• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel Stability Criteria for Sampled-Data Systems With Variable Sampling Periods

    2020-02-29 14:21:26HanyongShaoJianrongZhaoandDanZhang
    IEEE/CAA Journal of Automatica Sinica 2020年1期

    Hanyong Shao, Jianrong Zhao, and Dan Zhang

    Abstract—This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties.Finally,three examples are given to illustrate the reduced conservatism of the stability criteria.

    I. INTRODUCTION

    SAMPLED-DATA systems have received substantial attention over the last two decades due to their wide applications in digital control systems and networked control systems[1]-[7]. Stability of sampled-data systems is an especially interesting topic for many researchers [8]. In the literature there are mainly four approaches to the stability of sampleddata systems. The first is the discrete-time system method,which transforms sampled-data systems into discrete-time systems and then applies the classical system theory to stability analysis [9]. However, the method encounters difficulties for systems with variable sampling periods or uncertainties. The second approach to stability of sampled-data systems is the impulsive system method [10], [11]. As indicated in [10], the method requires the sampled-data system to be represented in the form of an impulsive model, and stability conditions are derived by constructing a time-dependent discontinuous Lyapunov functional.The third method is the input delay approach[12]-[14] by which sampled-data systems are formulated as continuous-time systems with a time-varying delay, and the time-dependent Lyapunov functional method is employed to study the stability of the continuous-time systems [15]-[18].As shown in [10]-[14] the time-dependent Lyapunov functional can lead to a stability condition that determines an upper bound of the time-varying delay, namely the size of the sampling interval.It is well known that both computational burden and data transmission rate of the sampled-data systems are decreased as the sampling interval increases. Therefore,the second and third methods are of significance in obtaining a possibly larger sampling period that ensures the stability of sampled-data systems. However, the Lyapunov functional involved in the latter two methods is too restrictive. The fourth is the Lyapunov-like functional method. It does not involve model transformation. Moreover, the functional is not necessarily positive definite [19]-[22]. Recently stability criteria of sampled-data system were provided by the fourth method in [19]. A further improved stability criterion was obtained in [20] by using a new inequality to estimate the derivative of the Lyapunov-like functional.Very recently those stability results have been extended to sampled-data systems with state quantization [21]. Note that the existing Lyapunovlike functional does not include the integral of the state; there is still room for the functional to improve.

    In this paper we further investigate the stability of a sampled-data system with variable sampling periods. Novel sampling-interval-dependent stability criteria are derived by a new Lyapunov-like functional approach that does not involve model transformation.Compared with existing ones,the Lyapunov functional makes use of the integral of the state as well as the sampled state. It is time-dependent, may be discontinuous, and not every term of it is necessarily positive definite. It is illustrated by examples that the stability criteria derived are less conservative than some existing ones.

    Throughout this paperIrefers to an identity matrix with appropriate dimensions. For real symmetric matricesXandY, the notationX >Y(respectively,X ≥Y) means that the matrixX-Yis positive definite (respectively, positive semidefinite). TheSym(X) stands forX+XT. In symmetric block matrices, we use an asterisk*to represent a term that is induced by symmetry. The smallest and the largest eigenvalues of a real symmetric matrixXare denoted byλmin(X) andλmax(X), respectively.| · |is the Euclidean norm for a vector while‖·‖is the induced matrix norm. We writeMatrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

    II. PROBLEM FORMULATION

    Consider the linear system

    wherex(t)∈Rnis the state,A ∈Rn×n,B ∈Rn×mare known real constant matrices,u(t)∈Rmis the sampled-data inputu(t)=ud(tk),t ∈[tk,tk+1), with sampling instantstksatisfying 0=t0<t1<···<tk <···, and

    For a state-feedback controller in the form of

    the corresponding closed-loop system is

    whereAd=BK.

    The purpose of this paper is to study the stability problem for system(3)subject to(2),that is,for a givenK,to establish some sampling-interval-dependent stability conditions such that the system is asymptotically stable. In the following we give a lemma and a proposition that play a crucial role in studying the stability problem.

    Lemma 1[20]:For a given matrixR >0, the following inequality holds for all continuously differentiable functionωin [a,b]→Rn

    To study the stability problem mentioned above,the following proposition is also needed.

    Proposition 1:Consider the following sampled-data system described by

    where the sampling interval satisfies (2),f(0,0)=0, and fory(t),y(tk)∈Rn

    whereL1>0 andL2>0 are known constants. Forc1>0,c2>0 and a solutionx(t) to the system, suppose that there exist a continuous functionalVa(x(t)) and a piecewise continuous functionalsatisfying

    1)

    2)

    3)

    Then the trivial solution of system(4)is asymptotically stable.

    Proof:From 3) it follows:

    Noting thatVa(x(t)) is continuous at sampling instant, it is seen from 2) that

    Therefore, from (i) we havex(tk)→0,k →∞.

    On the other hand, from the system (4) it follows that fort ∈[tk,tk+1)

    Thus

    Apply Grownwall-Bellman lemma to obtain

    Now it can be concluded that the system (4) is asymptotically stable.

    Remark 1:Proposition 1 provides a general stability result for a class of nonlinear systems which covers the system (3)subject to (2) as a special case.

    It is noted thatV(x(t),t) is not the same as a usual Lyapunov functional becauseVb(x(t),t)may be discontinuous at sampling instants and it is not required to be positive definite. In the following we referV(x(t),t) to as a kind of Lyapunov-like functional.

    III. STABILITY CRITERIA

    For system (3) subject to (2), we construct a Lyapunov-like functional on [tk,tk+1) as follows:

    where

    with

    Remark 2:Note that

    This implies Lyapunov functional(5)is a 2-order function int,and it includes the integral of the state as well as the sampled state. As seen fromV4(x(t),t),

    So the Lyapunov functional may be discontinuous at the sampling instants. In the following we will see that not every term of Lyapunov functional (5) is required to be positive definite when employed to derive the following samplinginterval-dependent stability result.

    Theorem 1:For givenandsystem (3) subject to (2) is asymptotically stable if there exist symmetric matricesP >0,

    Q >0,Q1>0,Q2,Q3,S ∈Rn×nand matricesNα ∈R4n×n,Lα,α= 1,2,3,Mj ∈Rn×n(j= 1,2,...,6), such that for

    where

    Proof:Firstly, for the Lyapunov functional (5) we have

    Therefore,On the other hand,Letc1=λmin(P),c2=λmax(P), and thenThat is to say the Lyapunov functional (5) satisfies 1) and 2)of Proposition 1.

    In the following we will show it also satisfies 3) of Proposition 1. Define

    Integrating both sides of system (3) subject to (2) leads to

    So there existsN3∈R4n×nsuch that

    Employing Lemma 1 we have

    As per [20] there existN1andN2∈R4n×nsuch that

    Using Jensen inequality [18] gives

    Now from (8)-(14) it is derived that

    where

    On the other hand, from (6) and (7) it is concluded that for

    By (16), it follows thatW(tk)<0 andW(tk+1)<0. SinceW(t) is linear int,W(t)<0 fort ∈(tk,tk+1). By (15),

    Now it is shown under (6) and (7) the Lyapunov functional(5) also satisfies 3) of Proposition 1. By Proposition 1 system(3) subject to (2) is asymptotically stable.

    When, we have a sampling-intervaldependent stability result for the periodic sampling case in the following corollary.

    Corollary 1:For, the system (3) subject to(2) is asymptotically stable if there exist symmetric matricesand matrices,j= 1,2,...,6 such that (6) and (7) hold.

    Remark 3:Theorem 1 and Corollary 1 provide samplinginterval-dependent stability criteria for system (3) subject to(2), by which we can compute the admissible upper bound of sampling intervals that ensures the system to be asymptotically stable. Recently, sampling-interval-dependent stability for system(3)subject to(2)was also studied in[10],[12],[14],and [17]-[21] by employing Lyapunov functional methods.However, as a whole, Lyapunov functionalV(x(t),t) in (5)is different from those in that it is second order with respect to timet, and possibly discontinuous at the sampling points;it involves not only the sampled state but also the integral of the state, and not every term of it is positive definite.Moreover, different from [10],[12],[14] and [17]-[19],[21],when estimatingthis paper employs Lemma 1 and the integral equation (9) to take advantage of the integral of the stateas well as the statex(t). This method is expected to result in less conservative stability results, as illustrated in Section IV.

    When system (3) subject to (2) involves polytopic uncertainties, by Theorem 1 we have the stability result stated as follows.

    Theorem 2:Assume that the matricesAandAdin system(3) subject to (2) belong to a polytope: [A Ad]∈Θ, Θ =with...,land

    Remark 4:It is not difficult to present a stability analysis result using Theorem 1 for sampled-data systems with normbounded parameter uncertainties. Based on Theorem 1 one can also consider the stabilization problem, which is omitted here, given that the objective of this paper is to focus on the stability problem.

    IV. NUMERICAL EXAMPLES

    In this section,we give three examples to show the reduced conservatism of our stability criteria.

    Example 1:Consider the sampled-data control system in Fig.1.

    The physical plant is given bywith

    and the controller is given byu(t) =Kx(t) withK=[3.75 11.5].Since the controller is connected with the physical plant via the sampler and the zero-order hold ZOH,the closedloop system is in a form of (3) with

    which was employed in [10],[12],[14],[17],[19] and [21].

    Firstly we intend to find the admissible upper boundhon the periodic sampling, which guarantees the asymptotic stability of the system. Using Corollary 1 in this paper and some existing stability results we can compute the admissible upper bound, which are listed in Table I.

    Methods [10] [14] [19] [21] Corollary 1 h 1.32 1.69 1.723 1.7239 1.7294

    From the table above, it is seen that the stability result(Corollary 1) in this paper can provide a larger admissible upper boundhon periodic sampling than the corresponding ones in [10],[14],[19] and [21]. In this sense the stability result(Corollary 1)in this paper is less conservative,compared with those in [10],[14],[19] and [21].

    In this example, choose the initial conditionx0=[2-1.8]and the periodh= 1.7294, and then the state responses of the system can be obtained as in Fig.2.

    As shown by the Fig.2, the state trajectory of the closedloop system converges to zero.

    Secondly for the case of variable sampling, with the lower boundwe attempt to compute the admissible upper boundwhich is given in Table II.

    Methods [17] [19] [12] Theorem 1 h 1.36 1.721 1.723 1.729

    As shown from the table, for the variable sampling case,the admissible upper boundin this paper is also larger than the ones in [12],[17] and [19]. Therefore, the stability result Theorem 1 in this paper is less conservative than those in[12],[17] and [19].

    Example 2:Consider a 3rd order system described by (3)with

    The objective is to fnid admissible upper boundfor given lower bound= 0 on the variable sampling such that the closed-loop system is stable. By the methods in [19],[20] and this paper, the comparison results are given in Table III.

    Methods [19] [20] Theorem 1 h 1.9637 2.3724 3.0887

    It is clearly shown our method has the least conservatism.

    Example 3:Consider the uncertain system that was employed in [10],[19],[23] and [24], with parameters

    where|g1| ≤0.1 and|g2| ≤0.3. Obviously the system can be formulated as one with parameters from a polytope,the vertices of which are

    To guarantee the asymptotic stability of the uncertain system, by the stability result Theorem 2 and those in[10],[19],[23] and [24], we can find the admissible upper boundhon the periodic sampling in Table IV.

    Methods [10] [19] [23] [24] Theorem 2 h 0.4610 0.6674 0.7255 0.7310 0.7354

    It is obvious that the stability result Theorem 2 is less conservative than those in [10],[19],[23] and [24].

    V. CONCLUSION

    The stability of sampled-data systems with variable sampling periods has been investigated by constructing a new Lyapunov-like functional. Compared to existing ones the Lyapunov functional is more generalized in the sense of being second order with respect to time t, possibly discontinuous at the sampling instants, including the integral of the state as well as the sampled state. Moreover, not every term of it is required to be positive definite. Some new samplinginterval-dependent stability criteria have been obtained for the sampled-data systems with or without uncertainties.It has been illustrated that the stability criteria are less conservative than some existing ones.

    国模一区二区三区四区视频| 国产在线一区二区三区精| 久久久精品免费免费高清| 伦理电影大哥的女人| 日日啪夜夜撸| 99九九线精品视频在线观看视频| 久99久视频精品免费| 国产精品麻豆人妻色哟哟久久 | 青春草亚洲视频在线观看| 亚洲四区av| 丝瓜视频免费看黄片| 十八禁网站网址无遮挡 | 中文字幕免费在线视频6| 日韩成人伦理影院| 在线观看av片永久免费下载| 久久久精品94久久精品| 国产麻豆成人av免费视频| 99热这里只有精品一区| 伊人久久精品亚洲午夜| 国产一区二区在线观看日韩| 91精品伊人久久大香线蕉| 国产一级毛片在线| 九草在线视频观看| 欧美日韩在线观看h| 91久久精品国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 中文字幕免费在线视频6| 天天一区二区日本电影三级| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 又爽又黄无遮挡网站| 国产又色又爽无遮挡免| 人人妻人人澡欧美一区二区| 欧美一区二区亚洲| 亚洲国产精品成人综合色| 性色avwww在线观看| 亚洲高清免费不卡视频| 嫩草影院精品99| 免费看美女性在线毛片视频| 亚洲精品影视一区二区三区av| 免费观看的影片在线观看| 三级毛片av免费| 久热久热在线精品观看| 中文在线观看免费www的网站| 天堂av国产一区二区熟女人妻| 亚洲精品一二三| 三级经典国产精品| 1000部很黄的大片| 日本午夜av视频| 综合色av麻豆| 国产精品伦人一区二区| 日韩,欧美,国产一区二区三区| 街头女战士在线观看网站| 搡老乐熟女国产| 在线免费观看不下载黄p国产| 欧美潮喷喷水| 免费高清在线观看视频在线观看| 搡老妇女老女人老熟妇| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 精华霜和精华液先用哪个| 青青草视频在线视频观看| 国产精品一二三区在线看| 国产精品人妻久久久久久| 国产男人的电影天堂91| 久久久久九九精品影院| 男女那种视频在线观看| 两个人的视频大全免费| 国产亚洲最大av| 在线免费观看不下载黄p国产| 国产又色又爽无遮挡免| 亚洲自拍偷在线| 69人妻影院| 精品99又大又爽又粗少妇毛片| 国产黄片美女视频| 日韩三级伦理在线观看| 好男人在线观看高清免费视频| 久久久久久久亚洲中文字幕| 中文字幕av成人在线电影| 淫秽高清视频在线观看| 91精品国产九色| 亚洲最大成人中文| 日日撸夜夜添| 午夜激情欧美在线| 黄色一级大片看看| 亚洲综合色惰| 国产成人aa在线观看| 欧美高清成人免费视频www| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲不卡免费看| 老司机影院毛片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产色片| 18+在线观看网站| av在线观看视频网站免费| av在线天堂中文字幕| 成人鲁丝片一二三区免费| 大香蕉久久网| 亚洲国产精品专区欧美| 少妇猛男粗大的猛烈进出视频 | 三级经典国产精品| 一边亲一边摸免费视频| 色视频www国产| 99re6热这里在线精品视频| 日韩人妻高清精品专区| 成人特级av手机在线观看| 韩国高清视频一区二区三区| 欧美+日韩+精品| av国产免费在线观看| 亚洲国产精品成人综合色| 尤物成人国产欧美一区二区三区| 男女边摸边吃奶| av在线天堂中文字幕| 中文字幕亚洲精品专区| av福利片在线观看| 日本猛色少妇xxxxx猛交久久| 国产人妻一区二区三区在| 夜夜爽夜夜爽视频| 91aial.com中文字幕在线观看| 午夜亚洲福利在线播放| 国产在线一区二区三区精| 亚洲国产高清在线一区二区三| 久久人人爽人人爽人人片va| 免费看日本二区| 精品酒店卫生间| 色吧在线观看| 少妇熟女欧美另类| 大陆偷拍与自拍| 亚洲精品色激情综合| 久久久久精品性色| 欧美不卡视频在线免费观看| 中文精品一卡2卡3卡4更新| 人妻少妇偷人精品九色| 99久久精品一区二区三区| 久久99精品国语久久久| 男女视频在线观看网站免费| 国产欧美日韩精品一区二区| 日韩中字成人| 欧美xxxx黑人xx丫x性爽| 精品久久久噜噜| 天天躁夜夜躁狠狠久久av| 亚洲av一区综合| 成年av动漫网址| 国产有黄有色有爽视频| 在线观看美女被高潮喷水网站| 女的被弄到高潮叫床怎么办| 日本黄大片高清| 亚洲精品国产成人久久av| 国产精品伦人一区二区| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 九九爱精品视频在线观看| 你懂的网址亚洲精品在线观看| 一级片'在线观看视频| 99热6这里只有精品| 伦精品一区二区三区| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 天堂av国产一区二区熟女人妻| 亚洲欧美日韩无卡精品| 亚洲最大成人手机在线| 91精品一卡2卡3卡4卡| 男人舔女人下体高潮全视频| 亚洲精品日本国产第一区| 日韩在线高清观看一区二区三区| 国产精品久久久久久精品电影| 国产老妇伦熟女老妇高清| 91精品一卡2卡3卡4卡| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 日本欧美国产在线视频| 国产精品美女特级片免费视频播放器| 青春草国产在线视频| 可以在线观看毛片的网站| 黄色日韩在线| 五月伊人婷婷丁香| 免费大片18禁| 免费在线观看成人毛片| 久久这里有精品视频免费| 国内精品美女久久久久久| 美女国产视频在线观看| 欧美激情在线99| 亚洲一区高清亚洲精品| 18+在线观看网站| 男女边摸边吃奶| 男女边吃奶边做爰视频| 国产精品久久久久久久久免| 午夜福利在线观看免费完整高清在| 丰满乱子伦码专区| 中文字幕亚洲精品专区| 国产精品综合久久久久久久免费| 天美传媒精品一区二区| 啦啦啦韩国在线观看视频| 国产精品福利在线免费观看| 在线免费十八禁| 日韩在线高清观看一区二区三区| 五月玫瑰六月丁香| 丝瓜视频免费看黄片| 国产爱豆传媒在线观看| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 欧美bdsm另类| 在线 av 中文字幕| 大陆偷拍与自拍| 嫩草影院精品99| 日日摸夜夜添夜夜爱| 亚洲在线自拍视频| av免费观看日本| 久久久色成人| 精品酒店卫生间| 在线免费观看的www视频| 非洲黑人性xxxx精品又粗又长| 欧美不卡视频在线免费观看| 成人漫画全彩无遮挡| 99久久人妻综合| 中文字幕av成人在线电影| 国产成人a∨麻豆精品| 午夜视频国产福利| 亚洲综合色惰| 99热这里只有是精品在线观看| 在线天堂最新版资源| 高清av免费在线| 国产精品美女特级片免费视频播放器| 99久久精品国产国产毛片| 午夜免费激情av| 欧美变态另类bdsm刘玥| 人人妻人人澡欧美一区二区| 少妇猛男粗大的猛烈进出视频 | 中文字幕亚洲精品专区| 日韩成人伦理影院| 黄片wwwwww| 欧美激情在线99| 亚洲精品一区蜜桃| 免费大片黄手机在线观看| 婷婷色综合大香蕉| 嫩草影院新地址| 亚洲av电影不卡..在线观看| 女人久久www免费人成看片| 欧美bdsm另类| 91精品伊人久久大香线蕉| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 男人舔女人下体高潮全视频| 91精品伊人久久大香线蕉| 直男gayav资源| 波野结衣二区三区在线| 国产欧美另类精品又又久久亚洲欧美| 色尼玛亚洲综合影院| 婷婷色麻豆天堂久久| 久久6这里有精品| a级一级毛片免费在线观看| 热99在线观看视频| 亚洲国产成人一精品久久久| 91aial.com中文字幕在线观看| 男人爽女人下面视频在线观看| 九草在线视频观看| 一个人免费在线观看电影| 夜夜爽夜夜爽视频| 免费电影在线观看免费观看| 久久久久久久国产电影| 国产精品福利在线免费观看| 一级黄片播放器| 一级毛片黄色毛片免费观看视频| av在线播放精品| 99久久精品一区二区三区| 久久久久久久久大av| 免费观看的影片在线观看| 国产免费又黄又爽又色| 91久久精品电影网| 中国国产av一级| 日本黄色片子视频| 国产精品99久久久久久久久| 黑人高潮一二区| 一级av片app| 美女脱内裤让男人舔精品视频| av一本久久久久| 久久久久久久国产电影| 国产精品一区二区性色av| 久久综合国产亚洲精品| videos熟女内射| 成人亚洲欧美一区二区av| 国产男人的电影天堂91| av女优亚洲男人天堂| 女的被弄到高潮叫床怎么办| 欧美激情久久久久久爽电影| 99热网站在线观看| 午夜爱爱视频在线播放| 国产精品人妻久久久久久| 97人妻精品一区二区三区麻豆| 欧美xxxx黑人xx丫x性爽| 青春草视频在线免费观看| 亚洲真实伦在线观看| 日日摸夜夜添夜夜爱| 久久久a久久爽久久v久久| 日韩av在线免费看完整版不卡| 国产综合精华液| 极品少妇高潮喷水抽搐| 免费高清在线观看视频在线观看| 午夜激情欧美在线| 日韩精品青青久久久久久| 亚洲精品日本国产第一区| 精品不卡国产一区二区三区| 国产免费视频播放在线视频 | 国精品久久久久久国模美| 国产伦理片在线播放av一区| 一级二级三级毛片免费看| 国产激情偷乱视频一区二区| 天堂√8在线中文| 丝袜喷水一区| 亚洲av免费在线观看| 欧美成人午夜免费资源| 日韩伦理黄色片| 建设人人有责人人尽责人人享有的 | 国产精品久久视频播放| 99热6这里只有精品| 午夜亚洲福利在线播放| 一本一本综合久久| 夜夜爽夜夜爽视频| 久久99蜜桃精品久久| 好男人视频免费观看在线| 在线观看美女被高潮喷水网站| 如何舔出高潮| 欧美最新免费一区二区三区| 亚洲熟妇中文字幕五十中出| 国产视频内射| 看十八女毛片水多多多| 777米奇影视久久| 一级黄片播放器| av福利片在线观看| 亚洲欧洲日产国产| 精品人妻熟女av久视频| 午夜亚洲福利在线播放| 精品99又大又爽又粗少妇毛片| 国产伦一二天堂av在线观看| 精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 欧美日韩亚洲高清精品| 男女边摸边吃奶| 插阴视频在线观看视频| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 国产精品爽爽va在线观看网站| 亚洲精品国产av蜜桃| 国产免费一级a男人的天堂| 高清毛片免费看| 国产午夜精品论理片| 国产午夜精品久久久久久一区二区三区| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 国产精品福利在线免费观看| 日本一二三区视频观看| 午夜精品一区二区三区免费看| 国产黄频视频在线观看| 欧美zozozo另类| 日韩欧美国产在线观看| 午夜福利在线观看免费完整高清在| 国产黄a三级三级三级人| 国产在线一区二区三区精| 91午夜精品亚洲一区二区三区| 国产国拍精品亚洲av在线观看| 毛片一级片免费看久久久久| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| 国产精品久久视频播放| 九九爱精品视频在线观看| 国产爱豆传媒在线观看| 国产高清有码在线观看视频| 午夜久久久久精精品| 人妻夜夜爽99麻豆av| 大片免费播放器 马上看| 国产精品久久久久久久久免| 中文资源天堂在线| 又大又黄又爽视频免费| 亚洲va在线va天堂va国产| 欧美激情国产日韩精品一区| 色吧在线观看| 一级黄片播放器| 老司机影院毛片| 成人特级av手机在线观看| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 国产av国产精品国产| 一级毛片aaaaaa免费看小| 中文字幕av成人在线电影| 深爱激情五月婷婷| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 成年人午夜在线观看视频 | 国产精品人妻久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产成人精品婷婷| a级毛色黄片| 国产精品久久久久久久电影| 2018国产大陆天天弄谢| av黄色大香蕉| 亚洲第一区二区三区不卡| 亚洲国产欧美人成| 国产91av在线免费观看| 国产爱豆传媒在线观看| 69av精品久久久久久| 亚洲人成网站在线观看播放| 五月伊人婷婷丁香| 国产黄色视频一区二区在线观看| 亚洲,欧美,日韩| 久久99热这里只有精品18| 免费在线观看成人毛片| 免费av不卡在线播放| 综合色av麻豆| 欧美成人午夜免费资源| 日本与韩国留学比较| 亚洲婷婷狠狠爱综合网| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 熟女人妻精品中文字幕| 一个人看的www免费观看视频| 国产精品国产三级国产av玫瑰| 一级黄片播放器| 国产探花极品一区二区| 亚洲国产欧美人成| 久久久久久久大尺度免费视频| 全区人妻精品视频| av免费在线看不卡| 成人av在线播放网站| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 亚洲精品乱码久久久v下载方式| 亚洲成人精品中文字幕电影| 视频中文字幕在线观看| 国产精品蜜桃在线观看| 亚洲av国产av综合av卡| 午夜福利视频精品| 国产伦理片在线播放av一区| 3wmmmm亚洲av在线观看| 91精品国产九色| 亚洲精品日韩在线中文字幕| 欧美成人a在线观看| 国产毛片a区久久久久| 听说在线观看完整版免费高清| 如何舔出高潮| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 国产精品99久久久久久久久| 一级二级三级毛片免费看| 黄色欧美视频在线观看| 国产伦精品一区二区三区视频9| 国产视频内射| 午夜福利在线在线| 能在线免费观看的黄片| 久久鲁丝午夜福利片| 亚洲av一区综合| 51国产日韩欧美| 国产高清不卡午夜福利| 综合色av麻豆| 国产精品麻豆人妻色哟哟久久 | 水蜜桃什么品种好| 美女脱内裤让男人舔精品视频| 免费观看性生交大片5| 联通29元200g的流量卡| 亚洲怡红院男人天堂| 亚洲精品456在线播放app| 久久热精品热| 一级毛片我不卡| 中文资源天堂在线| 国产男人的电影天堂91| 日本三级黄在线观看| 亚洲乱码一区二区免费版| 久久久久精品性色| 免费观看av网站的网址| 亚洲精品影视一区二区三区av| 国产成人freesex在线| 一级毛片久久久久久久久女| h日本视频在线播放| 日本一二三区视频观看| 国产av在哪里看| 国产精品一二三区在线看| freevideosex欧美| 91精品一卡2卡3卡4卡| 高清av免费在线| 激情五月婷婷亚洲| 国产大屁股一区二区在线视频| 草草在线视频免费看| 99热这里只有精品一区| 男人舔女人下体高潮全视频| 国产单亲对白刺激| 国产真实伦视频高清在线观看| 啦啦啦啦在线视频资源| 久久99蜜桃精品久久| 又爽又黄无遮挡网站| av国产免费在线观看| 欧美 日韩 精品 国产| 亚洲国产精品sss在线观看| 超碰97精品在线观看| av在线观看视频网站免费| 97精品久久久久久久久久精品| 男女边摸边吃奶| 中文乱码字字幕精品一区二区三区 | 身体一侧抽搐| 日本欧美国产在线视频| 国产一区有黄有色的免费视频 | 免费看av在线观看网站| eeuss影院久久| 成年av动漫网址| 免费电影在线观看免费观看| 大又大粗又爽又黄少妇毛片口| 国产av不卡久久| 免费人成在线观看视频色| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 午夜精品在线福利| 日韩av在线免费看完整版不卡| 三级国产精品片| av国产免费在线观看| 亚洲国产精品国产精品| 亚洲精品色激情综合| 可以在线观看毛片的网站| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| 六月丁香七月| 精品不卡国产一区二区三区| 久久国内精品自在自线图片| 国产精品一区二区性色av| 99热6这里只有精品| 国产av在哪里看| 啦啦啦啦在线视频资源| 久久国产乱子免费精品| 亚洲成人一二三区av| 久久久久久伊人网av| 国产亚洲精品av在线| 午夜老司机福利剧场| 亚洲精品日韩在线中文字幕| 精品久久久久久久久久久久久| or卡值多少钱| 在线天堂最新版资源| 美女高潮的动态| 国产一区亚洲一区在线观看| 国产探花极品一区二区| 男人爽女人下面视频在线观看| eeuss影院久久| av专区在线播放| 男女视频在线观看网站免费| 日韩精品青青久久久久久| 国产乱人偷精品视频| 青春草亚洲视频在线观看| 国产熟女欧美一区二区| 国产单亲对白刺激| 少妇的逼好多水| 看十八女毛片水多多多| 午夜老司机福利剧场| 免费观看在线日韩| 午夜爱爱视频在线播放| 国产亚洲5aaaaa淫片| 欧美 日韩 精品 国产| 亚洲国产av新网站| 国产一区有黄有色的免费视频 | 嫩草影院入口| 亚洲成色77777| 99热全是精品| 黑人高潮一二区| www.av在线官网国产| 最近2019中文字幕mv第一页| 亚洲欧洲国产日韩| 91精品一卡2卡3卡4卡| 禁无遮挡网站| eeuss影院久久| 国产在线男女| 国产精品久久久久久av不卡| 日产精品乱码卡一卡2卡三| 国产高清三级在线| 国产av国产精品国产| 久久精品人妻少妇| 尤物成人国产欧美一区二区三区| 99九九线精品视频在线观看视频| 成年女人看的毛片在线观看| 18禁动态无遮挡网站| 丰满乱子伦码专区| 你懂的网址亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 久久久国产一区二区| 免费av不卡在线播放| 国产69精品久久久久777片| 国产亚洲91精品色在线| 成人亚洲精品一区在线观看 | 免费看美女性在线毛片视频| 精品一区二区三区人妻视频| 亚洲美女搞黄在线观看| 欧美性感艳星| 夜夜看夜夜爽夜夜摸| 欧美成人精品欧美一级黄| 欧美另类一区| 肉色欧美久久久久久久蜜桃 | 亚洲经典国产精华液单| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 久久久久久久久久久免费av| 国产视频内射| 一边亲一边摸免费视频| 精品不卡国产一区二区三区| 蜜桃亚洲精品一区二区三区| 丰满乱子伦码专区| 精品熟女少妇av免费看| 国产精品蜜桃在线观看| 搡老乐熟女国产| av在线蜜桃| 日日啪夜夜爽| 欧美日韩视频高清一区二区三区二| 寂寞人妻少妇视频99o| 亚洲人成网站在线播| 狂野欧美激情性xxxx在线观看| 熟女电影av网| 国产91av在线免费观看|