摘要:慢性肝病的常見原因包括病毒感染、乙醇濫用和自身免疫性疾病等。生物堿類化合物作為一類來源于植物的化合物,在調(diào)控慢性肝病方面展現(xiàn)出了重要潛力。近年來研究表明,生物堿類化合物能夠通過多種途徑發(fā)揮對慢性肝病的治療作用。這些化合物對肝纖維化、炎癥反應、氧化應激和細胞凋亡等關(guān)鍵病理過程具有調(diào)節(jié)作用,還通過調(diào)控多個信號通路來調(diào)節(jié)肝細胞代謝穩(wěn)態(tài),起到了調(diào)控慢性肝病的作用。本文對生物堿類化合物在慢性肝病治療中的作用及其機制進行了綜述,為慢性肝病治療提供了新的思路和方向。
關(guān)鍵詞:生物堿類;肝疾??;信號通路
基金項目:國家自然科學基金項目(82204755);廣西壯瑤藥重點實驗室基金資助項目(GXZYYKF2023-05);廣西自然科學基金項目(2023GXNSFBA026274,2024GXNSFAA010235)
Role of alkaloid compounds in regulating chronic liver diseases
ZHENG Yihui1,WANG Jiahui1,ZHAO Tiejian1,DUAN Xuelin2,WANG Lei1,ZHENG Yang1,YANG Shiquan1
1.Department of Medicine,F(xiàn)aculty of Chinese Medicine Science,Guangxi University of Chinese Medicine,Nanning 530222,China;2.School of Zhuang Medicine,Guangxi University of Chinese Medicine,Nanning 530222,China
Corresponding authors:ZHENG Yang,1793853705@qq.com(ORCID:0000-0001-7646-511X);YANG Shiquan,duoduo6181@126.com(ORCID:0009-0001-2092-2323)
Abstract:Chronic liver diseases with common causes including viral infections,alcohol abuse,and autoimmune diseases.Alkaloids,as a class of plant-derived compounds,have shown significant potential in regulating chronic liver diseases.Recent studies have shown that alkaloids are able to exert a therapeutic effect on chronic liver diseases through multiple pathways.These compounds have a regulatory effect on key pathological processes such as liver fibrosis,inflammatory response,oxidative stress,and cell apoptosis,and they also regulate the metabolic homeostasis of hepatocytes by modulating multiple signaling pathways,thereby playing a role in regulating chronic liver diseases.This article reviews the role and mechanism of alkaloids in the treatment of chronic liver diseases,in order to provide new ideas and directions for the treatment of chronic liver diseases.
Key words:Alkaloids;Liver Diseases;Signal Transduction
Research funding:National Natural Science Foundation of China(82204755);Guangxi Key Laboratory of Zhuang and Yao Medicines(GXZYYKF2023-05);Guangxi Natural Science Foundation of China(2023GXNSFBA026274,2024GXNSFAA010235)
慢性肝?。╟hronic liver disease,CLD)作為全球健康挑戰(zhàn)之一,已成為人類死亡的重要原因之一。CLD是包括非酒精性脂肪性肝病(NAFLD)、酒精性脂肪性肝病(AFLD)、病毒性肝炎、肝細胞癌(HCC)等在內(nèi)的多種肝臟疾病的總稱,其共同的病理特征為肝纖維化(HF)和肝細胞炎癥性壞死[1]。多種細胞因子或炎癥因子介導的脂肪酸過氧化引發(fā)的炎癥和氧化應激反應等因素所致的“二次打擊”誘導了肝臟炎癥反應、肝細胞變性壞死、HF和肝硬化的發(fā)生。生物堿類化合物是天然藥物中重要的成分,具有結(jié)構(gòu)多樣性,可分為有機胺類、吡咯烷類、吡啶類等,具有抗炎、抗氧化、抗腫瘤等多種作用[2]。中藥生物堿類化合物在抑制CLD的發(fā)生、發(fā)展過程中起著重要作用,其通過多種信號通路調(diào)控細胞因子的表達,進而抑制肝星狀細胞(HSC)活化或促進激活態(tài)的HSC凋亡、減輕肝臟炎癥、抑制組織氧化應激、誘導細胞凋亡、影響自噬、調(diào)節(jié)細胞代謝等,從而抑制CLD的發(fā)展。近年來,關(guān)于生物堿類化合物在預防和治療CLD方面的研究有所報道,但其作用機制尚未完全明確。本文將綜述生物堿類化合物在預防和治療CLD中的藥理作用及其機制,為開發(fā)CLD治療藥物提供參考。
1生物堿類化合物的結(jié)構(gòu)類型以及調(diào)控CLD的作用機制
1.1有機膠類辣椒堿(capsaicin,CAP)是辣椒果實中的活性成分,屬有機胺類生物堿,分子式C18H27NO3,具有消炎、止痛的作用,并能抑制多種腫瘤細胞的生長。研究表明,CAP通過調(diào)節(jié)B淋巴細胞瘤-2基因(Bcl-2)通路促進腫瘤細胞的凋亡。Kim團隊[3]和符竣惠團隊[4]發(fā)現(xiàn)CAP可以通過影響B(tài)cl-2家族蛋白的表達促進HSC和肝癌細胞的凋亡。CAP通過抑制T6細胞的增殖并誘導其凋亡,其機制涉及下調(diào)Bcl-2蛋白的表達、上調(diào)B淋巴細胞瘤-2基因(Bax)蛋白的表達,以及促進細胞色素c(Cyt c)蛋白的釋放。分離Bcl-2和熱休克蛋白的結(jié)合會引發(fā)Cyt c從線粒體釋放到胞漿,激活細胞凋亡程序,最終導致肝癌細胞凋亡[5]。Bax與Bcl-2相互作用導致構(gòu)象改變,影響線粒體外膜的完整性以促使HF[6]。腺苷酸激活蛋白激酶(AMP-activated protein kinase,AMPK)信號通路參與細胞代謝的調(diào)節(jié)和細胞的能量代謝[7]。Shin團隊[8]發(fā)現(xiàn)局部應用CAP增加了肝臟中脂肪酸的燃燒和能量消耗,機制包括脂聯(lián)素激活AMPK和過氧化物酶體增殖物激活受體(PPAR)α途徑、增加Ca2+內(nèi)流、促進肝臟脂肪酸β-氧化,從而降低肝臟甘油三酯(TG)含量和脂質(zhì)沉積[7]。這說明了CAP對減少肝臟炎癥的作用是通過肝臟AMPK激活、全身脂聯(lián)素濃度增加、降低參與脂肪酸合成的關(guān)鍵酶的表達及增加肝臟中人脂聯(lián)素受體2來實現(xiàn)的[9]。
1.2喘咯炕類水蘇堿(stachydrine,SH)是中藥益母草的最主要活性成分之一,屬吡咯烷類生物堿,分子式C7H14NO2,對心臟、腎臟、子宮、血管等具有明顯的藥理活性。郭書凱團隊[10]研究發(fā)現(xiàn)SH對肝細胞損傷的保護作用表現(xiàn)在可顯著降低由肝損傷造成的AST、ALT活性的增高,提高超氧化物歧化酶(SOD)活力,降低丙二醛(MDA)含量,減輕肝細胞水腫壞死。AMPK和白血病抑制因子(LIF)是調(diào)節(jié)增殖、衰老和自噬的能量傳感器系統(tǒng)。Bao團隊[11]研究推斷鹽酸SH通過誘導細胞自噬和促進細胞衰老來發(fā)揮抗HCC的作用[12]。其機制是通過調(diào)節(jié)LIF/AMPK軸調(diào)節(jié)自噬和細胞周期阻滯,從而誘導細胞衰老,繼而抑制HCC的發(fā)生發(fā)展。LC-3B主要參與自噬,p62蛋白是選擇性自噬作為細胞內(nèi)的橋梁泛素化蛋白質(zhì)[13]。SH誘導肝癌細胞自噬,通過提高LC-3B和p62蛋白質(zhì)水平,導致細胞周期阻滯并促進肝癌細胞衰老,達到整體細胞狀態(tài)穩(wěn)定。
1.3喘吭類檳榔堿(arecoline)是中藥檳榔中最具生物活性的成分之一,屬吡啶類生物堿,分子式C8H13NO2,具有抗炎和抗病毒作用[14]。研究[14]表明,檳榔堿能夠抑制膽固醇的吸收,從而降低血漿TG水平。Zhu團隊[15]研究發(fā)現(xiàn),檳榔堿對血脂水平產(chǎn)生影響,包括TG、總膽固醇(TC)、低密度脂蛋白膽固醇(LDL-C)和高密度脂蛋白膽固醇(HDL-C)。有研究[16-17]表明,益生菌可以調(diào)節(jié)腸道微生物群,增強腸道屏障功能,調(diào)整免疫功能,并通過調(diào)節(jié)短鏈脂肪酸和膽汁酸代謝來改善肝臟脂質(zhì)代謝。Elamin團隊[18]研究發(fā)現(xiàn),檳榔堿治療組的腸道菌群豐度增加,其中鉤吻螺科增加并產(chǎn)生丁酸,丁酸通過激活短鏈脂肪酸受體誘導選擇性環(huán)氧合酶2(COX2)抑制劑介導前列腺素E2(PGE2)的產(chǎn)生,進而在脂肪細胞中發(fā)揮脂解作用[16]。這表明檳榔堿具有降脂作用,并可能通過腸道代謝產(chǎn)物和菌群以及通過丁酸球菌/COX2/PGE2途徑對NAFLD發(fā)揮治療作用。肝臟核轉(zhuǎn)錄因子κB(NF-κB)是炎癥反應的關(guān)鍵轉(zhuǎn)錄調(diào)節(jié)因子,也在HF過程中發(fā)揮重要作用。此外,檳榔堿通過COX2/PGE2代謝途徑保護肝臟免受損傷,其活性與ALT和NF-κB呈負相關(guān)。
1.4異喳嗽類小檗堿,即黃連素(berberine,BER),是毛茛科植物黃連等根莖中的一種異喹啉類生物堿,分子式C20H18NO4+,具有降血脂的作用。Chang團隊[19]研究發(fā)現(xiàn),BER能夠減少HF小鼠肝臟膠原沉積和炎性細胞浸潤,降低纖維化指標α-平滑肌肌動蛋白(α-SMA)及Ⅰ型膠原α1(COL1a1)的表達,以及下降肝臟血清中AST和ALT的濃度。其作用機制包括兩方面:(1)激活肝臟AMPK通路促進脂肪酸氧化和抑制脂質(zhì)合成,抑制肝臟活化轉(zhuǎn)錄因子6(ATF6)/固醇調(diào)節(jié)元件結(jié)合蛋白1C(SREBP-1C)通路,抑制內(nèi)質(zhì)網(wǎng)應激(ERS),降低肝臟微粒體甘油三酸酯轉(zhuǎn)運蛋白啟動子的甲基化以增加肝臟TG的外排,減少肝臟脂質(zhì)沉積[20];(2)通過抑制肝臟嘌呤受體P2X7來抑制核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體(NLRP3)炎癥通路的表達,抑制c-Jun氨基末端激酶(JNK)以及含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)1、白細胞介素(IL)1β和COL1a1炎癥因子的表達,從而緩解肝臟壞死性炎癥[21]。研究[22-23]發(fā)現(xiàn)BER在小鼠體內(nèi)具有抗HF的作用,在體外可抑制人肝星狀細胞(LX-2)的增殖、遷移及活化,其機制可能包括BER能夠上調(diào)LX-2細胞中p53、Bax、多聚腺苷二磷酸核糖聚合酶的表達,同時下調(diào)Bcl-2和自噬相關(guān)蛋白5(Atg5)的表達從而抑制細胞自噬,繼而誘導HSC凋亡。
荷葉堿(nuciferine,NUC)是從荷葉中提取的異喹啉類生物堿,分子式C19H21NO2,具有抗癌、抗炎、抗氧化、抗病毒、促進免疫、維護腸道菌群穩(wěn)態(tài)的作用[24]。Guo團隊[25]研究發(fā)現(xiàn),荷葉堿治療顯著降低了體質(zhì)量、肝臟重量、血清ALT活性,以及血清和肝臟中TG、TC與游離脂肪酸(FFA)含量。NF-κB信號通路可以通過調(diào)節(jié)氧化應激反應來影響肝細胞損傷[26]。NF-κB途徑可誘導多種促炎介質(zhì)的轉(zhuǎn)錄,以刺激HSC的激活和細胞外基質(zhì)的產(chǎn)生,從而促進HF[27]。NUC通過激活PPARα和γ,抑制Toll樣受體4(TLR4)介導的NF-κB和NLRP3的炎性小體信號通路,從而減少炎性細胞因子如腫瘤壞死因子-α(TNF-α)、IL-1β和IL-6的分泌。這表明NUC通過下調(diào)肝臟MDA、TNF-α、IL-6和IL-8炎癥因子的表達,上調(diào)肝臟SOD、總抗氧化容量的表達,提高血清抗氧化酶活性,減少肝臟炎癥和氧化應激損傷[26]。此外,NUC有助于提高血清脂聯(lián)素水平,降低內(nèi)臟脂肪重量、血清TNF-α、IL-6,抑制脂質(zhì)的積累[26]。NUC可以促進肝臟的脂肪酸氧化和極低密度脂蛋白(VLDL)釋放,增加肝臟脂質(zhì)外排,減少肝臟脂肪沉積和壞死性炎癥[28]。
1.5吲哚類吳茱萸堿(evodiamine)是吳茱萸的一種吲哚生物堿,分子式C19H17N3O,具有抗炎、鎮(zhèn)痛等作用外,還能抑制腫瘤細胞活性與增殖、阻滯細胞周期、促進凋亡、促進自噬、抑制腫瘤微血管形成。Yang團隊[29]研究發(fā)現(xiàn)吳茱萸堿能改善肝組織病理學異常,降低AST、ALT、總膽紅素和羥脯氨酸水平及膠原蛋白(COL)Ⅰ和COL-Ⅲ的濃度,其機制是吳茱萸堿下調(diào)了肝組織中轉(zhuǎn)化生長因子-β1(TGF-β1)、p-Smad2/3(Smad2/3磷酸化)、α-SMA的蛋白表達,以及TGF-β1和α-SMA的mRNA表達;降低了IL-6、TNF-α水平;劑量依賴性的降低HSC中TGF-β1、p-Smad2/3和α-SMA的蛋白表達、羥脯氨酸產(chǎn)生,以及HSC增殖與膠原代謝,故吳茱萸堿主要是通過TGF-β1/Smad信號通路改善大鼠HF。有研究[30-31]表明,生物堿可以通過腸肝軸調(diào)節(jié)腸道微生物群,增加生物群的多樣性,此外益生菌可以改善腸道微生物群的失衡和炎癥。Dai團隊[32]研究發(fā)現(xiàn)吳茱萸堿通過腸肝軸調(diào)節(jié)腸道微生物群,減輕腸道通透性,減輕肝臟炎癥反應和肝臟脂肪變性來緩解NAFLD。其機制是吳茱萸堿可以通過選擇性增加某些有益細菌(瘤胃球菌和乳酸桿菌)和減少致病細菌(梭桿菌)來減輕HFD誘導的NAFLD惡化與腸道損傷。乳酸桿菌能降低血清TC和TG[33],梭桿菌可以導致腸道微生物群失衡,具有促炎能力[34]。吳茱萸堿治療可以減少腸道微生物群中脂多糖的含量,減輕腸道通透性,從而抑制TLR4和NF-κB信號通路,抑制下游相關(guān)蛋白活化釋放促炎細胞因子如TNF-α、IL-1β、IL-6,激活抗炎細胞因子IL-10和IL-4[35]。此外,吳茱萸堿可降低MDA含量,提高SOD活性,減少炎癥過度反應和氧化應激而對NAFLD產(chǎn)生療效。
1.6東莨菪堿東莨菪堿(scopolamine)是茄科植物的一種莨菪烷型生物堿,分子式C17H21NO4,具有解除平滑肌痙攣、抑制腺體分泌的作用。劉元斌團隊[36]研究發(fā)現(xiàn)注射東莨菪堿可明顯減輕肝鈣積累,并伴有明顯的組織學改善,對肝細胞損傷具有一定的保護作用。Ca2+作為常見的第二信使,參與了許多細胞功能,包括能量代謝、細胞死亡等。鈣池調(diào)控的Ca2+通道是非興奮細胞Ca2+內(nèi)流的主要通道,由基質(zhì)相互作用分子和鈣釋放激活的鈣通道蛋白1組成[37]。其機制是東莨菪堿解除血管痙攣,改善微循環(huán)以外,通過TNF-α介導胞外Ca2+內(nèi)流激活鈣蛋白酶(Calpain)/凋亡抑制蛋白/Caspase-3途徑促進細胞凋亡,以此起到抗肝癌細胞的作用[38]。
1.7咪唑類毛果蕓香堿(pilocarpine)是毛果蕓香的一種咪唑類生物堿,分子式C11H16N2O2,具有調(diào)節(jié)痙攣,引起平滑肌興奮的作用。Khurana團隊[39]研究發(fā)現(xiàn)毛果蕓香堿治療可顯著減少HSC活化、膠原沉積、膽管增生、HF和結(jié)節(jié)。毛果蕓香堿治療后HF關(guān)鍵因子如COL1a1、α-SMA、TGF-β1、TGF-β1R、血小板衍生生長因子,肝損傷細胞因子如TNF-α和FasL表達均減少;調(diào)節(jié)細胞外基質(zhì)形成的分子基質(zhì)金屬蛋白酶抑制劑-1、基質(zhì)金屬蛋白酶抑制劑-2、基質(zhì)金屬蛋白酶(MMP)2、MMP-13的mRNA水平降低。此外,導管反應也會導致HF[40]。研究[39]發(fā)現(xiàn),毛果蕓香堿誘導的抗毒蕈堿受體3(M3R)介導的增殖,以及由于肝細胞增殖增強和肝實質(zhì)恢復而減少的代償反應導致導管增殖的適度減少,起到抗HF的作用。
1.8嘌呤類咖啡因(caffeine,CAF)又稱咖啡堿,是茜草科植物咖啡樹種子中的一種黃嘌呤類生物堿,分子式C8H10N4O2,具有降血壓、降血脂等作用。有研究發(fā)現(xiàn),CAF一方面能夠通過降低HFD大鼠的血清ALT和AST水平,抑制肝臟的細胞色素P4501A2的表達進而抑制脂質(zhì)過氧化反應和脂肪變性[41];另一方面能夠激活肝臟的IL-6信號轉(zhuǎn)導,從而激活肝臟AMPK和乙酰輔酶A羧化酶(ACC)的磷酸化,繼而使肝臟脂肪酸β-氧化,抑制肝臟脂質(zhì)合成,從而抑制肝炎的發(fā)生[42]。轉(zhuǎn)錄激活因子3(STAT3)通路的異常激活能夠促進炎癥性疾病以及實體腫瘤等各種疾病的發(fā)生、發(fā)展[43]。CAF激活STAT3信號通路后,使STAT3磷酸化增加,導致TNF-α、IL-1β、IL-6等炎癥因子大量表達,促進HF的發(fā)展[44]。自噬是當細胞受到內(nèi)外環(huán)境刺激后,自身通過對受損細胞器進行清除,以達到細胞狀態(tài)穩(wěn)定的過程。CAF能通過上調(diào)肝臟促Atg7、Atg5和自噬相關(guān)蛋白(Beclin)的表達來激活自噬-溶酶體通路,增加脂質(zhì)攝取,動員和水解肝臟的TG產(chǎn)生FFA,增加肝臟p-ACC和肉堿棕櫚酰轉(zhuǎn)移酶1α表達,促進肝臟脂肪酸β-氧化,其機制可能是通過介導TGF-β1/Smad3信號轉(zhuǎn)導途徑,減少自噬,抗HF[45]。此外,CAF還通過增加HSC細胞內(nèi)F-肌動蛋白和環(huán)磷酸腺苷(cAMP)水平的方式,誘導肝臟HSC細胞凋亡,減輕肝HF的程度[46]。
茶堿(theophylline)又稱為1,3-二甲基黃嘌呤,是茶葉當中提取出來的一種甲基黃嘌呤類生物堿,分子式C7H8N4O2,具有緩解平滑肌痙攣、增加心肌收縮力等作用。Wu團隊[47]研究發(fā)現(xiàn),茶堿的KMUP-1治療可抑制脂質(zhì)堆積,降低肝臟TG水平,以及降低血清AST、ALT和血糖水平。KMUP-1導致磷酸化激素敏感性脂肪酶(p-HSL)的活性增加,刺激脂肪分解,減慢肝脂肪變性的進展。IL-10具有抗炎作用,TNF-α是一種促炎性細胞因子,二者通過影響涉及SREBP-1c的肝臟脂肪代謝,促進肝臟脂肪沉積[48],MMP-9被認為是肝臟炎癥中比TNF-α更強烈的介質(zhì)[49]。長期補充HFD后,脂肪性肝炎通常伴有通過活性氧(ROS)產(chǎn)生的氧化應激。KMUP-1通過降低MMP-9和ROS、增加IL-10以及通過HSL/p-HSL刺激脂肪分解來改善脂肪性肝炎。KMUP-1可降低肝臟中促炎性M1巨噬細胞表型,抑制M1巨噬細胞產(chǎn)生活性氧化物,減少氧化應激、炎癥和脂肪性肝炎相關(guān)的活性氧化物,同時增加抗炎性M2巨噬細胞表型,促進IL-10的釋放。這說明KMUP-1可抑制ROS,抑制促炎細胞因子TNF-α和MMP-9,增加抗炎細胞因子IL-10并影響肝組織中巨噬細胞浸潤,從而改善脂肪性肝炎。
1.9甾體類茄堿(solanine)是茄科植物中的一種天然存在的甾體配糖生物堿代謝產(chǎn)物,分子式C45H73NO15,具有抗氧化和抑制癌細胞的作用[50]。茄堿分為α-茄堿、β-茄堿和γ-茄堿,其中α-茄堿含量最高。Bax與Bcl-2是細胞凋亡重要的開關(guān)分子,其在惡性腫瘤細胞凋亡中具有重要的作用[51]。一方面,茄堿通過調(diào)節(jié)ROS和Bax/Bcl-2通路誘導細胞凋亡[52]。另一方面,茄堿打開了膜的通透性轉(zhuǎn)換通道,導致Ca2+濃度增加,從而導致膜破裂并釋放Caspase激活因子[53],促進細胞凋亡。Luo團隊[54]發(fā)現(xiàn)茄堿通過調(diào)節(jié)上皮-間充質(zhì)轉(zhuǎn)化(EMT)、外泌體和miR-21介導抑制肝癌轉(zhuǎn)移。其機制是茄堿通過抑制乙酰膽堿處理的HepG2細胞中的EMT和基質(zhì)金屬蛋白酶,顯著減弱細胞增殖和遷移;茄堿通過調(diào)節(jié)microRNA-21的表達抑制外泌體處理的癌細胞的肝外轉(zhuǎn)移并抑制細胞增殖;α-茄堿可抑制p38、JNK和細胞外調(diào)節(jié)蛋白激酶(ERK1/2),抑制巨噬細胞中的TNF-α和IL-6而抑制癌細胞株的增殖[55]。血管生成在腫瘤的生長發(fā)育中起著重要作用,可干預腫瘤干細胞的功能和自我更新。STAT信號通路是與炎癥信號傳遞及細胞凋亡等生理活動相關(guān)的信號通路[56]。此外,α-茄堿通過下調(diào)缺氧條件下ERK1/2和STAT3信號通路抑制腫瘤中血管內(nèi)皮生長因子的表達,從而抑制血管的存活,影響腫瘤的發(fā)展[57]。
1.10二萜類烏頭堿(aconitine)是中藥烏頭的主要成分,它是一種毒性劇烈的二萜類生物堿,分子式C34H47NO11,具有強心、鎮(zhèn)痛、抗炎、抗腫瘤、調(diào)節(jié)免疫等作用[58]。有研究表明烏頭堿能抑制體外巨噬細胞株的活性和TNF-α的分泌,還能抑制大分子(DNA、RNA),誘導肝癌細胞分化凋亡。Zhang團隊[59]研究發(fā)現(xiàn)烏頭堿治療后,在以線粒體調(diào)節(jié)凋亡為特征的HepG2細胞中檢測到PARP裂解、Caspases-3和7、Bcl-2和Bax的變化。ROS是氧正常代謝的天然副產(chǎn)物,在細胞信號傳遞中起著重要作用[60],ROS能夠與電壓依賴型Na+通道相互作用,并使通道長時間保持開放狀態(tài),導致膜去極化[61]。其機制是烏頭堿激活了ROS的產(chǎn)生,使線粒體釋放Cyt c,激活細胞凋亡,增加Caspase-3和7表達,Bax/Bcl-2比值增加,引起線粒體膜去極化,導致HepG2細胞凋亡[59]。此外,烏頭堿還抑制了人磷酸化磷酸肌醇3激酶、磷酸化蛋白激酶和磷酸化雷帕霉素靶蛋白的磷酸化,以此誘導小鼠肝臟自噬的調(diào)節(jié)[62](圖1、2)。
2結(jié)語與展望
生物堿類化合物在CLD調(diào)控中展現(xiàn)出了潛在的重要作用。通過對各種生物堿類化合物的研究,已經(jīng)取得了一些顯著的進展。生物堿類化合物是一類來源于植物、動物或微生物的天然產(chǎn)物,具有廣泛的生物活性和藥理作用。他們作為一類重要的天然產(chǎn)物,在抗CLD中具有廣泛的作用機制和潛在的治療效果。生物堿類化合物一般都具有抗炎、抑制氧化應激、誘導凋亡、影響自噬、調(diào)節(jié)細胞代謝的作用,同時,他們大多能夠介導AMPK、NF-KB、TNF、STAT3、Bax/Bcl-2、Caspase、TGF-β/Smad、TLR4等信號通路來調(diào)控CLD。不僅如此,生物堿類化合物還顯示出對肝細胞生長和凋亡的調(diào)節(jié)作用,這為肝病的治療提供了更多的可能性。未來的研究應進一步探究生物堿類化合物在CLD治療中的具體作用機制,并開展臨床研究,為CLD的治療提供新的思路和策略。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:鄭伊惠負責課題設計,撰寫論文;王佳慧、段雪琳參與收集數(shù)據(jù),修改論文;汪磊、楊仕權(quán)負責資料分析;趙鐵建、鄭洋負責擬定寫作思路,指導撰寫文章并最后定稿。
參考文獻:
[1]LI MM,JIA Y,WANG FX,et al.Mitochondrial dysfunction and chronic liver diseases[J].Prog Physiol Sci,2018,49(2):81-86.DOI:10.3969/j.issn.0559-7765.2018.02.001.
李蒙蒙,賈巖,王飛蝦,等.線粒體功能障礙與慢性肝病[J].生理科學進展,2018,49(2):81-86.DOI:10.3969/j.issn.0559-7765.2018.02.001.
[2]WANG H,LIU Y,YANG LY,et al.Research progress on antiviral ac?tivities and mechanism of alkaloids[J].Chin Tradit Herb Drugs,2022,53(9):2839-2850.DOI:10.7501/j.issn.0253-2670.2022.09.028.
王宏,劉月,楊梁鈺,等.生物堿類化合物抗病毒活性及其機制研究進展[J].中草藥,2022,53(9):2839-2850.DOI:10.7501/j.issn.0253-2670.2022.09.028.
[3]KIM JA,KANG YS,LEE YS.A phospholipase C-dependent intracel?lular Ca2+release pathway mediates the capsaicin-induced apopto?sis in HepG2 human hepatoma cells[J].Arch Pharm Res,2005,28(1):73-80.DOI:10.1007/BF02975139.
[4]FU JH,YU FX,WANG Y,et al.Effect of capsaicin on apoptosis of hepatic stellate cells[J].J Hepatopancreatobiliary Surg,2012,24(6):466-469.DOI:10.3969/j.issn.1007-1954.2012.06.008.
符竣惠,俞富祥,汪洋,等.辣椒素對肝星狀細胞增殖凋亡的影響[J].肝膽胰外科雜志,2012,24(6):466-469.DOI:10.3969/j.issn.1007-1954.2012.06.008.
[5]HU JJ,LUO HH,JIANG Y,et al.Dietary capsaicin and antibiotics act synergistically to reduce non-alcoholic fatty liver disease in?duced by high fat diet in mice[J].Oncotarget,2017,8(24):38161-38175.DOI:10.18632/oncotarget.16975.
[6]KADOWAKI T,YAMAUCHI T,KUBOTA N,et al.Adiponectin and adi?ponectin receptors in insulin resistance,diabetes,and the metabolic syndrome[J].J Clin Invest,2006,116(7):1784-1792.DOI:10.1172/JCI29126.
[7]HARDIE DG.AMPK:Sensing energy while talking to other signaling pathways[J].Cell Metab,2014,20(6):939-952.DOI:10.1016/j.cmet.2014.09.013.
[8]SHIN MK,YANG SM,HAN IS.Capsaicin suppresses liver fat accumula?tion in high-fat diet-induced NAFLD mice[J].Anim Cells Syst(Seoul),2020,24(4):214-219.DOI:10.1080/19768354.2020.1810771.
[9]KIM HJ,KO JW,CHA SB,et al.Evaluation of 13-week repeated oral dose toxicity of Areca catechu in F344/N rats[J].Food Chem Toxi?col,2018,114:41-51.DOI:10.1016/j.fct.2018.02.015.
[10]GUO SK,ZHOU YL,LYU MS,et al.Protective effects of stachydrine on acute hepatic injury injured induced by CCl4 in mice[J].J Taishan Med Coll,2018,39(12):1357-1359.DOI:10.3969/j.issn.1004-7115.2018.10.013.
郭書凱,周艷麗,呂茂盛,等.水蘇堿對四氯化碳致小鼠急性肝損傷的保護作用[J].泰山醫(yī)學院學報,2018,39(12):1357-1359.DOI:10.3969/j.issn.1004-7115.2018.10.013.
[11]BAO XM,LIU YM,HUANG JY,et al.Stachydrine hydrochloride inhibits hepatocellular carcinoma progression via LIF/AMPK axis[J].Phyto?medicine,2022,100:154066.DOI:10.1016/j.phymed.2022.154066.
[12]YE Y,LI X,WANG ZH,et al.3,3'-Diindolylmethane induces gastric cancer cells death via STIM1 mediated store-operated calcium entry[J].Int J Biol Sci,2021,17(5):1217-1233.DOI:10.7150/ijbs.56833.
[13]MENZIES FM,MOREAU K,RUBINSZTEIN DC.Protein misfolding disorders and macroautophagy[J].Curr Opin Cell Biol,2011,23(2):190-197.DOI:10.1016/j.ceb.2010.10.010.
[14]BYUN SJ,KIM HS,JEON SM,et al.Supplementation of Areca cat?echu L.extract alters triglyceride absorption and cholesterol me?tabolism in rats[J].Ann Nutr Metab,2001,45(6):279-284.DOI:10.1159/000046739.
[15]ZHU LP,LI D,YANG XF.Gut metabolomics and 16S rRNA sequenc?ing analysis of the effects of arecoline on non-alcoholic fatty liver dis?ease in rats[J].Front Pharmacol,2023,14:1132026.DOI:10.3389/fphar.2023.1132026.
[16]BRON PA,KLEEREBEZEM M,BRUMMER RJ,et al.Can probiotics modulate human disease by impacting intestinal barrier function?[J].Br J Nutr,2017,117(1):93-107.DOI:10.1017/S0007114516004037.
[17]RAHEEM A,LIANG L,ZHANG GZ,et al.Modulatory effects of probi?otics during pathogenic infections with emphasis on immune regula?tion[J].Front Immunol,2021,12:616713.DOI:10.3389/fimmu.2021.616713.
[18]ELAMIN EE,MASCLEE AA,DEKKER J,et al.Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in Caco-2 cell monolayers[J].J Nutr,2013,143(12):1872-1881.DOI:10.3945/jn.113.179549.
[19]CHANG XX,YAN HM,F(xiàn)EI J,et al.Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats[J].J Lipid Res,2010,51(9):2504-2515.DOI:10.1194/jlr.M001958.
[20]LI C.Study on the mechanism of berberine regulating autophagy of hepatic stellate cells and its effect on liver fibrosis[D].Chengdu:Chengdu Medical College,2020.
李燦.小檗堿調(diào)控肝星狀細胞自噬及其對肝纖維化作用的機制研究[D].成都:成都醫(yī)學院,2020.
[21]GUO T,WOO SL,GUO X,et al.Berberine ameliorates hepatic ste?atosis and suppresses liver and adipose tissue inflammation in mice with diet-induced obesity[J].Sci Rep,2016,6:22612.DOI:10.1038/srep22612.
[22]TAN YH,LI C,DENG FM,et al.Berberine relieves liver fibrosis in mice by inhibiting autophagy of hepatic stellate cells[J].J Chengdu Med Coll,2023,18(1):33-38.DOI:10.3969/j.issn.1674-2257.2023.01.007.
譚悅浩,李燦,鄧峰美,等.小檗堿通過抑制肝星狀細胞自噬改善小鼠肝纖維化[J].成都醫(yī)學院學報,2023,18(1):33-38.DOI:10.3969/j.issn.1674-2257.2023.01.007.
[23]RAFIEI H,OMIDIAN K,BANDY B.Comparison of dietary polyphe?nols for protection against molecular mechanisms underlying nonal?coholic fatty liver disease in a cell model of steatosis[J].Mol Nutr Food Res,2017,61(9).DOI:10.1002/mnfr.201600781.
[24]ZHANG C,DENG JJ,LIU D,et al.Nuciferine inhibits proinflamma?tory cytokines via the PPARs in LPS-induced RAW264.7 cells[J].Mol?ecules,2018,23(10):2723.DOI:10.3390/molecules23102723.
[25]GUO FC,YANG X,LI XX,et al.Nuciferine prevents hepatic steatosis and injury induced by a high-fat diet in hamsters[J].PLoS One,2013,8(5):e63770.DOI:10.1371/journal.pone.0063770.
[26]YU H,LIN LB,ZHANG ZQ,et al.Targeting NF-κB pathway for the therapy of diseases:Mechanism and clinical study[J].Signal Trans?duct Target Ther,2020,5(1):209.DOI:10.1038/s41392-020-00312-6.
[27]FENG X,TAN WK,CHENG S,et al.Upregulation of microRNA-126 in hepatic stellate cells may affect pathogenesis of liver fibrosis through the NF-κB pathway[J].DNA Cell Biol,2015,34(7):470-480.DOI:10.1089/dna.2014.2760.
[28]ZHANG DD,ZHANG JG,WU X,et al.Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells[J].Front Pharmacol,2015,6:238.DOI:10.3389/fphar.2015.00238.
[29]YANG DM,LI L,QIAN SJ,et al.Evodiamine ameliorates liver fibrosis in rats via TGF-β1/Smad signaling pathway[J].J Nat Med,2018,72(1):145-154.DOI:10.1007/s11418-017-1122-5.
[30]KOBYLIAK N,ABENAVOLI L,MYKHALCHYSHYN G,et al.A multi-strain probiotic reduces the fatty liver index,cytokines and amino?transferase levels in NAFLD patients:Evidence from a randomized clinical trial[J].J Gastrointestin Liver Dis,2018,27(1):41-49.DOI:10.15403/jgld.2014.1121.271.kby.
[31]KOBYLIAK N,ABENAVOLI L,F(xiàn)ALALYEYEVA T,et al.Efficacy of pro?biotics and smectite in rats with non-alcoholic fatty liver disease[J].Ann Hepatol,2018,17(1):153-161.DOI:10.5604/01.3001.0010.7547.
[32]DAI YF,ZHU WY,ZHOU JX,et al.The combination of berberine and evodiamine ameliorates high-fat diet-induced non-alcoholic fatty liver disease associated with modulation of gut microbiota in rats[J].Braz J Med Biol Res,2022,55:e12096.DOI:10.1590/1414-431X2022e12096.
[33]XIE N,CUI Y,YIN YN,et al.Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet[J].BMC Complement Altern Med,2011,11:53.DOI:10.1186/1472-6882-11-53.
[34]CHEN M,GUO WL,LI QY,et al.The protective mechanism of Lacto?bacillus plantarum FZU3013 against non-alcoholic fatty liver associ?ated with hyperlipidemia in mice fed a high-fat diet[J].Food Funct,2020,11(4):3316-3331.DOI:10.1039/c9fo03003d.
[35]NAGATA K,NISHIYAMA C.IL-10 in mast cell-mediated immune re?sponses:Anti-inflammatory and proinflammatory roles[J].Int J Mol Sci,2021,22(9):4972.DOI:10.3390/ijms22094972.
[36]LIU YB,KE J,WENG SA,et al.The effects of henbane drugs on cal?cium accumulation of rat liver induced by carbon tetrachloride[J].J Zhengzhou Univ Med Sci,1988,23(3):227-229.DOI:10.13705/j.issn.1671-6825.1988.03.009.
劉元斌,可君,翁世艾,等.莨菪類藥物對四氧化碳所致大鼠肝鈣積累的作用[J].河南醫(yī)科大學學報,1988,23(3):227-229.DOI:10.13705/j.issn.1671-6825.1988.03.009.
[37]CUI RB,KAN BT,SUN XM,et al.Role of store-operated Ca2+chan?nels in primary hepatocytes under conditions of calcium overload and ethanol-induced injury[J].Chin J Hepatol,2013,21(11):860-864.DOI:10.3760/cma.j.issn.1007-3418.2013.11.014.
崔瑞冰,闞寶甜,孫曉萌,等.鈣池操縱的鈣離子通道在乙醇誘導的原代肝細胞鈣超載及損傷中的作用[J].中華肝臟病雜志,2013,21(11):860-864.DOI:10.3760/cma.j.issn.1007-3418.2013.11.014.
[38]XIE YH,CHEN DM,JIANG KJ,et al.Hair shaft miniaturization causes stem cell depletion through mechanosensory signals medi?ated by a Piezo1-calcium-TNF-αaxis[J].Cell Stem Cell,2022,29(1):70-85.e6.DOI:10.1016/j.stem.2021.09.009.
[39]KHURANA S,JADEJA R,TWADDELL W,et al.Effects of modulating M3 muscarinic receptor activity on azoxymethane-induced liver injuryin mice[J].Biochem Pharmacol,2013,86(2):329-338.DOI:10.1016/j.bcp.2013.05.010.
[40]CHOBERT MN,COUCHIE D,F(xiàn)OURCOT A,et al.Liver precursor cells increase hepatic fibrosis induced by chronic carbon tetrachlo?ride intoxication in rats[J].Lab Invest,2012,92(1):135-150.DOI:10.1038/labinvest.2011.143.
[41]FANG CY,CAI XB,HAYASHI S,et al.Caffeine-stimulated muscle IL-6 mediates alleviation of non-alcoholic fatty liver disease[J].Bio?chim Biophys Acta Mol Cell Biol Lipids,2019,1864(3):271-280.DOI:10.1016/j.bbalip.2018.12.003.
[42]LI ZD,GENG MY,DOU SR,et al.Caffeine decreases hepcidin ex?pression to alleviate aberrant iron metabolism under inflammation by regulating the IL-6/STAT3 pathway[J].Life(Basel),2022,12(7):1025.DOI:10.3390/life12071025.
[43]LENHART KF,CAPOZZOLI B,WARRICK GSD,et al.Diminished jak/STAT signaling causes early-onset aging defects in stem cell cytoki?nesis[J].Curr Biol,2019,29(2):256-267.e3.DOI:10.1016/j.cub.2018.11.064.
[44]CAO HK,GAO Y,HUANG SM,et al.Research on mechanism of ef?fect of total flavonoids extracted from Polygonum perfoliatum L.on anti-hepatic fibrosis in rats[J].Chin Pharmacol Bull,2017,33(9):1303-1308.DOI:10.3969/j.issn.1001-1978.2017.09.022.
曹后康,高雅,黃思茂,等.杠板歸總黃酮抗大鼠肝纖維化作用的機制研究[J].中國藥理學通報,2017,33(9):1303-1308.DOI:10.3969/j.issn.1001-1978.2017.09.022.
[45]GRESSNER OA,LAHME B,REHBEIN K,et al.Pharmacological ap?plication of caffeine inhibits TGF-beta-stimulated connective tissue growth factor expression in hepatocytes via PPARgamma and SMAD2/3-dependent pathways[J].J Hepatol,2008,49(5):758-767.DOI:10.1016/j.jhep.2008.03.029.
[46]SHIM SG,JUN DW,KIM EK,et al.Caffeine attenuates liver fibrosis via defective adhesion of hepatic stellate cells in cirrhotic model[J].J Gastroenterol Hepatol,2013,28(12):1877-1884.DOI:10.1111/jgh.12317.
[47]WU BN,KUO KK,CHEN YH,et al.Theophylline-based KMUP-1 im?proves steatohepatitis via MMP-9/IL-10 and lipolysis via HSL/p-HSL in obese mice[J].Int J Mol Sci,2016,17(8):1345.DOI:10.3390/ijms17081345.
[48]REIF S,SOMECH R,BRAZOVSKI E,et al.Matrix metalloproteinases 2 and 9 are markers of inflammation but not of the degree of fibrosis in chronic hepatitis C[J].Digestion,2005,71(2):124-130.DOI:10.1159/000084626.
[49]JUNG UJ,CHOI MS.Obesity and its metabolic complications:The role of adipokines and the relationship between obesity,inflamma?tion,insulin resistance,dyslipidemia and nonalcoholic fatty liver disease[J].Int J Mol Sci,2014,15(4):6184-6223.DOI:10.3390/ijms15046184.
[50]GEBHARDT C.The historical role of species from the Solanaceae plant family in genetic research[J].Theor Appl Genet,2016,129(12):2281-2294.DOI:10.1007/s00122-016-2804-1.
[51]ZHOU XH,LU XL,YANG X,et al.Effect of ursolic acid on that ex?pression and apoptosis of bcl-2 and Bax gene in laryngeal carci?noma Hep-2 cells[J].Chin J Lab Diagn,2021,25(3):434-437.DOI:10.3969/j.issn.1007-4287.2021.03.040.
周曉紅,盧曉麗,楊雪,等.熊果酸對喉癌Hep-2細胞bcl-2、Bax基因表達和凋亡影響[J].中國實驗診斷學,2021,25(3):434-437.DOI:10.3969/j.issn.1007-4287.2021.03.040.
[52]YI YJ,JIA XH,WANG JY,et al.Solanine induced apoptosis and in?creased chemosensitivity to Adriamycin in T-cell acute lymphoblastic leukemia cells[J].Oncol Lett,2018,15(5):7383-7388.DOI:10.3892/ol.2018.8229.
[53]GAO SY,WANG QJ,JI YB.Effect of solanine on the membrane po?tential of mitochondria in HepG2 cells and[Ca2+]i in the cells[J].World J Gastroenterol,2006,12(21):3359-3367.DOI:10.3748/wjg.v12.i21.3359.
[54]LUO S,TIAN GJ,YU FX,et al.A narrative review of the antitumor studies of solanine[J].Transl Cancer Res,2021,10(3):1578-1582.DOI:10.21037/tcr-20-3094.
[55]HASANAIN M,BHATTACHARJEE A,PANDEY P,et al.α-Solanine in?duces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway[J].Cell Death Dis,2015,6(8):e1860.DOI:10.1038/cddis.2015.219.
[56]HIGASHI T,F(xiàn)RIEDMAN SL,HOSHIDA Y.Hepatic stellate cells as key target in liver fibrosis[J].Adv Drug Deliv Rev,2017,121:27-42.DOI:10.1016/j.addr.2017.05.007.
[57]WEN ZD,HUANG CH,XU YY,et al.α-Solanine inhibits vascular en?dothelial growth factor expression by down-regulating the ERK1/2-HIF-1αand STAT3 signaling pathways[J].Eur J Pharmacol,2016,771:93-98.DOI:10.1016/j.ejphar.2015.12.020.
[58]YIN TP,CAI L,HE JM,et al.Three new diterpenoid alkaloids from the roots of Aconitum duclouxii[J].J Asian Nat Prod Res,2014,16(4):345-350.DOI:10.1080/10286020.2014.881802.
[59]ZHANG XM,MA JY,SONG N,et al.Lappaconitine sulfate inhibits proliferation and induces apoptosis in human hepatocellular carci?noma HepG2 cells through the reactive oxygen species-dependent mitochondrial pathway[J].Pharmacology,2020,105(11-12):705-714.DOI:10.1159/000506081.
[60]GINTER E,SIMKO V,PANAKOVA V.Antioxidants in health and dis?ease[J].Bratisl Lek Listy,2014,115(10):603-606.DOI:10.4149/bll_2014_116.
[61]BORCSA B,F(xiàn)ODOR L,CSUPOR D,et al.Diterpene alkaloids from the roots of Aconitum moldavicum and assessment of Nav 1.2 so?dium channel activity of Aconitum alkaloids[J].Planta Med,2014,80(2-3):231-236.DOI:10.1055/s-0033-1360278.
[62]YANG HQ,WANG H,LIU YB,et al.The PI3K/Akt/mTOR signaling pathway plays a role in regulating aconitine-induced autophagy in mouse liver[J].Res Vet Sci,2019,124:317-320.DOI:10.1016/j.rvsc.2019.04.016.
收稿日期:2024-06-09;錄用日期:2024-09-14
本文編輯:王亞南