• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Stability Criteria for Sampled-Data Systems With Variable Sampling Periods

    2020-02-29 14:21:26HanyongShaoJianrongZhaoandDanZhang
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Hanyong Shao, Jianrong Zhao, and Dan Zhang

    Abstract—This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties.Finally,three examples are given to illustrate the reduced conservatism of the stability criteria.

    I. INTRODUCTION

    SAMPLED-DATA systems have received substantial attention over the last two decades due to their wide applications in digital control systems and networked control systems[1]-[7]. Stability of sampled-data systems is an especially interesting topic for many researchers [8]. In the literature there are mainly four approaches to the stability of sampleddata systems. The first is the discrete-time system method,which transforms sampled-data systems into discrete-time systems and then applies the classical system theory to stability analysis [9]. However, the method encounters difficulties for systems with variable sampling periods or uncertainties. The second approach to stability of sampled-data systems is the impulsive system method [10], [11]. As indicated in [10], the method requires the sampled-data system to be represented in the form of an impulsive model, and stability conditions are derived by constructing a time-dependent discontinuous Lyapunov functional.The third method is the input delay approach[12]-[14] by which sampled-data systems are formulated as continuous-time systems with a time-varying delay, and the time-dependent Lyapunov functional method is employed to study the stability of the continuous-time systems [15]-[18].As shown in [10]-[14] the time-dependent Lyapunov functional can lead to a stability condition that determines an upper bound of the time-varying delay, namely the size of the sampling interval.It is well known that both computational burden and data transmission rate of the sampled-data systems are decreased as the sampling interval increases. Therefore,the second and third methods are of significance in obtaining a possibly larger sampling period that ensures the stability of sampled-data systems. However, the Lyapunov functional involved in the latter two methods is too restrictive. The fourth is the Lyapunov-like functional method. It does not involve model transformation. Moreover, the functional is not necessarily positive definite [19]-[22]. Recently stability criteria of sampled-data system were provided by the fourth method in [19]. A further improved stability criterion was obtained in [20] by using a new inequality to estimate the derivative of the Lyapunov-like functional.Very recently those stability results have been extended to sampled-data systems with state quantization [21]. Note that the existing Lyapunovlike functional does not include the integral of the state; there is still room for the functional to improve.

    In this paper we further investigate the stability of a sampled-data system with variable sampling periods. Novel sampling-interval-dependent stability criteria are derived by a new Lyapunov-like functional approach that does not involve model transformation.Compared with existing ones,the Lyapunov functional makes use of the integral of the state as well as the sampled state. It is time-dependent, may be discontinuous, and not every term of it is necessarily positive definite. It is illustrated by examples that the stability criteria derived are less conservative than some existing ones.

    Throughout this paperIrefers to an identity matrix with appropriate dimensions. For real symmetric matricesXandY, the notationX >Y(respectively,X ≥Y) means that the matrixX-Yis positive definite (respectively, positive semidefinite). TheSym(X) stands forX+XT. In symmetric block matrices, we use an asterisk*to represent a term that is induced by symmetry. The smallest and the largest eigenvalues of a real symmetric matrixXare denoted byλmin(X) andλmax(X), respectively.| · |is the Euclidean norm for a vector while‖·‖is the induced matrix norm. We writeMatrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

    II. PROBLEM FORMULATION

    Consider the linear system

    wherex(t)∈Rnis the state,A ∈Rn×n,B ∈Rn×mare known real constant matrices,u(t)∈Rmis the sampled-data inputu(t)=ud(tk),t ∈[tk,tk+1), with sampling instantstksatisfying 0=t0<t1<···<tk <···, and

    For a state-feedback controller in the form of

    the corresponding closed-loop system is

    whereAd=BK.

    The purpose of this paper is to study the stability problem for system(3)subject to(2),that is,for a givenK,to establish some sampling-interval-dependent stability conditions such that the system is asymptotically stable. In the following we give a lemma and a proposition that play a crucial role in studying the stability problem.

    Lemma 1[20]:For a given matrixR >0, the following inequality holds for all continuously differentiable functionωin [a,b]→Rn

    To study the stability problem mentioned above,the following proposition is also needed.

    Proposition 1:Consider the following sampled-data system described by

    where the sampling interval satisfies (2),f(0,0)=0, and fory(t),y(tk)∈Rn

    whereL1>0 andL2>0 are known constants. Forc1>0,c2>0 and a solutionx(t) to the system, suppose that there exist a continuous functionalVa(x(t)) and a piecewise continuous functionalsatisfying

    1)

    2)

    3)

    Then the trivial solution of system(4)is asymptotically stable.

    Proof:From 3) it follows:

    Noting thatVa(x(t)) is continuous at sampling instant, it is seen from 2) that

    Therefore, from (i) we havex(tk)→0,k →∞.

    On the other hand, from the system (4) it follows that fort ∈[tk,tk+1)

    Thus

    Apply Grownwall-Bellman lemma to obtain

    Now it can be concluded that the system (4) is asymptotically stable.

    Remark 1:Proposition 1 provides a general stability result for a class of nonlinear systems which covers the system (3)subject to (2) as a special case.

    It is noted thatV(x(t),t) is not the same as a usual Lyapunov functional becauseVb(x(t),t)may be discontinuous at sampling instants and it is not required to be positive definite. In the following we referV(x(t),t) to as a kind of Lyapunov-like functional.

    III. STABILITY CRITERIA

    For system (3) subject to (2), we construct a Lyapunov-like functional on [tk,tk+1) as follows:

    where

    with

    Remark 2:Note that

    This implies Lyapunov functional(5)is a 2-order function int,and it includes the integral of the state as well as the sampled state. As seen fromV4(x(t),t),

    So the Lyapunov functional may be discontinuous at the sampling instants. In the following we will see that not every term of Lyapunov functional (5) is required to be positive definite when employed to derive the following samplinginterval-dependent stability result.

    Theorem 1:For givenandsystem (3) subject to (2) is asymptotically stable if there exist symmetric matricesP >0,

    Q >0,Q1>0,Q2,Q3,S ∈Rn×nand matricesNα ∈R4n×n,Lα,α= 1,2,3,Mj ∈Rn×n(j= 1,2,...,6), such that for

    where

    Proof:Firstly, for the Lyapunov functional (5) we have

    Therefore,On the other hand,Letc1=λmin(P),c2=λmax(P), and thenThat is to say the Lyapunov functional (5) satisfies 1) and 2)of Proposition 1.

    In the following we will show it also satisfies 3) of Proposition 1. Define

    Integrating both sides of system (3) subject to (2) leads to

    So there existsN3∈R4n×nsuch that

    Employing Lemma 1 we have

    As per [20] there existN1andN2∈R4n×nsuch that

    Using Jensen inequality [18] gives

    Now from (8)-(14) it is derived that

    where

    On the other hand, from (6) and (7) it is concluded that for

    By (16), it follows thatW(tk)<0 andW(tk+1)<0. SinceW(t) is linear int,W(t)<0 fort ∈(tk,tk+1). By (15),

    Now it is shown under (6) and (7) the Lyapunov functional(5) also satisfies 3) of Proposition 1. By Proposition 1 system(3) subject to (2) is asymptotically stable.

    When, we have a sampling-intervaldependent stability result for the periodic sampling case in the following corollary.

    Corollary 1:For, the system (3) subject to(2) is asymptotically stable if there exist symmetric matricesand matrices,j= 1,2,...,6 such that (6) and (7) hold.

    Remark 3:Theorem 1 and Corollary 1 provide samplinginterval-dependent stability criteria for system (3) subject to(2), by which we can compute the admissible upper bound of sampling intervals that ensures the system to be asymptotically stable. Recently, sampling-interval-dependent stability for system(3)subject to(2)was also studied in[10],[12],[14],and [17]-[21] by employing Lyapunov functional methods.However, as a whole, Lyapunov functionalV(x(t),t) in (5)is different from those in that it is second order with respect to timet, and possibly discontinuous at the sampling points;it involves not only the sampled state but also the integral of the state, and not every term of it is positive definite.Moreover, different from [10],[12],[14] and [17]-[19],[21],when estimatingthis paper employs Lemma 1 and the integral equation (9) to take advantage of the integral of the stateas well as the statex(t). This method is expected to result in less conservative stability results, as illustrated in Section IV.

    When system (3) subject to (2) involves polytopic uncertainties, by Theorem 1 we have the stability result stated as follows.

    Theorem 2:Assume that the matricesAandAdin system(3) subject to (2) belong to a polytope: [A Ad]∈Θ, Θ =with...,land

    Remark 4:It is not difficult to present a stability analysis result using Theorem 1 for sampled-data systems with normbounded parameter uncertainties. Based on Theorem 1 one can also consider the stabilization problem, which is omitted here, given that the objective of this paper is to focus on the stability problem.

    IV. NUMERICAL EXAMPLES

    In this section,we give three examples to show the reduced conservatism of our stability criteria.

    Example 1:Consider the sampled-data control system in Fig.1.

    The physical plant is given bywith

    and the controller is given byu(t) =Kx(t) withK=[3.75 11.5].Since the controller is connected with the physical plant via the sampler and the zero-order hold ZOH,the closedloop system is in a form of (3) with

    which was employed in [10],[12],[14],[17],[19] and [21].

    Firstly we intend to find the admissible upper boundhon the periodic sampling, which guarantees the asymptotic stability of the system. Using Corollary 1 in this paper and some existing stability results we can compute the admissible upper bound, which are listed in Table I.

    Methods [10] [14] [19] [21] Corollary 1 h 1.32 1.69 1.723 1.7239 1.7294

    From the table above, it is seen that the stability result(Corollary 1) in this paper can provide a larger admissible upper boundhon periodic sampling than the corresponding ones in [10],[14],[19] and [21]. In this sense the stability result(Corollary 1)in this paper is less conservative,compared with those in [10],[14],[19] and [21].

    In this example, choose the initial conditionx0=[2-1.8]and the periodh= 1.7294, and then the state responses of the system can be obtained as in Fig.2.

    As shown by the Fig.2, the state trajectory of the closedloop system converges to zero.

    Secondly for the case of variable sampling, with the lower boundwe attempt to compute the admissible upper boundwhich is given in Table II.

    Methods [17] [19] [12] Theorem 1 h 1.36 1.721 1.723 1.729

    As shown from the table, for the variable sampling case,the admissible upper boundin this paper is also larger than the ones in [12],[17] and [19]. Therefore, the stability result Theorem 1 in this paper is less conservative than those in[12],[17] and [19].

    Example 2:Consider a 3rd order system described by (3)with

    The objective is to fnid admissible upper boundfor given lower bound= 0 on the variable sampling such that the closed-loop system is stable. By the methods in [19],[20] and this paper, the comparison results are given in Table III.

    Methods [19] [20] Theorem 1 h 1.9637 2.3724 3.0887

    It is clearly shown our method has the least conservatism.

    Example 3:Consider the uncertain system that was employed in [10],[19],[23] and [24], with parameters

    where|g1| ≤0.1 and|g2| ≤0.3. Obviously the system can be formulated as one with parameters from a polytope,the vertices of which are

    To guarantee the asymptotic stability of the uncertain system, by the stability result Theorem 2 and those in[10],[19],[23] and [24], we can find the admissible upper boundhon the periodic sampling in Table IV.

    Methods [10] [19] [23] [24] Theorem 2 h 0.4610 0.6674 0.7255 0.7310 0.7354

    It is obvious that the stability result Theorem 2 is less conservative than those in [10],[19],[23] and [24].

    V. CONCLUSION

    The stability of sampled-data systems with variable sampling periods has been investigated by constructing a new Lyapunov-like functional. Compared to existing ones the Lyapunov functional is more generalized in the sense of being second order with respect to time t, possibly discontinuous at the sampling instants, including the integral of the state as well as the sampled state. Moreover, not every term of it is required to be positive definite. Some new samplinginterval-dependent stability criteria have been obtained for the sampled-data systems with or without uncertainties.It has been illustrated that the stability criteria are less conservative than some existing ones.

    欧洲精品卡2卡3卡4卡5卡区| 国产亚洲91精品色在线| 少妇裸体淫交视频免费看高清| 成人av在线播放网站| 九九爱精品视频在线观看| 亚洲性久久影院| 日本-黄色视频高清免费观看| 亚洲欧美成人综合另类久久久 | 国产高潮美女av| 久久久久久九九精品二区国产| 国产三级在线视频| 日韩制服骚丝袜av| 精品久久久久久久久av| 91久久精品国产一区二区成人| 99久久精品国产国产毛片| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久av不卡| 99国产精品一区二区蜜桃av| 久久人人爽人人片av| 成人亚洲精品av一区二区| 麻豆成人午夜福利视频| 直男gayav资源| 成人综合一区亚洲| 人妻制服诱惑在线中文字幕| 麻豆久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 国产精品av视频在线免费观看| 亚洲精品粉嫩美女一区| 性插视频无遮挡在线免费观看| 精品人妻熟女av久视频| 晚上一个人看的免费电影| 真实男女啪啪啪动态图| 久久久久国产网址| 国产女主播在线喷水免费视频网站 | 亚洲,欧美,日韩| 欧美日韩综合久久久久久| 成年女人看的毛片在线观看| 在线免费观看的www视频| 精品久久久久久久久av| 国产黄色视频一区二区在线观看 | 欧美日韩乱码在线| 99在线视频只有这里精品首页| 又黄又爽又刺激的免费视频.| 亚洲中文日韩欧美视频| 欧美+亚洲+日韩+国产| 亚洲自偷自拍三级| 午夜激情欧美在线| 欧美激情国产日韩精品一区| 看非洲黑人一级黄片| 日韩成人av中文字幕在线观看 | www日本黄色视频网| 深爱激情五月婷婷| 精品日产1卡2卡| 亚洲国产精品国产精品| 夜夜看夜夜爽夜夜摸| 亚洲真实伦在线观看| 国产三级中文精品| 久久精品国产亚洲av香蕉五月| 免费看美女性在线毛片视频| 深爱激情五月婷婷| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 精品一区二区免费观看| 日本欧美国产在线视频| 免费一级毛片在线播放高清视频| 日本五十路高清| 91久久精品国产一区二区三区| 国产美女午夜福利| 91狼人影院| 国内精品美女久久久久久| 无遮挡黄片免费观看| 国产伦精品一区二区三区视频9| 亚洲内射少妇av| 永久网站在线| 一区二区三区高清视频在线| 深夜a级毛片| 国产精品一及| 最近中文字幕高清免费大全6| 97热精品久久久久久| 日本黄色片子视频| 亚洲成av人片在线播放无| 国产黄片美女视频| 嫩草影视91久久| 91久久精品国产一区二区三区| 18禁在线无遮挡免费观看视频 | 一个人看视频在线观看www免费| 大香蕉久久网| 精品久久久久久久久亚洲| 18禁黄网站禁片免费观看直播| 精品久久国产蜜桃| 欧美xxxx黑人xx丫x性爽| 国产精品美女特级片免费视频播放器| 国产91av在线免费观看| 久久99热6这里只有精品| 99国产精品一区二区蜜桃av| 99热这里只有是精品在线观看| 国产高清三级在线| 一级黄色大片毛片| 亚洲精品日韩在线中文字幕 | 俄罗斯特黄特色一大片| 欧美色视频一区免费| 亚洲最大成人手机在线| 非洲黑人性xxxx精品又粗又长| 男女那种视频在线观看| 嫩草影视91久久| avwww免费| 美女内射精品一级片tv| 老司机福利观看| 一卡2卡三卡四卡精品乱码亚洲| 在线国产一区二区在线| 久久精品人妻少妇| 色哟哟·www| 久久天躁狠狠躁夜夜2o2o| 天天躁日日操中文字幕| 午夜激情欧美在线| a级一级毛片免费在线观看| 2021天堂中文幕一二区在线观| 免费高清视频大片| 国产精华一区二区三区| 免费黄网站久久成人精品| 在线播放无遮挡| 国产成人精品久久久久久| 成人国产麻豆网| 深爱激情五月婷婷| 一级av片app| 亚洲精华国产精华液的使用体验 | 日本免费一区二区三区高清不卡| 九九久久精品国产亚洲av麻豆| 我要搜黄色片| 成年女人毛片免费观看观看9| 久久久久久久亚洲中文字幕| 99视频精品全部免费 在线| 国产精品无大码| 97在线视频观看| 国产精华一区二区三区| 久久久精品大字幕| 黄色日韩在线| 一a级毛片在线观看| 亚洲内射少妇av| 午夜老司机福利剧场| 麻豆国产av国片精品| 午夜激情福利司机影院| 国产高清视频在线播放一区| 日产精品乱码卡一卡2卡三| 少妇人妻一区二区三区视频| 日韩强制内射视频| 51国产日韩欧美| 国产又黄又爽又无遮挡在线| 夜夜看夜夜爽夜夜摸| 91麻豆精品激情在线观看国产| 最近在线观看免费完整版| 天堂影院成人在线观看| 亚洲在线自拍视频| 波多野结衣高清无吗| 亚洲国产欧洲综合997久久,| 好男人在线观看高清免费视频| 美女被艹到高潮喷水动态| 亚洲第一区二区三区不卡| 久久久久久久久大av| 黄色视频,在线免费观看| 99热这里只有是精品在线观看| 精品午夜福利视频在线观看一区| 直男gayav资源| 国产av麻豆久久久久久久| 亚洲天堂国产精品一区在线| 国内精品久久久久精免费| 真人做人爱边吃奶动态| 伊人久久精品亚洲午夜| 久久久久国产精品人妻aⅴ院| 你懂的网址亚洲精品在线观看 | 亚洲高清免费不卡视频| 一边摸一边抽搐一进一小说| 少妇熟女欧美另类| 国产激情偷乱视频一区二区| 黄色配什么色好看| av.在线天堂| 久久99热这里只有精品18| 一区二区三区四区激情视频 | 神马国产精品三级电影在线观看| 男女之事视频高清在线观看| 男人狂女人下面高潮的视频| 国产精品99久久久久久久久| 亚洲精品一区av在线观看| 亚洲av成人av| 性插视频无遮挡在线免费观看| 亚洲va在线va天堂va国产| 中文字幕久久专区| 成人特级黄色片久久久久久久| 亚洲欧美日韩无卡精品| 国产国拍精品亚洲av在线观看| 91在线观看av| 免费电影在线观看免费观看| 春色校园在线视频观看| 亚洲美女搞黄在线观看 | 免费观看精品视频网站| 亚洲成人久久性| 亚洲国产精品合色在线| 色综合色国产| 亚洲在线自拍视频| 国产午夜精品久久久久久一区二区三区 | 国产亚洲精品久久久com| 欧美极品一区二区三区四区| 青春草视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 内射极品少妇av片p| 波多野结衣高清无吗| 欧美bdsm另类| 国产视频一区二区在线看| 免费看a级黄色片| 天堂av国产一区二区熟女人妻| 成人特级黄色片久久久久久久| 亚洲熟妇中文字幕五十中出| 99热6这里只有精品| 国产伦精品一区二区三区四那| 婷婷色综合大香蕉| 日韩欧美免费精品| 精品一区二区三区av网在线观看| 亚洲精华国产精华液的使用体验 | 人妻制服诱惑在线中文字幕| 热99在线观看视频| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 大香蕉久久网| 国产精品三级大全| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲国产成人精品v| 国产免费男女视频| 久久久久久久久大av| av中文乱码字幕在线| 久久精品综合一区二区三区| 国产精品一区www在线观看| 精品国内亚洲2022精品成人| 午夜福利在线在线| av在线天堂中文字幕| 成人漫画全彩无遮挡| 久久国内精品自在自线图片| 中文字幕免费在线视频6| 大香蕉久久网| 精品午夜福利在线看| 性色avwww在线观看| 亚洲av不卡在线观看| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩东京热| 精品久久久久久久久av| 日韩 亚洲 欧美在线| 精品久久久久久久人妻蜜臀av| 日韩精品青青久久久久久| 美女内射精品一级片tv| 国产 一区 欧美 日韩| 12—13女人毛片做爰片一| 99热网站在线观看| 国产真实乱freesex| 精品久久久久久久人妻蜜臀av| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 欧美色视频一区免费| 亚洲中文日韩欧美视频| 少妇被粗大猛烈的视频| 高清日韩中文字幕在线| 三级毛片av免费| 精品福利观看| 国产国拍精品亚洲av在线观看| 成年av动漫网址| 一级黄色大片毛片| a级毛片a级免费在线| 性欧美人与动物交配| 亚洲人成网站在线播放欧美日韩| 久久精品综合一区二区三区| 欧美成人免费av一区二区三区| av.在线天堂| 成年女人永久免费观看视频| 久久人妻av系列| 两个人的视频大全免费| 午夜免费激情av| 啦啦啦韩国在线观看视频| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 十八禁国产超污无遮挡网站| 日日啪夜夜撸| 免费观看人在逋| 免费一级毛片在线播放高清视频| 精品久久久久久久久亚洲| 国模一区二区三区四区视频| 免费观看精品视频网站| 国产三级在线视频| 日本一二三区视频观看| 国产精品一区二区免费欧美| 中文字幕av成人在线电影| av免费在线看不卡| 99在线视频只有这里精品首页| 久久久久久久久中文| 午夜a级毛片| 国内精品宾馆在线| 久久久久国产精品人妻aⅴ院| 免费av毛片视频| 亚洲人与动物交配视频| 在线观看av片永久免费下载| 亚洲最大成人手机在线| 91在线观看av| 听说在线观看完整版免费高清| 美女 人体艺术 gogo| 欧美日韩综合久久久久久| avwww免费| 一个人免费在线观看电影| 色尼玛亚洲综合影院| 久久久久久久久久成人| 色在线成人网| 五月玫瑰六月丁香| 成人漫画全彩无遮挡| 如何舔出高潮| 啦啦啦韩国在线观看视频| 网址你懂的国产日韩在线| 色在线成人网| 亚洲无线在线观看| 亚洲欧美中文字幕日韩二区| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情国产日韩精品一区| 男女啪啪激烈高潮av片| 99久久精品热视频| 精品免费久久久久久久清纯| 亚洲五月天丁香| 亚洲人成网站在线播| 亚洲欧美日韩东京热| 男人舔奶头视频| 亚洲18禁久久av| 欧美成人一区二区免费高清观看| 晚上一个人看的免费电影| 欧美国产日韩亚洲一区| 99久久成人亚洲精品观看| av天堂中文字幕网| ponron亚洲| 成人漫画全彩无遮挡| 两个人视频免费观看高清| 99热全是精品| 99热这里只有精品一区| 国产在视频线在精品| 亚洲欧美成人精品一区二区| 日本黄大片高清| 菩萨蛮人人尽说江南好唐韦庄 | 尤物成人国产欧美一区二区三区| 青春草视频在线免费观看| 精品一区二区三区人妻视频| 成人亚洲欧美一区二区av| 人人妻人人澡欧美一区二区| 国国产精品蜜臀av免费| 久久天躁狠狠躁夜夜2o2o| 秋霞在线观看毛片| 如何舔出高潮| 亚洲人成网站高清观看| 无遮挡黄片免费观看| 国产精品一及| 一级毛片电影观看 | 亚洲av中文av极速乱| 亚州av有码| 性色avwww在线观看| 久久久久久久久久久丰满| 国产精品国产高清国产av| 九九久久精品国产亚洲av麻豆| 六月丁香七月| 日日摸夜夜添夜夜添小说| 久久精品91蜜桃| 国产伦精品一区二区三区视频9| 丝袜美腿在线中文| 欧美3d第一页| 内地一区二区视频在线| 蜜桃久久精品国产亚洲av| av在线老鸭窝| 欧美高清性xxxxhd video| 午夜日韩欧美国产| 国产极品精品免费视频能看的| 一a级毛片在线观看| 偷拍熟女少妇极品色| 一本精品99久久精品77| av.在线天堂| 日日撸夜夜添| 99久国产av精品国产电影| 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| av国产免费在线观看| 久久午夜福利片| 婷婷精品国产亚洲av| 舔av片在线| 久久99热6这里只有精品| 村上凉子中文字幕在线| 麻豆国产av国片精品| 看十八女毛片水多多多| 国产精品三级大全| av在线老鸭窝| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 免费无遮挡裸体视频| 久久久精品欧美日韩精品| 精品人妻一区二区三区麻豆 | 亚洲av二区三区四区| 婷婷六月久久综合丁香| 色视频www国产| 欧美一区二区精品小视频在线| 免费搜索国产男女视频| 亚洲成人av在线免费| 激情 狠狠 欧美| 亚洲在线自拍视频| 色哟哟·www| 日韩欧美国产在线观看| 日韩精品青青久久久久久| 麻豆精品久久久久久蜜桃| 精品熟女少妇av免费看| 欧美性猛交黑人性爽| 91狼人影院| 九色成人免费人妻av| av专区在线播放| 色吧在线观看| 男人狂女人下面高潮的视频| 国产精品av视频在线免费观看| 麻豆av噜噜一区二区三区| 国产真实伦视频高清在线观看| 久99久视频精品免费| 伦理电影大哥的女人| 在线观看午夜福利视频| 亚洲最大成人中文| 毛片一级片免费看久久久久| 国产精品乱码一区二三区的特点| 天天躁日日操中文字幕| 欧美日韩国产亚洲二区| 搡女人真爽免费视频火全软件 | 嫩草影院入口| 欧美日本视频| 国产精品一及| 欧美另类亚洲清纯唯美| 国产真实伦视频高清在线观看| 色av中文字幕| 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 欧美又色又爽又黄视频| 精品午夜福利视频在线观看一区| 国产精品福利在线免费观看| 午夜福利成人在线免费观看| 国产高清视频在线播放一区| 男人舔奶头视频| 久久久久国内视频| 亚洲第一区二区三区不卡| 色播亚洲综合网| 国产av麻豆久久久久久久| 亚洲性夜色夜夜综合| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 午夜久久久久精精品| 深夜a级毛片| 一进一出抽搐动态| 中文字幕av成人在线电影| 少妇裸体淫交视频免费看高清| 日韩在线高清观看一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| 97碰自拍视频| 久久久国产成人精品二区| 欧美最新免费一区二区三区| 久久久精品欧美日韩精品| 淫妇啪啪啪对白视频| 国内精品一区二区在线观看| 日韩成人av中文字幕在线观看 | a级毛片a级免费在线| 精品久久久久久久久久免费视频| 高清日韩中文字幕在线| 美女被艹到高潮喷水动态| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区| 精品乱码久久久久久99久播| 老师上课跳d突然被开到最大视频| 国产成人福利小说| 男女那种视频在线观看| 亚洲精品亚洲一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产三级在线视频| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 春色校园在线视频观看| a级一级毛片免费在线观看| 嫩草影院新地址| 国产亚洲精品av在线| 美女黄网站色视频| 非洲黑人性xxxx精品又粗又长| 在线天堂最新版资源| 男女视频在线观看网站免费| 美女被艹到高潮喷水动态| 午夜亚洲福利在线播放| 国产成人一区二区在线| 九九热线精品视视频播放| 中文字幕久久专区| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 国产精品一区二区三区四区久久| 欧美潮喷喷水| 国产精品人妻久久久影院| 99久久成人亚洲精品观看| 国产成人91sexporn| 久久精品综合一区二区三区| 国产av麻豆久久久久久久| 亚洲七黄色美女视频| 亚洲无线观看免费| 日韩高清综合在线| 在线a可以看的网站| 成人性生交大片免费视频hd| 看非洲黑人一级黄片| 午夜福利在线在线| 深夜a级毛片| 毛片女人毛片| 亚洲国产日韩欧美精品在线观看| 色噜噜av男人的天堂激情| 亚洲性夜色夜夜综合| 成人二区视频| 此物有八面人人有两片| 岛国在线免费视频观看| 免费观看精品视频网站| 一区二区三区高清视频在线| 噜噜噜噜噜久久久久久91| 欧美xxxx性猛交bbbb| 国产亚洲欧美98| 小说图片视频综合网站| 午夜亚洲福利在线播放| 又爽又黄a免费视频| 久久久久久九九精品二区国产| 超碰av人人做人人爽久久| 国产在视频线在精品| 你懂的网址亚洲精品在线观看 | 日日啪夜夜撸| 插阴视频在线观看视频| 少妇的逼水好多| 日韩欧美精品v在线| 别揉我奶头~嗯~啊~动态视频| 久久久久国产精品人妻aⅴ院| av中文乱码字幕在线| 亚洲五月天丁香| 亚洲国产日韩欧美精品在线观看| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 大型黄色视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久亚洲中文字幕| 成年女人看的毛片在线观看| 亚洲精品国产av成人精品 | 国产极品精品免费视频能看的| 久久综合国产亚洲精品| 99久久成人亚洲精品观看| 波多野结衣高清作品| 成熟少妇高潮喷水视频| 在线观看av片永久免费下载| 在线观看午夜福利视频| 18+在线观看网站| 国产高清激情床上av| 欧美丝袜亚洲另类| 国产极品精品免费视频能看的| 欧美在线一区亚洲| 国产成人一区二区在线| 亚洲国产精品成人综合色| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 久久精品91蜜桃| 99久久无色码亚洲精品果冻| 老司机午夜福利在线观看视频| 久久热精品热| 中文字幕精品亚洲无线码一区| 人妻夜夜爽99麻豆av| 男人的好看免费观看在线视频| 内射极品少妇av片p| 中国美女看黄片| 日韩,欧美,国产一区二区三区 | 免费搜索国产男女视频| 国产av麻豆久久久久久久| 久久人人精品亚洲av| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 身体一侧抽搐| 成人漫画全彩无遮挡| 99久久成人亚洲精品观看| 精品久久久久久久久av| av在线老鸭窝| 99热网站在线观看| 老司机福利观看| 免费在线观看影片大全网站| 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频| 亚洲专区国产一区二区| 欧美性猛交黑人性爽| 如何舔出高潮| 久久精品91蜜桃| 亚洲七黄色美女视频| 一个人看的www免费观看视频| 18禁在线播放成人免费| 99热这里只有是精品50| 久久精品国产自在天天线| 国产视频内射| 在线观看免费视频日本深夜| 超碰av人人做人人爽久久| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 精品国内亚洲2022精品成人| 国产精品,欧美在线| 国产v大片淫在线免费观看| 精品一区二区免费观看| 中出人妻视频一区二区| 91午夜精品亚洲一区二区三区| 男人和女人高潮做爰伦理| 小说图片视频综合网站| 少妇猛男粗大的猛烈进出视频 | 男人舔奶头视频| 成人美女网站在线观看视频| 一个人观看的视频www高清免费观看| 婷婷精品国产亚洲av在线| 又黄又爽又刺激的免费视频.| 亚洲国产精品成人综合色|