• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Guidance Control for Parallel Parking Tasks

    2020-02-29 14:22:08JiyuanTanChunlingXuLiLiFeiYueWangDongpuCaoandLingxiLiSenior
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Jiyuan Tan,, Chunling Xu, Li Li,, Fei-Yue Wang,,Dongpu Cao,, and Lingxi Li, Senior

    Abstract—Parking into small berths remains difficult for unskilled drivers. Researchers had proposed different automatic parking systems to solve this problem. The first kind of strategies(called parking trajectory planning) designs a detailed reference trajectory that links the start and ending points of a special parking task and let the vehicle track this reference trajectory so as to park into the berth. The second kind of strategies (called guidance control) just characterizes several regimes of driving actions as well as the important switching points in certain rule style and let the vehicle follows the pre-selected series of actions so as to park into the berth. Parking guidance control is simpler than parking trajectory planning. However, no studies thoroughly validated parking guidance control before. In this paper, a new automatic parking method is presented, which could characterize the desired control actions directly. Then the feasibility is examined carefully. Tests show that a simple parking guidance control strategy can work in most parallel parking tasks, if the available parking berth is not too small. This finding helps to build more concise automatic parking systems that can efficiently guide human drivers.

    I. INTRODUCTION

    IF being compared with car-following, parallel parking often appears more difficult for drivers, since drivers not only need to drive backward but also move laterally. As a result,good driver assistance systems and automatic parking systems are expected by many drivers, because machines can help handle this hot potato for human beings [1]-[8].

    Researchers proposed several automatic parking systems in the last three decades. The first kind of strategies is usually called as parking trajectory planning. The key idea is to design a detailed reference trajectory along which the vehicle can move and park into the berth [9]-[11]. Conventionally, there are two major difficulties in implementing this kind of strategies. First, vehicles are not moving robots which can steer freely. It is hard to appropriately consider the dynamic constraints of vehicles in trajectory planning stage. Usually,dynamic constraints are addressed indirectly as the curvature constraints of the reference trajectory. However, the errors may make it unable to implement the planned control actions.Second, we can add a certain feedback controller according to the gap between the reference parking trajectory and the actual one, reshaping the steering actions and making the vehicle roughly track this reference trajectory. However, the design and implementation costs of a proper feedback controller are high. Moreover, the whole strategy consists of two-stages. If the first stage gives the wrong solution, there is no chance to correct it in the second stage.

    Differently, a new trajectory planning method is proposed in[12], [13]. Suppose we have shifted the starting point to the origin point, this trajectory planning method samples all the possible steering actions and the corresponding trajectories as well as the resulting ending points of the trajectories. Then, a deep neural network is used to store the relation between steering actions, trajectories, and ending points in a reverse manner. That is, this deep neural network accepts ending points as input and outputs the corresponding steering actions and trajectories. When a new parking berth (ending point) is given, it directly recalls the required steering actions and trajectories that can move the vehicle toward this parking berth (ending point). This new approach greatly simplifies the parking planning problem but still consumes relatively high computational time and storage resources.

    The second kind of strategies is called parking guidance control. Its key idea is to characterize several regimes of driving actions as well as some important switching points in certain rule style. Then, we let the vehicle follow the preselected series of actions so as to park into the berth.However, no studies thoroughly validated parking guidance control before. The so-called “ parking guidance control”proposed before are focus on the technical assistant systems to help drivers to find parking space, while not the control strategies or control rules [14], [15].

    Most known guidance control rules were empirically summarized by skilled human drivers. These rules are usually very concise and thus make the resulting guidance control simple to understand and execute. Many drivers claimed that these guidance control rules are helpful. However, no studies thoroughly validated parking guidance control before.

    In this paper, we carefully examine its feasibility by applying the sampling and testing framework proposed in[13]. Tests show that a simple parking guidance control strategy can work in most parallel parking tasks, if the available parking berth is not too small. This finding helps to build more concise automatic parking systems that could well communicate with drivers to provide efficient guidance rules.

    To better present our findings, the rest of this paper is arranged as follows. Section II presents the parking guidance control for a general parallel parking scenario and explains how to check its feasibility. Section III provides some numerical testing results to verify the effectiveness of this method. Finally, Section IV concludes the paper.

    II. PROBLEM PRESENTATION AND THE RSS STRATEGY

    The parking scenario studied in this paper is shown in Fig. 1 and the related symbols are listed in Appendix.

    The origin of the world coordinate is set as the outer boundary point of the left berth. TheX-axis is parallel to the road and points to the right.

    In this paper, we introduce a simple three-step guidance control strategy which is the most popular in Chinese driving schools. As shown in Fig. 1, the core of this strategy can be summarized as follows:

    Step 1:Straightly drive the vehicle from the initial position(IP) forward to the start position (SP) whose coordinate is (x0,y0) and make the angleψfrom theX-axis to the longitudinal axis of vehicle becomes approximately 0;

    Step 2:Drive the vehicle backward to the critical angle position (CAP) from SP with full right turn (setting steering angleδf) with the velocityv, until the angleψfrom theX-axis to the longitudinal axis of vehicle reaches the preselected critical angle position (CAP) (ψ=θ);

    Step 3:Drive the vehicle backward from CAP with full left turn (setting steering angle -δf) with the velocityv, until the vehicle arrives the final position (FP) in the berth (meanwhile the angleψfrom theX-axis to the longitudinal axis of vehicle becomes approximately 0).

    There are five controlling variables in this three-step guidance control strategy:x0,y0,δf,v, andθ. Given the lengthLBand widthWBof the berth as well as the maximum vertical distanceDVto the berth, we need to examine whether there exists an appropriate setting of these five variables to make the above three-step parking feasible.

    For a given set of {x0,y0,δf,v,θ}, we can use the vehicle dynamic model presented in Appendix I to simulate the corresponding vehicle trajectory. There are three situations that this trajectory becomes infeasible:

    1) The right front cornerO1of the vehicle collides with the boundary of the right berth. Fig. 1 denotes this situation as the right yellow star.

    Let us denote the intersection of theX-axis and the trajectory of the center of the gravity (CG) as point “C”. The horizontal distance between “C” and the right edge of the berth of interest is denoted asdc. Clearly,dcreaches its maximum value when the vehicle is parallel to the berth. So,to avoid colliding with the boundary of the right berth, we require the abscissaxcof point C to satisfy

    2) The vehicle collided with the bottom edge of the berth.

    Let us denote the horizontal distancedYbetween the rear end of the vehicle and the left side of the berth, when the vehicle stops. Clearly, we requiredYto satisfy

    3) The rear end of the vehicle collides with the left side of the berth.

    Let us denote the horizontal distancedXbetween the rear end of the vehicle and the left side of the berth, when the vehicle stops. Clearly, we requiredYto satisfy

    The verification of the determined parking process could be straightforward. Fig. 2 shows an example trajectory, wherex0= 8.2 m,y0= 1.4 m,δf= 38°,v= 1 m/s,θ= 54°. The values of all the other parameters are given in Appendix I. We can see that the guidance control makes the vehicle park into the berth without causing any collisions.

    The parameters of a vehicle’s dynamic model can be predetermined. So, the maximum allowable steering angleδfcan be known in advance. If we further set the velocityv, there are only three variables that characterize the proposed control actions. First, the choice of the start point {x0,y0}. Second, the choice of the critical angle positionθ. To derive a simple parking guidance rule that can be easily used in practice, the following study will focus on finding an appropriate start point as well as the critical angle positionθto make the above guidance control feasible.

    III. TESTING RESULTS

    In this section, we will first show that there will exist a lot of combinations of {x0,y0,θ} are feasible, if the berth is not too small and the maximum allowable steering angleδfis large enough. Second, we will derive a simple rule to choose{x0,y0} according to the length of the berth. Third, we will show how to select an appropriateθ, with respect the given{x0,y0} and steering angleδf.

    In practice, the width of the berth is usually large enough.So, we focus on the influence of the length of the berth. As presented in [5], we can enumerate all the possible parking trajectories that a vehicle can make under the given combination of {x0,y0,θ}. Since the solution space of {x0,y0,θ} is continuous, we will use the sampling techniques, say,with the discretization time interval as 0.1 s, the discretization spatial interval as 0.1 m for {x0,y0}, and 1° forθ. Considering the dynamic attribute of current cars, we allowδf∈[30°,40°]andθ∈[0°,90°]. Fig. 3 gives an example the feasible region of {x0,y0}, where all the other parameters are chosen in Appendix expect keeping the lengthLBof the berth variable.According to practices, we choose theLBchange from 3.0 m to 9.0 m, with the discretization distance interval as 0.5 m.Surprisingly, we can always find an appropriate combination of {x0,y0} with the correspondingly calculatedδfandθ, if the length of the berth is at least 0.3 m larger than the length of the vehicle. Further tests show that the width of the berth has little influence on the parking feasibility, if it is wider than the vehicle; while the length of the berth has a significantly stronger influence.

    WhenLB>4.0 m, the average allowable value ofy0increases slowly from 1.3 m, asLBincreases. It soon reaches a saturation value as about 1.4 m. This indicates that we could roughlyy0as a constant in parking guidance control with respect the given dynamic parameters of vehicles. Moreover,the average allowable value ofx0increase noticeably from 5.6 m, asLBincreases. Furthermore, there was an obvious upper limit ofx0for eachLB, say, the vehicle could not park successfully when it is too far from the berth.

    Based on these results, we can establish a simple determination rule of the abscissax0of the starting point as

    for the given parameter sets of the vehicle.

    Further testing results show that we can always find such simple a determination rule to calculate the SP when other types of vehicle are considered (with different sets of parameters).

    Finally, we can set up a determination rule to selectδfandθ,with the given Starting Point calculated from (4). We still use the discretization sampling technique to enumerate all the possible combination of {δf,θ}. Tests suggest that, if we chooseδf= 35°, the critical angleθcan be simply chosen as

    to park the vehicle.

    In summary, the rules (4) and (5) for determining the controlling variables are quite simple. This enables us to carry out such parking guidance control on intelligent vehicles.

    IV. CONCLUSION

    This paper has presented a new automatic parking method.Different from existing methods, this new method characterizes the desired control actions directly, rather than seeking the desired trajectory first. Moreover, the series of whole control actions are divided into three steps which can be explicitly characterized and easily applied. Such three-step control strategy is indeed a direct imitation of a human parking procedure which is popularly taught in Chinese driving schools.

    Several simple rules are found to determine the exact values of the control parameters for the proposed guidance control,when the dynamic parameters of the vehicle are given. Testing results show that this simple guidance control method works well, if the available parking berth is not too small. This finding indicates that skilled human drivers had summarized an effective solution for parallel parking tasks. Furthermore,we can also design more concise automatic parking systems.

    Since the control rules are proposed by human, we can view this approach as a special hybrid-augmented intelligence application [16], [17]. In the future, we will further analyze how to integrate human driving experience so as to build more intelligent vehicles.

    APPENDIX VEHICLE DYNAMICS MODEL

    In this paper, the dynamic model of vehicle is adopted from[18], [19], and the nomenclatures used in this paper are given in Table I. As shown in Fig. 4, the reference point center of the gravity (CG) is chosen at the center of gravity of the vehicle body. Its coordinate vale (x,y) represents the position of the vehicle. Vehicle velocityvis defined at the reference point CG. Heading angleψrefers to the angle from theX-axis to the longitudinal axis of the vehicle body. slide-slip angleβis the angle from the longitudinal axis of the vehicle body to the direction of the vehicle velocity.

    When moving forward, the movement of the vehicle can be described as

    where

    whereμis a weighting coefficient with dry roadμ= 1 and wet roadμ= 0.5.

    When moving backward, the movement of the vehicle can be described as

    where

    We can then get the movement of vehicle in worldcoordinate. For instance, when moving backward, the velocity of vehicle can be calculated as

    and the position coordinates are

    ACKNOWLEDGMENT

    We would like to thank Mr. Chenghong Wang, who is the Vice-Chairman of Chinese Association of Automation, for his insightful opinion to improve this paper.

    欧美日韩亚洲国产一区二区在线观看 | 下体分泌物呈黄色| 免费黄网站久久成人精品| 国产成人精品一,二区| 久久久欧美国产精品| 国产一区二区激情短视频 | 少妇猛男粗大的猛烈进出视频| 中文字幕精品免费在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 岛国毛片在线播放| 中文字幕人妻熟女乱码| 我的亚洲天堂| 少妇人妻精品综合一区二区| 久久久精品免费免费高清| 国产探花极品一区二区| 黄频高清免费视频| 精品一区二区免费观看| 天堂8中文在线网| 欧美国产精品va在线观看不卡| 国产精品一二三区在线看| 亚洲三级黄色毛片| 久久人妻熟女aⅴ| 日本色播在线视频| 亚洲精品久久午夜乱码| 三级国产精品片| 国产一区有黄有色的免费视频| 国产一区二区激情短视频 | 国产乱来视频区| 精品亚洲成a人片在线观看| 欧美黄色片欧美黄色片| 一级片免费观看大全| 精品一区二区三区四区五区乱码 | 大香蕉久久成人网| 国产一区二区 视频在线| 亚洲欧美一区二区三区久久| 伊人久久国产一区二区| 在线天堂中文资源库| 天天躁夜夜躁狠狠久久av| 一本色道久久久久久精品综合| 欧美日韩综合久久久久久| 国产熟女午夜一区二区三区| 啦啦啦视频在线资源免费观看| 热re99久久精品国产66热6| 精品一品国产午夜福利视频| 制服丝袜香蕉在线| 日本猛色少妇xxxxx猛交久久| 久久国内精品自在自线图片| 精品亚洲成a人片在线观看| 波野结衣二区三区在线| 日韩大片免费观看网站| a级毛片黄视频| 男女午夜视频在线观看| 国产成人精品久久久久久| av免费在线看不卡| 国产精品嫩草影院av在线观看| 国产日韩欧美亚洲二区| 亚洲国产精品一区二区三区在线| 国产精品三级大全| 青春草国产在线视频| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 啦啦啦在线免费观看视频4| 婷婷成人精品国产| 亚洲中文av在线| 久久久久精品久久久久真实原创| 日韩欧美精品免费久久| 国产成人精品一,二区| 中文字幕另类日韩欧美亚洲嫩草| 大片电影免费在线观看免费| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 大香蕉久久成人网| 亚洲 欧美一区二区三区| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 精品国产乱码久久久久久小说| xxxhd国产人妻xxx| 自线自在国产av| 久久久国产精品麻豆| 国产精品一国产av| 男男h啪啪无遮挡| 婷婷成人精品国产| 国产成人一区二区在线| 亚洲熟女精品中文字幕| 国产精品 国内视频| 国产乱人偷精品视频| 777久久人妻少妇嫩草av网站| 久久午夜福利片| 久久久精品94久久精品| 国产成人91sexporn| 日韩一本色道免费dvd| 久久人人97超碰香蕉20202| 老司机亚洲免费影院| videosex国产| 久久精品人人爽人人爽视色| 人人妻人人澡人人爽人人夜夜| 日本黄色日本黄色录像| 1024香蕉在线观看| 久热这里只有精品99| www.自偷自拍.com| 97精品久久久久久久久久精品| 免费在线观看视频国产中文字幕亚洲 | 97人妻天天添夜夜摸| 久久午夜综合久久蜜桃| 中文字幕色久视频| 最黄视频免费看| 婷婷色麻豆天堂久久| 精品国产一区二区三区久久久樱花| h视频一区二区三区| 免费少妇av软件| 精品亚洲成a人片在线观看| av线在线观看网站| 久久人人97超碰香蕉20202| 久久女婷五月综合色啪小说| av网站在线播放免费| 国产又色又爽无遮挡免| 18禁观看日本| 王馨瑶露胸无遮挡在线观看| 亚洲精品日本国产第一区| 不卡av一区二区三区| 高清不卡的av网站| 国产精品久久久久久av不卡| 久久精品亚洲av国产电影网| 久久国产精品大桥未久av| 亚洲,欧美,日韩| av.在线天堂| 人人妻人人澡人人爽人人夜夜| 成人免费观看视频高清| 精品人妻偷拍中文字幕| xxx大片免费视频| 亚洲四区av| 香蕉国产在线看| av国产精品久久久久影院| 纯流量卡能插随身wifi吗| www.av在线官网国产| 人人妻人人澡人人看| 亚洲国产欧美网| 一级爰片在线观看| 寂寞人妻少妇视频99o| 一本—道久久a久久精品蜜桃钙片| 久久精品国产自在天天线| 99热网站在线观看| 国产日韩一区二区三区精品不卡| 热99国产精品久久久久久7| 97精品久久久久久久久久精品| 美女国产高潮福利片在线看| 亚洲在久久综合| 电影成人av| 国产成人免费观看mmmm| av又黄又爽大尺度在线免费看| 国产成人精品婷婷| 亚洲精品av麻豆狂野| 老汉色∧v一级毛片| 欧美变态另类bdsm刘玥| 国产福利在线免费观看视频| 亚洲精品视频女| 亚洲情色 制服丝袜| 亚洲精品成人av观看孕妇| av视频免费观看在线观看| 美女高潮到喷水免费观看| 美女国产视频在线观看| 天堂8中文在线网| 久久精品国产a三级三级三级| 在线精品无人区一区二区三| 国产精品亚洲av一区麻豆 | 边亲边吃奶的免费视频| 日韩三级伦理在线观看| 亚洲国产欧美日韩在线播放| kizo精华| 1024视频免费在线观看| 性色avwww在线观看| 狠狠精品人妻久久久久久综合| 日本-黄色视频高清免费观看| 成人黄色视频免费在线看| 在线观看三级黄色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品国产乱码久久久久久男人| 国产高清不卡午夜福利| 免费女性裸体啪啪无遮挡网站| 人成视频在线观看免费观看| 久久免费观看电影| 免费高清在线观看视频在线观看| 91aial.com中文字幕在线观看| 日韩三级伦理在线观看| 青青草视频在线视频观看| 久久久久久久久免费视频了| 热re99久久国产66热| 亚洲欧美成人综合另类久久久| 午夜av观看不卡| 老鸭窝网址在线观看| 七月丁香在线播放| 亚洲av男天堂| 在线观看三级黄色| 亚洲国产欧美在线一区| 国产激情久久老熟女| 在线观看国产h片| 最近手机中文字幕大全| av一本久久久久| 免费观看无遮挡的男女| 久久国内精品自在自线图片| 亚洲精品第二区| 午夜福利影视在线免费观看| av电影中文网址| 一本大道久久a久久精品| 韩国av在线不卡| 老熟女久久久| 久久久久久久国产电影| 一个人免费看片子| 亚洲国产欧美网| 精品少妇内射三级| 国产一区二区 视频在线| 日韩中文字幕视频在线看片| 一级毛片 在线播放| 久久国产精品大桥未久av| 你懂的网址亚洲精品在线观看| 男女免费视频国产| 国产福利在线免费观看视频| 男女啪啪激烈高潮av片| 欧美精品一区二区大全| 成人亚洲欧美一区二区av| 一区福利在线观看| 国产成人一区二区在线| 日韩,欧美,国产一区二区三区| 国产精品一区二区在线观看99| 欧美最新免费一区二区三区| 80岁老熟妇乱子伦牲交| 丝袜美腿诱惑在线| 国产黄频视频在线观看| 中国三级夫妇交换| 天堂8中文在线网| 中文乱码字字幕精品一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲精品第二区| 国语对白做爰xxxⅹ性视频网站| 91精品国产国语对白视频| 欧美日韩视频高清一区二区三区二| 在线观看免费高清a一片| www.自偷自拍.com| 国产日韩欧美亚洲二区| 日日啪夜夜爽| 涩涩av久久男人的天堂| 丝瓜视频免费看黄片| 国产在线一区二区三区精| 国产欧美日韩一区二区三区在线| 免费黄频网站在线观看国产| 成年人午夜在线观看视频| 久久国内精品自在自线图片| 七月丁香在线播放| 久久ye,这里只有精品| 一区二区三区四区激情视频| 色婷婷久久久亚洲欧美| 久久精品国产综合久久久| 毛片一级片免费看久久久久| 日本av手机在线免费观看| 一级片'在线观看视频| 色视频在线一区二区三区| 成年女人毛片免费观看观看9 | 在线观看三级黄色| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图| 啦啦啦在线免费观看视频4| 国产免费一区二区三区四区乱码| 欧美成人午夜精品| 亚洲av综合色区一区| 三上悠亚av全集在线观看| 国产野战对白在线观看| 成年人免费黄色播放视频| 女人高潮潮喷娇喘18禁视频| 免费少妇av软件| 久久婷婷青草| 国产精品av久久久久免费| 波野结衣二区三区在线| 免费高清在线观看日韩| 欧美bdsm另类| av福利片在线| 国产一区亚洲一区在线观看| 国精品久久久久久国模美| 国产免费视频播放在线视频| 午夜老司机福利剧场| 国产亚洲精品第一综合不卡| 欧美av亚洲av综合av国产av | av国产精品久久久久影院| 欧美人与性动交α欧美软件| 妹子高潮喷水视频| 日本av手机在线免费观看| 国产精品欧美亚洲77777| 黄色怎么调成土黄色| 午夜91福利影院| 男人爽女人下面视频在线观看| 欧美日韩亚洲高清精品| 国产色婷婷99| 女人久久www免费人成看片| 日韩不卡一区二区三区视频在线| 一边亲一边摸免费视频| 午夜福利视频精品| 妹子高潮喷水视频| 国产野战对白在线观看| 久久久欧美国产精品| 日韩熟女老妇一区二区性免费视频| 99国产精品免费福利视频| 欧美精品一区二区大全| 国产精品av久久久久免费| 国产女主播在线喷水免费视频网站| 九草在线视频观看| 国产成人精品福利久久| 久久女婷五月综合色啪小说| 大香蕉久久网| 黄频高清免费视频| 久久精品人人爽人人爽视色| 黄色配什么色好看| 国产成人一区二区在线| 肉色欧美久久久久久久蜜桃| 电影成人av| 久久99精品国语久久久| 免费高清在线观看视频在线观看| 如日韩欧美国产精品一区二区三区| 超色免费av| av网站免费在线观看视频| 纵有疾风起免费观看全集完整版| 亚洲成人av在线免费| 欧美激情高清一区二区三区 | 日本vs欧美在线观看视频| 久久久久人妻精品一区果冻| 在线 av 中文字幕| 日韩一区二区三区影片| 久久久精品94久久精品| 色播在线永久视频| 亚洲精品在线美女| 啦啦啦啦在线视频资源| 日韩中文字幕欧美一区二区 | 中国国产av一级| 午夜老司机福利剧场| 亚洲av综合色区一区| 亚洲第一青青草原| av网站免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 亚洲av.av天堂| 久久久精品94久久精品| 在线观看美女被高潮喷水网站| 又黄又粗又硬又大视频| 狂野欧美激情性bbbbbb| 国产野战对白在线观看| av有码第一页| 男的添女的下面高潮视频| 欧美xxⅹ黑人| 交换朋友夫妻互换小说| 青草久久国产| 欧美人与性动交α欧美精品济南到 | 国产在线免费精品| 日本午夜av视频| 免费久久久久久久精品成人欧美视频| 我要看黄色一级片免费的| 黄网站色视频无遮挡免费观看| 国产亚洲一区二区精品| 久久久久久人妻| 国产精品99久久99久久久不卡 | 美女国产视频在线观看| 国产日韩一区二区三区精品不卡| 街头女战士在线观看网站| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 人妻系列 视频| 免费看不卡的av| 日韩av在线免费看完整版不卡| 18禁裸乳无遮挡动漫免费视频| 国产人伦9x9x在线观看 | 国产精品香港三级国产av潘金莲 | 人成视频在线观看免费观看| 国产国语露脸激情在线看| 久久热在线av| 最近的中文字幕免费完整| 国产精品成人在线| 久久久久久久久久久久大奶| 亚洲欧洲国产日韩| 中国国产av一级| 一级a爱视频在线免费观看| a级毛片黄视频| 水蜜桃什么品种好| 丰满饥渴人妻一区二区三| 熟妇人妻不卡中文字幕| 国产免费又黄又爽又色| 日日啪夜夜爽| 亚洲欧洲国产日韩| 亚洲情色 制服丝袜| 日韩一区二区三区影片| 热99久久久久精品小说推荐| 亚洲经典国产精华液单| 看非洲黑人一级黄片| 国产亚洲最大av| 亚洲欧美精品综合一区二区三区 | 丁香六月天网| 国产野战对白在线观看| 大陆偷拍与自拍| 中国三级夫妇交换| 春色校园在线视频观看| 一级a爱视频在线免费观看| 亚洲欧美精品综合一区二区三区 | 最近中文字幕高清免费大全6| av在线播放精品| 国语对白做爰xxxⅹ性视频网站| 美女福利国产在线| 成年人午夜在线观看视频| 丝袜在线中文字幕| 国产日韩欧美亚洲二区| 国产色婷婷99| 国产高清不卡午夜福利| 亚洲欧美一区二区三区黑人 | 又大又黄又爽视频免费| 久久青草综合色| 另类精品久久| 日韩制服丝袜自拍偷拍| 97在线人人人人妻| videosex国产| 成人国产麻豆网| 美女福利国产在线| 久久久久久久大尺度免费视频| 久久久久国产精品人妻一区二区| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 一本久久精品| 国产老妇伦熟女老妇高清| 新久久久久国产一级毛片| 80岁老熟妇乱子伦牲交| 美女高潮到喷水免费观看| 美女主播在线视频| 中文精品一卡2卡3卡4更新| 免费久久久久久久精品成人欧美视频| www日本在线高清视频| 精品一区二区三卡| av在线观看视频网站免费| 午夜福利影视在线免费观看| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 18+在线观看网站| 精品午夜福利在线看| 一本久久精品| 精品福利永久在线观看| 午夜老司机福利剧场| 宅男免费午夜| 亚洲情色 制服丝袜| 日韩精品免费视频一区二区三区| av片东京热男人的天堂| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 免费日韩欧美在线观看| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 国产欧美日韩一区二区三区在线| av在线app专区| 亚洲精品视频女| 伦理电影免费视频| 水蜜桃什么品种好| a级毛片黄视频| 国产免费又黄又爽又色| 视频在线观看一区二区三区| 欧美另类一区| 99热全是精品| 久久久精品免费免费高清| 一级,二级,三级黄色视频| 国产综合精华液| 王馨瑶露胸无遮挡在线观看| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 亚洲av成人精品一二三区| 热re99久久国产66热| 久久精品国产亚洲av天美| 国产av码专区亚洲av| 中文字幕色久视频| 欧美精品亚洲一区二区| 亚洲精品久久成人aⅴ小说| 日本黄色日本黄色录像| 午夜av观看不卡| 一区二区三区四区激情视频| 另类精品久久| 黄色一级大片看看| 一区二区av电影网| 高清不卡的av网站| 男女午夜视频在线观看| 色94色欧美一区二区| 日韩精品有码人妻一区| 91精品国产国语对白视频| 韩国精品一区二区三区| 久久精品国产亚洲av高清一级| 精品第一国产精品| 国产不卡av网站在线观看| 一区二区三区精品91| www.自偷自拍.com| 99热国产这里只有精品6| 亚洲欧美色中文字幕在线| av天堂久久9| 国产欧美亚洲国产| 老司机亚洲免费影院| 在线观看免费日韩欧美大片| 亚洲美女搞黄在线观看| 国产激情久久老熟女| 国产探花极品一区二区| 搡老乐熟女国产| 一区二区日韩欧美中文字幕| 久久精品国产自在天天线| 国产一区二区在线观看av| 久久人人爽人人片av| 交换朋友夫妻互换小说| 午夜老司机福利剧场| 久久久久国产网址| 天堂8中文在线网| 成年女人在线观看亚洲视频| 日韩制服骚丝袜av| 伊人久久大香线蕉亚洲五| 哪个播放器可以免费观看大片| 人妻系列 视频| 亚洲人成电影观看| 韩国av在线不卡| 国产精品国产三级专区第一集| 欧美日韩精品网址| 成年美女黄网站色视频大全免费| 国产高清国产精品国产三级| 女人被躁到高潮嗷嗷叫费观| 免费看不卡的av| 国产极品粉嫩免费观看在线| 一本久久精品| 午夜福利在线免费观看网站| 在线观看三级黄色| 国产成人欧美| 亚洲第一区二区三区不卡| 青春草亚洲视频在线观看| 人妻 亚洲 视频| 国产亚洲最大av| 国产免费又黄又爽又色| 日本色播在线视频| 另类精品久久| 五月伊人婷婷丁香| 久久人人97超碰香蕉20202| 国产探花极品一区二区| 91久久精品国产一区二区三区| 男人爽女人下面视频在线观看| 久热这里只有精品99| 亚洲欧美成人综合另类久久久| 国产精品蜜桃在线观看| 国产极品天堂在线| 婷婷成人精品国产| 亚洲色图 男人天堂 中文字幕| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 精品人妻一区二区三区麻豆| 久久久久国产网址| 好男人视频免费观看在线| 看十八女毛片水多多多| 99久国产av精品国产电影| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 欧美激情高清一区二区三区 | 美女xxoo啪啪120秒动态图| 久久精品国产鲁丝片午夜精品| 国产激情久久老熟女| 欧美97在线视频| 国产综合精华液| 99国产精品免费福利视频| 黄片播放在线免费| 国产成人精品久久久久久| a级毛片黄视频| 黑丝袜美女国产一区| 黄网站色视频无遮挡免费观看| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 久久99蜜桃精品久久| 最近2019中文字幕mv第一页| 国产成人91sexporn| 99久久人妻综合| 成人手机av| 国产免费又黄又爽又色| 在线观看三级黄色| 久久久a久久爽久久v久久| 国产人伦9x9x在线观看 | 国产黄频视频在线观看| 欧美成人午夜免费资源| 国产精品秋霞免费鲁丝片| 18禁国产床啪视频网站| 成人漫画全彩无遮挡| 亚洲精品一二三| 欧美 亚洲 国产 日韩一| 天天操日日干夜夜撸| 乱人伦中国视频| 久久99精品国语久久久| 飞空精品影院首页| 又粗又硬又长又爽又黄的视频| 国产精品香港三级国产av潘金莲 | 啦啦啦啦在线视频资源| 可以免费在线观看a视频的电影网站 | √禁漫天堂资源中文www| 成人午夜精彩视频在线观看| 色哟哟·www| 99国产综合亚洲精品| 日韩欧美精品免费久久| 成人黄色视频免费在线看| 在线观看www视频免费| 18在线观看网站| 亚洲一区中文字幕在线| 搡女人真爽免费视频火全软件| 久久久久久久国产电影| 国产高清国产精品国产三级| 国产淫语在线视频| 毛片一级片免费看久久久久| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| freevideosex欧美| 水蜜桃什么品种好| 日本免费在线观看一区| 999久久久国产精品视频| 99香蕉大伊视频| 国产无遮挡羞羞视频在线观看| 亚洲综合色网址| 久久久久久久久久久免费av| 卡戴珊不雅视频在线播放| 大香蕉久久成人网| 少妇人妻精品综合一区二区|