜| 男人爽女人下面视频在线观看| www.av在线官网国产| 亚洲精品国产色婷婷电影| av黄色大香蕉| 最黄视频免费看| 水蜜桃什么品种好| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 一级毛片aaaaaa免费看小| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 午夜福利在线观看免费完整高清在| 久久6这里有精品| 国产av一区二区精品久久 | 纯流量卡能插随身wifi吗| 精品人妻偷拍中文字幕| 2021少妇久久久久久久久久久| 少妇高潮的动态图| 久久影院123| 大又大粗又爽又黄少妇毛片口| 亚洲美女视频黄频| 欧美日韩亚洲高清精品| 日韩欧美 国产精品| 美女内射精品一级片tv| 国产欧美亚洲国产| 成人18禁高潮啪啪吃奶动态图 | 夜夜骑夜夜射夜夜干| 久久亚洲国产成人精品v| 亚洲自偷自拍三级| 国产日韩欧美亚洲二区| 国产真实伦视频高清在线观看| 日韩亚洲欧美综合| 黄色日韩在线| 91久久精品国产一区二区成人| 中国美白少妇内射xxxbb| 大码成人一级视频| 观看免费一级毛片| 高清日韩中文字幕在线| 蜜桃久久精品国产亚洲av| av网站免费在线观看视频| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美日韩东京热| 成人影院久久| 成人一区二区视频在线观看| 久久久久久久久大av| 香蕉精品网在线| 国产成人精品久久久久久| 女人十人毛片免费观看3o分钟| 亚洲欧美成人精品一区二区| 国产视频首页在线观看| 国产又色又爽无遮挡免| 有码 亚洲区| 亚洲av成人精品一区久久| 久久99热这里只有精品18| 美女视频免费永久观看网站| 深夜a级毛片| 亚洲精品第二区| 永久网站在线| 五月天丁香电影| 高清午夜精品一区二区三区| 好男人视频免费观看在线| 岛国毛片在线播放| 卡戴珊不雅视频在线播放| 色5月婷婷丁香| 国国产精品蜜臀av免费| 99久久精品一区二区三区| 五月玫瑰六月丁香| 欧美97在线视频| 亚洲精品乱久久久久久| 在线观看人妻少妇| 亚州av有码| 亚洲精品一区蜜桃| 少妇丰满av| 极品教师在线视频| 五月伊人婷婷丁香| 中文字幕亚洲精品专区| 最黄视频免费看| 一级av片app| 免费高清在线观看视频在线观看| 国产中年淑女户外野战色| 亚洲第一区二区三区不卡| 18禁裸乳无遮挡免费网站照片| 一个人看的www免费观看视频| 亚洲欧美日韩卡通动漫| 国产白丝娇喘喷水9色精品| 久久97久久精品| 国产精品99久久久久久久久| 日韩成人av中文字幕在线观看| 日日摸夜夜添夜夜添av毛片| 中国国产av一级| 人妻 亚洲 视频| 久久久国产一区二区| 亚洲人成网站高清观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品aⅴ在线观看| 国产精品熟女久久久久浪| 国产有黄有色有爽视频| 免费观看的影片在线观看| 大陆偷拍与自拍| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 久久97久久精品| 人妻制服诱惑在线中文字幕| 毛片一级片免费看久久久久| 一个人看的www免费观看视频| 久久97久久精品| 久久久久国产网址| 亚洲成人手机| 在线天堂最新版资源| 一区二区三区乱码不卡18| 国产av精品麻豆| 欧美成人a在线观看| 一个人看的www免费观看视频| 久久韩国三级中文字幕| 久久久久久久久久久免费av| 最后的刺客免费高清国语| 99视频精品全部免费 在线| 六月丁香七月| 亚洲国产高清在线一区二区三| 中文字幕精品免费在线观看视频 | 热re99久久精品国产66热6| 亚洲av中文av极速乱| 51国产日韩欧美| 亚洲精品日韩在线中文字幕| 热re99久久精品国产66热6| 国产一区二区三区av在线| 亚洲精品中文字幕在线视频 | 七月丁香在线播放| 欧美一级a爱片免费观看看| 中文精品一卡2卡3卡4更新| 一级爰片在线观看| 精品久久国产蜜桃| 中国美白少妇内射xxxbb| 一级毛片久久久久久久久女| 大香蕉久久网| 插阴视频在线观看视频| 日本黄大片高清| 久久久久网色| 免费播放大片免费观看视频在线观看| 国产精品久久久久久久久免| 国产精品秋霞免费鲁丝片| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| 国产免费又黄又爽又色| 夫妻午夜视频| 国产毛片在线视频| 一二三四中文在线观看免费高清| 九九在线视频观看精品| 亚洲av免费高清在线观看| 亚洲精品aⅴ在线观看| 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 国产69精品久久久久777片| 亚洲欧美精品专区久久| 亚洲国产成人一精品久久久| 亚洲av.av天堂| 免费黄频网站在线观看国产| 精品久久国产蜜桃| 国产毛片在线视频| 高清不卡的av网站| 在线精品无人区一区二区三 | 在线天堂最新版资源| 日本一二三区视频观看| 精品人妻偷拍中文字幕| 超碰97精品在线观看| 26uuu在线亚洲综合色| 丝瓜视频免费看黄片| 一级毛片 在线播放| 在线观看一区二区三区激情| 亚洲欧洲日产国产| 在线精品无人区一区二区三 | 国产高潮美女av| 男人爽女人下面视频在线观看| 国内少妇人妻偷人精品xxx网站| 乱系列少妇在线播放| 日产精品乱码卡一卡2卡三| 美女视频免费永久观看网站| 亚洲国产精品专区欧美| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 亚洲欧美成人精品一区二区| 久久6这里有精品| 最近中文字幕2019免费版| 老司机影院成人| 日韩一本色道免费dvd| 性色av一级| 26uuu在线亚洲综合色| 中文字幕人妻熟人妻熟丝袜美| www.色视频.com| 日韩视频在线欧美| 久久久精品94久久精品| 看免费成人av毛片| videossex国产| 国产免费一级a男人的天堂| 秋霞在线观看毛片| 最新中文字幕久久久久| 亚洲av成人精品一区久久| 一级毛片电影观看| 国产欧美亚洲国产| 国产亚洲精品久久久com| 亚洲激情五月婷婷啪啪| 中文字幕亚洲精品专区| 亚洲自偷自拍三级| 成年女人在线观看亚洲视频| 综合色丁香网| 在线天堂最新版资源| av免费观看日本| 久久久久久久大尺度免费视频| 日本午夜av视频| 国产在线一区二区三区精| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美精品专区久久| 国产乱人偷精品视频| 国产亚洲91精品色在线| 欧美人与善性xxx| 美女内射精品一级片tv| 22中文网久久字幕| 男人狂女人下面高潮的视频| 国产成人免费观看mmmm| av视频免费观看在线观看| 国产黄片视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 日本午夜av视频| 老女人水多毛片| 欧美少妇被猛烈插入视频| 免费看光身美女| 一级毛片我不卡| 亚洲激情五月婷婷啪啪| 99热这里只有精品一区| 99热网站在线观看| 久久毛片免费看一区二区三区| 免费观看性生交大片5| 夜夜看夜夜爽夜夜摸| 欧美xxxx性猛交bbbb| 亚洲天堂av无毛| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 岛国毛片在线播放| 中文乱码字字幕精品一区二区三区| 汤姆久久久久久久影院中文字幕| 欧美成人精品欧美一级黄| 我的女老师完整版在线观看| 日韩电影二区| 国产av国产精品国产| 天堂中文最新版在线下载| 国产视频内射| 一级毛片 在线播放| 国产又色又爽无遮挡免| 好男人视频免费观看在线| 久久久久久九九精品二区国产| 香蕉精品网在线| 日韩中文字幕视频在线看片 | 能在线免费看毛片的网站| 日本免费在线观看一区| 秋霞在线观看毛片| 国产成人91sexporn| 久久久精品免费免费高清| 青青草视频在线视频观看| 九九在线视频观看精品| 三级国产精品片| 亚洲综合色惰| 日韩欧美一区视频在线观看 | 亚洲精品一区蜜桃| 国产男女内射视频| 久久av网站| 午夜福利影视在线免费观看| 亚洲精品,欧美精品| 国产日韩欧美亚洲二区| 久久影院123| 精品国产一区二区三区久久久樱花 | 精品一品国产午夜福利视频| 国产高清有码在线观看视频| 身体一侧抽搐| 久久久久久久大尺度免费视频| 又粗又硬又长又爽又黄的视频| 欧美亚洲 丝袜 人妻 在线| 久久精品国产亚洲av天美| 97在线视频观看| 亚洲成色77777| 熟女人妻精品中文字幕| 亚洲av成人精品一二三区| 精品一品国产午夜福利视频| 午夜福利视频精品| 亚洲精品乱码久久久久久按摩| 丝瓜视频免费看黄片| 久久久久久久久大av| 中国美白少妇内射xxxbb| 自拍偷自拍亚洲精品老妇| 亚洲成人手机| 欧美精品一区二区大全| 久久久久久久国产电影| 亚洲内射少妇av| 国产在线免费精品| 久久人人爽av亚洲精品天堂 | 亚洲欧美中文字幕日韩二区| 精品久久久久久久久亚洲| 免费黄频网站在线观看国产| 天堂8中文在线网| 寂寞人妻少妇视频99o| 欧美成人精品欧美一级黄| 一边亲一边摸免费视频| 精品酒店卫生间| 黄色视频在线播放观看不卡| 亚洲av成人精品一二三区| 久久毛片免费看一区二区三区| 97热精品久久久久久| 一区二区三区精品91| 免费黄频网站在线观看国产| 精品少妇久久久久久888优播| 人妻夜夜爽99麻豆av| 干丝袜人妻中文字幕| 大码成人一级视频| 国产成人精品福利久久| 狂野欧美激情性bbbbbb| 在线观看一区二区三区| 久久久欧美国产精品| 最后的刺客免费高清国语| 欧美精品一区二区免费开放| 大又大粗又爽又黄少妇毛片口| 国产成人免费无遮挡视频| 亚洲精品亚洲一区二区| 尤物成人国产欧美一区二区三区| 超碰av人人做人人爽久久| 高清黄色对白视频在线免费看 | 亚洲av二区三区四区| 麻豆精品久久久久久蜜桃| 国产欧美另类精品又又久久亚洲欧美| 国产成人freesex在线| 乱系列少妇在线播放| 色婷婷av一区二区三区视频| 欧美人与善性xxx| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 亚洲av中文字字幕乱码综合| 精品久久久精品久久久| 亚洲精品日韩在线中文字幕| 又黄又爽又刺激的免费视频.| 91在线精品国自产拍蜜月| 日韩一本色道免费dvd| 老师上课跳d突然被开到最大视频| 校园人妻丝袜中文字幕| 在线观看av片永久免费下载| 伊人久久国产一区二区| 天美传媒精品一区二区| 中文字幕av成人在线电影| 老师上课跳d突然被开到最大视频| 嫩草影院新地址| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久v下载方式| 久久久久人妻精品一区果冻| 寂寞人妻少妇视频99o| 九九爱精品视频在线观看| 欧美性感艳星| 中文天堂在线官网| 国产日韩欧美亚洲二区| 国产高清有码在线观看视频| 亚洲av国产av综合av卡| 国产成人a区在线观看| av卡一久久| 自拍偷自拍亚洲精品老妇| 成年女人在线观看亚洲视频| 18禁在线无遮挡免费观看视频| 久久99精品国语久久久| 一级毛片aaaaaa免费看小| 国模一区二区三区四区视频|