張偉斌 荊國杰
摘要:膠質(zhì)母細(xì)胞瘤(GBM)是膠質(zhì)瘤中惡性程度最高的腦部腫瘤,其死亡率和復(fù)發(fā)率較高。目前GBM發(fā)生發(fā)展機(jī)制尚不明確,無特效治療手段。常見的治療方法有手術(shù)切除、放療及化療等,但其預(yù)后差,因此尋找GBM相關(guān)信號通路可為了解其發(fā)病機(jī)制、靶向治療提供指引。目前,研究發(fā)現(xiàn)p53途徑、MAPK途徑、PI3K/AKT途徑以及Notch途徑是參與GBM的重要通路;除此之外,還有其他的信號通路也陸續(xù)被發(fā)現(xiàn)。本文通過對p53信號通路、MAPK信號通路、PI3K/AKT信號通路、Notch信號通路以及其他信號通路在GBM中的作用進(jìn)行綜述,旨在為臨床治療GBM提供參考。
關(guān)鍵詞:膠質(zhì)母細(xì)胞瘤;信號通路;分子靶向
中圖分類號:R739.41? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識碼:A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?DOI:10.3969/j.issn.1006-1959.2019.23.009
文章編號:1006-1959(2019)23-0033-06
Study on Glioblastoma Signaling Pathway
ZHANG Wei-bin1,JING Guo-jie2
(1.Graduate School of Guangdong Medical University,Zhanjiang 524000,Guangdong,China;
2.Department of Neurosurgery,Huizhou First People's Hospital,Guangdong Medical University,Huizhou 516000,
Guangdong,China)
Abstract:Glioblastoma (GBM) is the most malignant brain tumor in glioma, with a high mortality and recurrence rate. At present, the mechanism of development of GBM is still unclear, and there is no specific treatment. Common treatment methods include surgical resection, radiotherapy and chemotherapy, but its prognosis is poor. Therefore, finding a signal pathway related to GBM can provide guidance for understanding its pathogenesis and targeted therapy. At present, the study found that the p53 pathway, MAPK pathway, PI3K/AKT pathway and Notch pathway are important pathways involved in GBM; in addition, other signaling pathways have been discovered. This article reviews the role of p53 signaling pathway, MAPK signaling pathway, PI3K/AKT signaling pathway, Notch signaling pathway and other signaling pathways in GBM, aiming to provide reference for clinical treatment of GBM.
Key words:Glioblastoma;Signaling pathway;Molecular targeting
膠質(zhì)母細(xì)胞瘤(glioblastoma,GBM)是一種源自星形膠質(zhì)細(xì)胞的惡性腦腫瘤,在WHO 2016中樞神經(jīng)系統(tǒng)腫瘤分類中屬于惡性程度最高的Ⅳ級腦腫瘤,是最常見的原發(fā)性惡性中樞神經(jīng)系統(tǒng)腫瘤,其發(fā)病率約3.2/10萬[1-3]。GBM多發(fā)于大腦半球,以額葉最多見,其呈彌漫性、浸潤性生長,具有自身的血液供應(yīng),生長迅速,容易侵入正常的腦組織,手術(shù)不易完全切除,且術(shù)后易原位復(fù)發(fā)。GBM的臨床表現(xiàn)主要包括顱內(nèi)壓增高、神經(jīng)功能及認(rèn)知功能障礙和癲癇發(fā)作三大類。目前,GBM的主要治療方法是手術(shù)切除后聯(lián)合放化療,盡管采用綜合治療方案,GBM的死亡率和復(fù)發(fā)率非常高[4,5]。GBM在異質(zhì)性腫瘤中的發(fā)生機(jī)制和發(fā)展機(jī)制主要涉及遺傳學(xué)、蛋白質(zhì)組學(xué)、免疫學(xué)等方面。根據(jù)分子機(jī)制研究的結(jié)果,新的治療藥物和手段已經(jīng)出現(xiàn)在臨床試驗中,如自體樹突狀細(xì)胞疫苗和溶瘤病毒療法[6,7]。由于GBM的潛在生物學(xué)機(jī)制尚不明確、預(yù)后差,因此發(fā)現(xiàn)GBM的異常信號傳導(dǎo)途徑和關(guān)鍵分子將有助于了解其發(fā)病機(jī)制及靶向治療。本文主要通過對p53信號通路、MAPK信號通路、PI3K/AKT信號通路、Notch信號通路以及其他信號通路在GBM的研究作一綜述,旨在為GBM的基礎(chǔ)及臨床研究提供一定的指引和總結(jié)。
1 p53信號通路
p53是由抑癌基因TP53編碼的蛋白,主要分布在細(xì)胞和核內(nèi),正常功能是監(jiān)視細(xì)胞周期中的DNA損傷以及修復(fù)、甚至使不能修復(fù)的異常細(xì)胞凋亡,從而防止癌變細(xì)胞產(chǎn)生以及增殖[8]。在GBM中,p53主要處于低表達(dá)狀態(tài),通過影響細(xì)胞凋亡、細(xì)胞周期以及血管生成和轉(zhuǎn)移的信號途徑而發(fā)揮其腫瘤抑制作用,其中p21、Gadd45和Reprimo是p53靶向調(diào)控細(xì)胞周期的分子[9-11];Fas、Bax以及半胱天冬酶6是p53靶向調(diào)控細(xì)胞凋亡的分子[12];低氧誘導(dǎo)因子(HIF)和NADPH氧化酶4(NOX4)是p53靶向調(diào)控血管生成和轉(zhuǎn)移的分子[13,14]。有研究表明[15],p53的突變與GBM的進(jìn)展有關(guān),當(dāng)p53失活后,GBM更易侵襲,且癌細(xì)胞增殖更加明顯。另有研究發(fā)現(xiàn)[16],p53突變失活后,GBM細(xì)胞系對化療藥物更易產(chǎn)生耐藥性。
p53還能調(diào)控長鏈非編碼RNA(long non-coding RNA,lncRNA)。Voce DJ等[17]通過研究替莫唑胺治療GBM的機(jī)制,結(jié)果表明p53通過結(jié)合轉(zhuǎn)移相關(guān)肺腺癌轉(zhuǎn)錄本1(MALAT1)編碼區(qū)近端抑制了MALAT1的生成,進(jìn)而增強了化療藥物的治療效果。除了細(xì)胞周期蛋白依賴性激酶抑制劑2A(CDKN2A)/ARF、MDM2(一種原癌基因)和MDM4(p53調(diào)控因子)已被證明在GBM可以負(fù)調(diào)控p53[18],目前研究還發(fā)現(xiàn)許多新的上游因子可影響p53信號通路,進(jìn)而導(dǎo)致GBM的發(fā)生發(fā)展。Lin Y等[19]研究表明,天冬酰胺基內(nèi)肽酶可以水解滅活p53,促進(jìn)GBM的進(jìn)程。Brook L等[20]研究表明,HR(Hairless)通過增強p53依賴的反式激活,促進(jìn)GBM細(xì)胞凋亡。Zhu H等[21]研究發(fā)現(xiàn),在GBM的腦膠質(zhì)瘤干細(xì)胞中配對盒子3(paired box 3,PAX3)高表達(dá),而且高表達(dá)的PAX3的腫瘤中有更多的p53突變,進(jìn)一步提示PAX3可能與p53基因的啟動子特異性結(jié)合,并在轉(zhuǎn)錄上抑制p53的表達(dá),影響腦膠質(zhì)瘤干細(xì)胞分化、增殖和遷移。另有研究表明[22],干擾Septin 9和Septin 2后可能通過p53/p21軸和MEK/ERK激活而影響GBM增殖生長。
由于高通量技術(shù)的完善,越來越多的研究表明非編碼的RNA是調(diào)控腫瘤生物學(xué)過程的重要調(diào)控因子,如微RNAs(microRNAs,miRNA)和lncRNA。有研究發(fā)現(xiàn)[23,24],GBM中miRNA和lncRNA可調(diào)控p53通路,在GBM中miR-124、miR-125b的水平是下調(diào)的,它們可以靶向p53信號通路上的抑制因子,降低GBM的細(xì)胞增殖和細(xì)胞周期進(jìn)展。Chen Y等[25]研究發(fā)現(xiàn),在GBM中砷抗性蛋白2(核RNA帽結(jié)合復(fù)合物的一個組成部分)可能通過抑制miR-6798-3p而促進(jìn)p53和p21上調(diào)。除了miRNA外,目前還發(fā)現(xiàn)兩種lncRNA,分別是H19和尿路上皮癌相關(guān)1(urothelial cancer associated 1,UCA1),其分別通過與miR-140和miR-182相互作用調(diào)節(jié)GBM進(jìn)程,其中miR-140和miR-182能夠促進(jìn)蛋白磷酸酶1調(diào)節(jié)亞基13(對TP53水平上調(diào)的因子)而使細(xì)胞增殖減少和細(xì)胞凋亡增加,而H19和UCA1降低了這些miRNA的表達(dá)和活性,因此在GBM中具有p53依賴的致癌活性[26,27]。有研究通過對p53信號通路的MDM2抑制劑AMG232進(jìn)行研究,結(jié)果表明AMG232對GBM的抗腫瘤活性及其對p53信號的影響都有顯著表現(xiàn)[28,29]。由以上的研究可知,p53信號通路是GBM發(fā)生和進(jìn)展中的關(guān)鍵途徑,對其上下游因子的研究探索可能為GBM治療提供更多的可能性。
2 MAPK信號通路
絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)是絲氨酸-蘇氨酸激酶,其在細(xì)胞增殖,細(xì)胞粘附,血管生成,侵入和轉(zhuǎn)移中發(fā)揮重要作用[30]。MAPKs由三個主要亞家族組成:Ras/MAPK,c-Jun氨基末端激酶(JNK)和p38激酶[31],其中Ras/MAPK信號通路的激活是通過腫瘤中的一系列生物級聯(lián)反應(yīng)參與細(xì)胞增殖和分化[32,33]。目前主流認(rèn)為MAPK信號通路的激活是GBM發(fā)生所必需的[34],MAPK信號傳導(dǎo)途徑在GBM中與細(xì)胞增殖、血管生成和侵襲有關(guān)。如Ras/MAPK通路有助于GBM中血管內(nèi)皮生長因子表達(dá)的上調(diào)和血管生成的誘導(dǎo)[35];同源異型盒C6通過MAPK途徑促進(jìn)GBM轉(zhuǎn)移和增殖[36];另有研究表明[37],MAPK1/JNK/基質(zhì)金屬肽酶7途徑則是抑制了GBM的進(jìn)展;此外,有多項研究發(fā)現(xiàn)[32,33,38],靶向p38 MAPK通路的激活可以促進(jìn)GBM細(xì)胞的凋亡。這可能是由于MAPK通路下游的因子復(fù)雜,影響的下游因子不同,才導(dǎo)致了不同的GBM表型,但目前大多數(shù)MAPK通路的激活與GBM的惡性表型是呈正相關(guān)關(guān)系。
3 PI3K/AKT信號通路
磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)是一種胞內(nèi)磷脂酰肌醇激酶,其具有絲氨酸/蘇氨酸(Ser/Thr)激酶的活性,也具有磷脂酰肌醇激酶的活性,PI3K家族的成員是參與多種細(xì)胞過程的脂質(zhì)激酶,包括增殖、分化、遷移和代謝[39]。AKT是一種絲氨酸/蘇氨酸特異性蛋白激酶,在多種細(xì)胞生長過程中發(fā)揮關(guān)鍵作用,如葡萄糖代謝、凋亡、細(xì)胞增殖、轉(zhuǎn)錄和細(xì)胞遷移[40]。在正常情況下,PI3K/AKT可以靶向mTOR信號通路調(diào)控蛋白的合成、靶向血管內(nèi)皮生長因子(VEGF)信號通路和叉頭蛋白轉(zhuǎn)錄因子3A(FOXO3a)信號通路參與細(xì)胞增殖、血管生成以及DNA修復(fù),除此之外還會作用于細(xì)胞周期相關(guān)蛋白以及凋亡蛋白影響細(xì)胞的增殖和存活[41-44]。眾所周知,PI3K/AKT信號失調(diào)與多種腫瘤有關(guān)。而在GBM中也有相關(guān)研究發(fā)現(xiàn)白細(xì)胞介素-17A可通過PI3K/AKT信號通路促進(jìn)細(xì)胞的遷移和侵襲[45];LIM和SH3蛋白1在GBM中是促癌因子,以PI3K/AKT依賴性機(jī)制調(diào)節(jié)GBM細(xì)胞增殖和化學(xué)敏感性[46];miR-1231和miR-124-3p作為腫瘤抑制因子可以調(diào)控PI3K/AKT信號通路抑制GBM細(xì)胞生長以及血管形成[47,48];miR-203參與PI3K/AKT途徑控制GBM細(xì)胞的DNA修復(fù)[49];賴氨酸乙酰基轉(zhuǎn)移酶6A是一種染色質(zhì)調(diào)節(jié)劑,? 可促進(jìn)組蛋白修飾和癌變,其表達(dá)被發(fā)現(xiàn)于GBM生存相關(guān),并被證實能增強PI3K/AKT信號傳導(dǎo)以? 及腫瘤的發(fā)生[50]。關(guān)于針對PI3K/AKT信號通路? 的Buparlisib是新一代的PI3K的抑制劑,其穩(wěn)定 性高和副作用低,目前已經(jīng)進(jìn)入了臨床Ⅰ期[51]??傊?,PI3K/AKT在GBM的發(fā)生和發(fā)展中起重要作用,而且該信號途徑可能成為GBM引人注目的治療靶標(biāo)。
4 Notch信號通路
Notch信號通路是存在于大多數(shù)生物體中且非常保守的細(xì)胞信號傳導(dǎo)系統(tǒng),其在調(diào)節(jié)干細(xì)胞增殖分化和細(xì)胞凋亡等過程中起到非常關(guān)鍵作用[52]。Notch級聯(lián)由Notch和Notch配體以及將Notch信號傳遞至細(xì)胞核的細(xì)胞內(nèi)蛋白質(zhì)組成;在哺乳動物細(xì)胞中,Notch充當(dāng)細(xì)胞質(zhì)受體,有四種同源蛋白被稱為Notch1、Notch2、Notch3和Notch4,它們可以結(jié)合兩個配體家族:Delta型(DLL1-3和DLL4)和鋸齒狀(Jagged1和Jagged2)[53]。已有相關(guān)研究發(fā)現(xiàn)[54],Notch信號通路在腫瘤干細(xì)胞的自我更新、胚胎分化以及發(fā)育方面起到?jīng)Q定細(xì)胞命運的調(diào)節(jié)功能作用,其與腫瘤干細(xì)胞分化成內(nèi)皮細(xì)胞、免疫細(xì)胞等多種生物學(xué)特性有密切關(guān)系。Notch信號在許多癌癥中失調(diào),包括結(jié)直腸癌、肝癌、前列腺癌[55],目前也有許多報道提示在GBM中發(fā)現(xiàn)Notch信號通路的異常激活。另有研究發(fā)現(xiàn)[56],Notch信號通路中的Notch1、Notch4、DLL1、DLL4和Jagged1相對于正常腦細(xì)胞而言,其在GBM細(xì)胞中為高表達(dá)。Notch1可以與NF-κB(p65)結(jié)合,促進(jìn)GBM細(xì)胞增殖和凋亡減少,還可靶向Hes1影響GBM干細(xì)胞的生長、分化和侵襲性,并且能調(diào)節(jié)趨化因子系統(tǒng)(CXC基序趨化因子配體12/CXC基序趨化因子受體4),從而促進(jìn)神經(jīng)膠質(zhì)瘤干細(xì)胞的侵襲、自我更新和生長[57]。MiR-181a靶向結(jié)合Notch2會導(dǎo)致GBM干細(xì)胞的形成受到抑制[58]。N-乙酰半胱氨酸被發(fā)現(xiàn)通過Itch依賴的溶酶體途徑促進(jìn)Notch2降解,進(jìn)而阻止GBM細(xì)胞的增殖、遷移和侵襲,并可能誘導(dǎo)其凋亡[59]。而Notch3主要是參與GBM細(xì)胞干性的調(diào)節(jié)[60]。關(guān)于Notch4在GBM中的作用,一項免疫組織化觀察到DLL4和Notch4主要分布在血管內(nèi)皮上,而比較少分布在腫瘤細(xì)胞上,且結(jié)果分析表明DLL4和Notch4的表達(dá)量呈正相關(guān)[61],這提示DLL4-Notch4信號通路可能參與GBM的血管生成。從以上研究可以看出,Notch信號通路主要是參與GBM干細(xì)胞調(diào)控,同時可能影響血管生成促進(jìn)GBM生長、侵襲。而最近報道有一種納米生物共軛物被設(shè)計出來,其具備穿越血腦屏障的特點,可以阻斷層粘連蛋白411的表達(dá)進(jìn)而抑制層粘連蛋白411能夠使Notch信號通路失活,對GBM生長有一定的抑制作用[62]。
5其他通路
除了上述通路外,還有許多信號通路在GBM中被發(fā)現(xiàn)處于異常失調(diào),如調(diào)控GBM干細(xì)胞增殖分化的SHH(sonic hedgehog)/腦膠質(zhì)瘤相關(guān)基因1(GLI1)信號通路以及酪氨酸激酶(JAK)-轉(zhuǎn)錄激活因子3(STAT3)信號通路[63,64];刺激GBM的血管生成的apelin/apelin受體信號通路,c-MYC信號通路以及HIF-1α信號通路[65-67];介導(dǎo)GBM化學(xué)抗性的miR-26a/AP-2α/Nanog信號傳導(dǎo)軸、透明質(zhì)酸酶(HA)-CD44信號通路以及Wnt/β-catenin信號通路[68-70];促進(jìn)GBM進(jìn)展和侵襲以及上皮-間質(zhì)轉(zhuǎn)化的miR-7-5p/三葉因子3(TFF3)信號通路、轉(zhuǎn)化生長因子β1(TGF-β1)/Smad信號通路以及ras同源家族成員A(RhoA)和Rac家族小GTPase 1(Rac1)的信號通路[71-73]。除此之外,值得注意的是黏著斑(focal adhesion)途徑,它參與細(xì)胞形狀、黏附以及運動,與惡性腫瘤的侵襲擴(kuò)散密切相關(guān)[74]。在GBM中,黏著斑激酶(FAK)為高表達(dá)[75],研究發(fā)現(xiàn)[76,77],F(xiàn)AK是上述RAS/MAPK信號通路和PI3K/AKT信號通路的上游調(diào)控因子,提示其是靶向黏著斑信號途徑的關(guān)鍵分子,即能同時作用RAS/MAPK信號通路以及PI3K/AKT信號通路,這說明設(shè)計直接靶向FAK的藥物可能會取得相比單獨作用RAS/MAPK信號通路或者PI3K/AKT信號通路的藥物更好的療效。
6總結(jié)
GBM是成人中惡性程度最高的中樞神經(jīng)系統(tǒng)腫瘤之一,即使采用最全面的治療方法,包括外科手術(shù)切除、放療和化療,也會導(dǎo)致嚴(yán)重的不良預(yù)后,盡管近年來新藥物和新治療手段為GBM的治療帶來了希望,如免疫治療、電場治療等,但其總體預(yù)后仍然較差。由于關(guān)于調(diào)控細(xì)胞生長、分化以及影響細(xì)胞代謝的一系列信號通路在GBM中發(fā)生了異常激活,因此從GBM相關(guān)信號通路中詳盡探討并研究出可行的治療標(biāo)靶是可行的也是很有必要的。目前已經(jīng)有相關(guān)靶向抑制GBM異常激活的信號通路的藥物開發(fā)和研究,如p53信號通路的MDM2抑制劑AMG232、針對PI3K/AKT信號通路抑制劑Buparlisib等。由此可見,在GBM異常失調(diào)的各種信號傳導(dǎo)途徑中,都有可能發(fā)展為藥物靶點,未來研發(fā)的藥物通過靶向GBM信號通路中的核心分子或者聯(lián)合靶向多個關(guān)鍵信號通路可能會取得明顯的治療效果。
參考文獻(xiàn):
[1]Wen PY,Huse JT.2016 World Health Organization Classification of Central Nervous System Tumors[J].Continuum,2017,23(6):1531-1547.
[2]Patel NP,Lyon KA,Huang JH.The effect of race on the prognosis of the glioblastoma patient:a brief review[J].Neurological research,2019,41(11):967-971.
[3]Alexander BM,Cloughesy TF.Adult Glioblastoma[J].Journal of clinical oncology:official journal of the American Society of Clinical Oncology,2017,35(21):2402-2409.
[4]Alifieris C,Trafalis DT.Glioblastoma multiforme:Pathogenesis and treatment[J].Pharmacology&Therapeutics,2015(152):63-82.
[5]Franceschi E,Minichillo S,Brandes AA.Pharmacotherapy of Glioblastoma:Established Treatments and Emerging Concepts[J].CNS Drugs,2017,31(8):675-684.
[6]Geletneky K,Hajda J,Angelova AL,et al.Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial[J].Mol Ther,2017,25(12):2620-2634.
[7]Liau LM,Ashkan K,Tran DD,et al.Correction to: First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma[J].J Transl Med,2018,29,16(1):179.
[8]Levine AJ.p53,the cellular gatekeeper for growth and division[J].Cell,1997,88(3):323-331.
[9]Karimian A,Ahmadi Y,Yousefi B.Multiple functions of p21 in cell cycle,apoptosis and transcriptional regulation after DNA damage[J].DNA Repair(Amst),2016(42):63-71.
[10]Han N,Yuan F,Xian P,et al.GADD45a Mediated Cell Cycle Inhibition Is Regulated By P53 In Bladder Cancer[J].Onco Targets Ther,2019(12):7591-7599.
[11]Ohki R,Nemoto J,Murasawa H,et al.Reprimo,a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase[J].J Biol Chem,2000,275(30):22627-22630.
[12]Chen J.The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression[J].Cold Spring Harb Perspect Med,2016,6(3):a26104.
[13]Amelio I,Melino G.The p53 family and the hypoxia-inducible factors(HIFs):determinants of cancer progression[J].Trends Biochem Sci,2015,40(8):425-434.
[14]Zhan R,Xu K,Pan J,et al.Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis[J].Biochem Biophys Res Commun,2017, 490(3):700-706.
[15]Biasoli D,Sobrinho MF,Da FA,et al.Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy[J].Oncogenesis,2014,3(10):e123.
[16]Park CM,Park MJ,Kwak HJ,et al.Induction of p53-mediated apoptosis and recovery of chemosensitivity through p53 transduction in human glioblastoma cells by cisplatin[J].Int J Oncol,2006,28(1):119-125.
[17]Voce DJ,Bernal GM,Wu L,et al.Temozolomide Treatment Induces lncRNA MALAT1 in an NF-kappaB and p53 Codependent Manner in Glioblastoma[J].Cancer Research,2019,79(10):2536-2548.
[18]Zhang Y,Dube C,Gibert MJ,et al.The p53 Pathway in Glioblastoma[J].Cancers(Basel),2018,10(9):297.
[33]Wang R,Deng D,Shao N,et al.Evodiamine activates cellular apoptosis through suppressing PI3K/AKT and activating MAPK in glioma[J].Onco Targets Ther,2018(11):1183-1192.
[34]Vitucci M,Karpinich NO,Bash RE,et al.Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis[J].Neuro Oncol,2013,15(10):1317-1329.
[35]Ngo MT,Harley B.Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel[J].Biomaterials,2019(198):122-134.
[36]Yang P,Kang W,Pan Y,et al.Overexpression of HOXC6 promotes cell proliferation and migration via MAPK signaling and predicts a poor prognosis in glioblastoma[J].Cancer Manag Res,2019(11):8167-8179.
[37]Mu N,Gu J,Liu N,et al.PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways[J].Theranostics,2018,8(6):1527-1539.
[38]Li Q,Miao Z,Wang R,et al.Hesperetin Induces Apoptosis in Human Glioblastoma Cells via p38 MAPK Activation[J].Nutr Cancer,2019:1-8.
[39]Jean S,Kiger AA.Classes of phosphoinositide 3-kinases at a glance[J].J Cell Sci,2014,127(Pt 5):923-928.
[40]Revathidevi S,Munirajan AK.Akt in cancer:Mediator and more[J].Semin Cancer Biol,2019.
[41]Borrie S C,Brems H,Legius E,et al.Cognitive Dysfunctions in Intellectual Disabilities:The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways[J].Annu Rev Genomics Hum Genet,2017(18):115-142.
[42]Zhang ZZ,Qin XH,Zhang J.MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway[J].Am J Physiol Endocrinol Metab,2019,316(6):E1050-E1060.
[43]Seo YS,Kang OH,Kong R,et al.Polygalacin D induces apoptosis and cell cycle arrest via the PI3K/Akt pathway in non-small cell lung cancer[J].Oncol Rep,2018,39(4):1702-1710.
[44]Chen YR,Liu MT,Chang YT,et al.Epstein-Barr virus latent membrane protein 1 represses DNA repair through the PI3K/Akt/FOXO3a pathway in human epithelial cells[J].J Virol,2008,82(16):8124-8137.
[45]Zheng Q,Diao S,Wang Q,et al.IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signaling pathway[J].J Cell Mol Med,2019,23(1):357-369.
[46]Zhong C,Chen Y,Tao B,et al.LIM and SH3 protein 1 regulates cell growth and chemosensitivity of human glioblastoma via the PI3K/AKT pathway[J].BMC Cancer,2018,18(1):722.
[47]Zhang J,Zhang J,Qiu W,et al.MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma[J].J Neurooncol,2018,139(3):547-562.
[48]Zhang G,Chen L,Khan AA,et al.miRNA-124-3p/neuropilin-1(NRP-1)axis plays an important role in mediating glioblastoma growth and angiogenesis[J].Int J Cancer,2018,143(3):635-644.
[49]Chang JH,Hwang YH,Lee DJ,et al.MicroRNA-203 Modulates the Radiation Sensitivity of Human Malignant Glioma Cells[J].Int J Radiat Oncol Biol Phys,2016,94(2):412-420.
[50]Lv D,Jia F,Hou Y,et al.Histone Acetyltransferase KAT6A Upregulates PI3K/AKT Signaling through TRIM24 Binding[J].Cancer Res,2017,77(22):6190-6201.
[51]Ando Y,Inada-Inoue M,Mitsuma A,et al.Phase I dose-escalation study of buparlisib(BKM120),an oral pan-class I PI3K inhibitor,in Japanese patients with advanced solid tumors[J].Cancer Sci,2014,105(3):347-353.
[52]Siebel C,Lendahl U.Notch Signaling in Development,Tissue Homeostasis,and Disease[J].Physiol Rev,2017,97(4):1235-1294.
[53]Nowell CS,Radtke F.Notch as a tumour suppressor[J].Nat Rev Cancer,2017,17(3):145-159.
[54]Espinoza I,Miele L.Notch inhibitors for cancer treatment[J].Pharmacology&Therapeutics,2013,139(2):95-110.
[55]Aster JC,Pear WS,Blacklow SC.The Varied Roles of Notch in Cancer[J].Annu Rev Pathol,2017(12):245-275.
[56]El Hindy N,Keyvani K,Pagenstecher A,et al.Implications of Dll4-Notch signaling activation in primary glioblastomamultiforme[J].Neuro Oncol,2013,15(10):1366-1378.
[57]Cenciarelli C,Marei HE,Zonfrillo M,et al.The interference of Notch1 target Hes1 affects cell growth,differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets[J].Oncotarget,2017,8(11):17873-17886.
[58]Huang SX,Zhao ZY,Weng GH,et al.Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme[J].Biochem Biophys Res Commun,2017,486(4):1129-1136.
[59]Deng J,Liu AD,Hou GQ,et al.N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling[J].J Exp Clin Cancer Res,2019,38(1):2.
[60]Ulasov IV,Mijanovic O,Savchuk S,et al.TMZ regulates GBM stemness via MMP14-DLL4-Notch3 pathway[J].Int J Cancer,2019.
[61]El HN,Keyvani K,Pagenstecher A,et al.Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme[J].Neuro Oncol,2013,15(10):1366-1378.
[62]Sun T,Patil R,Galstyan A,et al.Blockade of a Laminin-411-Notch Axis with CRISPR/Cas9 or a Nanobioconjugate Inhibits Glioblastoma Growth through Tumor-Microenvironment Cross-talk[J].Cancer Res,2019,79(6):1239-1251.
[63]Han B,Wang R,Chen Y,et al.QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway[J].Cell Oncol(Dordr),2019.
[64]Fan Y,Xue W,Schachner M,et al.Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells Via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor[J].Cancers(Basel),2018,11(1):22.
[65]Mastrella G,Hou M,Li M,et al.Targeting APLN/APLNR Improves Antiangiogenic Efficiency and Blunts Proinvasive Side Effects of VEGFA/VEGFR2 Blockade in Glioblastoma[J].Cancer Res,2019,79(9):2298-2313.
[66]Maugeri G,D'Amico AG,Rasa DM,et al.Caffeine Effect on HIFs/VEGF Pathway in Human Glioblastoma Cells Exposed to Hypoxia[J].Anticancer Agents Med Chem,2018,18(10):1432-1439.
[67]Wang T,Chen W,Wu J.H2-P,a honokiol derivative,exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma[J].J Cell Biochem,2018,119(4):3142-3148.
[68]Huang W,Zhong Z,Luo C,et al.The miR-26a/AP-2alpha/Nanog signaling axis mediates stem cell self-renewal and temozolomide resistance in glioma[J].Theranostics,2019,9(19):5497-5516.
[69]Luo W,Yan D,Song Z,et al.miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/beta-catenin signaling via targeting SOX2[J].Life Sci,2019(226):98-106.
[70]Hartheimer JS,Park S,Rao SS,et al.Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy[J].Cancer Microenviron,2019,12(1):47-56.
[71]Jiang Y,Zhou J,Hou D,et al.Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-beta1/Smad signaling pathway[J].J Pathol,2019,249(1):26-38.
[72]Ma H,Li T,Tao Z,et al.NKCC1 promotes EMT-like process in GBM via RhoA and Rac1 signaling pathways[J].J Cell Physiol,2019,234(2):1630-1642.
[73]Shukla A,Gupta P,Singh R,et al.Glycolytic inhibitor 2-Deoxy-d-Glucose activates migration and invasion in glioblastoma cells through modulation of the miR-7-5p/TFF3 signaling pathway[J].Biochem Biophys Res Commun,2018,499(4):829-835.
[74]Paluch EK,Aspalter IM,Sixt M.Focal Adhesion-Independent Cell Migration[J].Annu Rev Cell Dev Biol,2016,32(1):469-490.
[75]Natarajan M,Hecker TP,Gladson CL.FAK signaling in anaplastic astrocytoma and glioblastoma tumors[J].Cancer J,2003,9(2):126-133.
[76]Chen HH,Chen CW,Chang YY,et al.Preliminary crystallographic characterization of the Grb2 SH2 domain in complex with a FAK-derived phosphotyrosyl peptide[J].Acta Crystallogr Sect F Struct Biol Cryst Commun,2010,66(Pt 2):195-197.
[77]Liu BY,He XY,Xu C,et al.Peptide and Aptamer Decorated Delivery System for Targeting Delivery of Cas9/sgRNA Plasmid To Mediate Antitumor Genome Editing[J].ACS Appl Mater Interfaces,2019,11(27):23870-23879.
收稿日期:2019-10-31;修回日期:2019-11-9
編輯/杜帆