• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase sensitivity with a coherent beam and twin beams via intensity difference detection

    2024-01-25 07:28:12JunLiu劉俊TaoShao邵濤ChenluLi李晨露MinyangZhang張敏洋YouyouHu胡友友DongxuChen陳東旭andDongWei衛(wèi)棟
    Chinese Physics B 2024年1期
    關(guān)鍵詞:劉俊

    Jun Liu(劉俊), Tao Shao(邵濤), Chenlu Li(李晨露), Minyang Zhang(張敏洋),Youyou Hu(胡友友), Dongxu Chen(陳東旭), and Dong Wei(衛(wèi)棟)

    1School of Science,Jiangsu University of Science and Technology,Zhenjiang 212003,China

    2Quantum Information Research Center,Shangrao Normal University,Shangrao 334001,China

    3School of Physics,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: Mach–Zehnder interferometer,phase sensitivity,quantum squeezing

    1.Introduction

    Interferometers play an important role in the field of precision measurement.[1–11]One of the most typical interferometers is the Mach–Zehnder interferometer (MZI).A general MZI is composed of two beam splitters (BS) and is used to measure phase shift variations in the two paths.The measurement sensitivity of such phase shifts can not surpasswhen the inputs are the combination of a coherent state and an vacuum state, whereNis the total photon number of the inputs, andis named as the shot noise limit (SNL) or the standard quantum limit.[12]

    In order to beat SNL, non-classical states such as the single-mode squeezed vacuum state and two-mode squeezed vacuum state are employed.[13–16]Then the phase sensitivity can reach 1/N, which is also named as the Heisenberg limit(HL).When inputs are Fock state, N00N state and entangled coherent state, the phase sensitivity can also reach sub-SNL and HL.[3,17,18]However, there are many potential problems.For the N00N state,this input state has been shown to be very sensitive to losses, and the maximum photon numberNremains very low in experiments.

    Recently, due to the good performance in phase estimation, a coherent state and a single-mode squeezed vacuum state have been investigated by many groups.[10]Caveset al.claimed that when one of the inputs is a coherent state,the optimal state of the other input is the single-mode squeezed vacuum state,[15]which has been employed in LIGO.[16]When the inputs are the combination of a single-mode squeezed vacuum state and a coherent state, several detection methods are proposed,such as intensity detection,balanced homodyne detection and parity detection.[8]Different detection methods can lead to different optimal phase sensitivities.In order to achieve the optimal phase sensitivity,all the possible measurement strategies need to be taken into account,which is impossible.Fortunately, quantum Fisher information (QFI) and its related quantum Cram′er–Rao bound (QCRB) are introduced to find the optimal theoretical phase sensitivity without considering the specific measurement strategies.

    The QFI is an effective tool in the estimation process when the inputs are the coherent state, Fock state, singlemode squeezed vacuum state, and single-mode squeezed coherent state,etc.[19–28]However,with an external phase reference beam in the detection process, the QFI can be different,which is observed by Jarzynaet al.[19]In addition,Takeokaet al.used a phase-averaging method to solve this problem.[23]Later, Youet al.claimed that the two-parameter phase estimation and the phase-averaging method is equivalent with specific inputs.[24]They also pointed out that it needs to take the reference beam into consideration when a phase reference beam is employed.Then,the detection strategy with external beams has aroused much concern.

    Recently, squeezing and entanglement-assisted input states are proposed.[17,29–33]Under the condition of the squeezing-assisted input,[17,29]the intensity difference detection with an external power reference beam is employed.In the detection process, the conjugate beam offers an external power reference and the phase sensitivity can reach sub-SNL.However, they only consider the condition that one of the inputs is the vacuum beam and the advantage of the external power reference beam is not shown.Meanwhile, the optimal phase sensitivity can only reach sub-SNL.In this paper,we focus on the phase sensitivity with one coherent beam plus one of the bright entangled twin beams(BETB).Moreover,we aim to show that when the inputs of the MZI are a coherent beam plus one of the BETB,the optimal phase sensitivity can reach sub-HL and approach QCRB.

    This paper is structured as follows.In Section 2, the scheme with intensity difference detection is introduced.The QFI and the QCRB are introduced.In Section 3, we analyze how the phase sensitivity is affected by the factors.The impacts of the detection efficiencies of the photon detectors are also studied.Then, detailed comparisons are shown in Section 4.Finally,the conclusions are drawn in Section 5.

    2.The proposed model and phase sensitivity estimation

    2.1.The scheme and operator transformation

    In the first part of Fig.1, we show the generation process of the BETB,which is named as the two-mode squeezed process.[34–37]This two-mode squeezed process can be accomplished by the FWM experiments.[38–41]The FWM transformation can be expressed as

    Fig.1.The scheme for phase sensitivity measurement based on the Mach–Zehnder interferometer (MZI).For the MZI, the inputs are one of the bright entangled twin beams and one coherent beam.The intensity difference is employed for the measurement process.M: mirror;FWM: four-wave mixing; BS: beam splitter; PD: photon detector; B:beam block;dashed line: the vacuum beam.

    2.2.Phase sensitivity estimation with intensity difference detection

    According to the error propagation formula, the phase sensitivity Δφas the uncertainty in estimating the phase shiftφis

    The intensity difference detection signal can be expressed asThen the slope can be expressed as

    while the variance of intensity difference is

    The photon number of the inputs is given by

    Therefore,the SNL and HL of the scenario in Fig.1 isand 1/NB.

    2.3.The QFI and QCRB in two-parameter phase estimation

    For the parameter estimation process, the QCRB is(Δφ)2≥F(φ)?1.The inputs in Fig.1 are pure states.Under this constraint,the QFIF(φ)is

    and?φψ=?ψ/?φ,ψis the state after the phase shift.In order to avoid the potential unavailable measurement strategy,twoparameter phase estimation is necessary.As shown in Fig.1,there are two phasesφ1andφ2in the two arms of the MZI,and we define the two-parameter QFI as

    The QCRB can be better with a largerF.Then the QFIFcan be maximized withF?+=F+?=0.

    3.Analysis of the phase sensitivity

    3.1.Results

    According to Eqs.(3)and(11),figure 2 shows the phase sensitivity versus phase shift and phase difference withr=0.65,Na0=0.1, andNc=0.5.The lower value Δφrepresents the better phase sensitivity.In this scenario,with one of the BETB entering the MZI and the other one being employed for detection, the phase sensitivity can beat HL in Fig.2(a),and the optimal phase sensitivity approaches the QCRB.In the inset of Fig.2(a),it is apparent that the optimal phase sensitivity can approach QCRB.In Fig.2(b), with the variation of the phase difference, the phase sensitivity can be optimal withφd=kπ(kis an integer).Whenφd=kπ+π/2,both the QCRB and the optimal phase sensitivity with intensity difference detection become the worst.The optimal phase sensitivity with intensity difference detection can only approach the QCRB whenφd=kπ.Under this constraint,in the following part,we takeφd=0 for simplification.

    Fig.2.Phase sensitivity versus phase shift (a) and phase difference(b).Others parameters are r=0.65, Na0 =0.1, and Nc =0.5.In (a),φd =0.BETB: bright entangled twin beams; SNL: shot noise limit;HL:Heisenberg limit;QCRB:quantum Cram′er–Rao bound.The inset of(a)is the zoom of the phase sensitivity and it shows that the optimal phase sensitivity can not achieve the QCRB.

    As shown in Fig.3, the phase sensitivities vary with the squeezing parameterr, photon numberNa0, andNc.WhenNa0=0.1 andNc=0.5, the phase sensitivity and the QCRB can beat HL withr ≤0.8 in Fig.3(a).Whenrincreases, the phase sensitivity with intensity difference detection and the QCRB can only reach sub-HL.The optimal phase sensitivity always approaches QCRB with the increase ofr.In Fig.3(b),the optimal phase sensitivity and the QCRB beat HL whenNa0is less than 0.2.WhenNa0becomes larger,they can reach sub-SNL.The optimal phase sensitivity approaches SNL whenNa0≥1.Figure 3(c) shows that both the optimal phase sensitivity and QCRB can reach sub-HL whenNc ≤0.9.They become worse than HL whenNcbecomes larger.In Fig.3,only the photon numberNB≥1 is considered.

    Fig.3.Phase sensitivity versus parametric strength r(a),photon number Na0(b),photon number Nc(c),with r=0.65,Na0=0.1,and Nc=0.5.The other parameters are the same as those in Fig.2.

    Fig.4.Phase sensitivity versus parametric strength r (a) and photon number Nc (b). Na0 =0.TSVB: two-mode squeezed vacuum beam.The other parameters are the same as those in Fig.2.

    Fig.5.The device for phase sensitivity measurement with transmissivity efficiencies T1 and T2 of the photon detectors.Fictitious beam splitters are employed to represent the losses of the photon detectors.The other parameters are the same as those in Fig.2.

    In the above subsections, we show the phase sensitivity with the inputs of a coherent beam and one of the BETB.In fact,when the photon number of the coherent beamNcis zero,this scheme becomes the same as the scenario in Ref.[17].If the squeezing parameterris zero, for the MZI, the inputs are two coherent beams without the reference beam.WithNa0=0,the inputs in Fig.1 become a coherent beam and one of the two-mode squeezed vacuum beams(TSVB).The other one of the TSVB is employed as the external power reference beam.The phase sensitivities versus parametric strengthrand photon numberNcare shown in Fig.4.We immediately notice that the QCRB can beat HL and the optimal phase sensitivity with intensity difference detection is worse than SNL.In Fig.4(a),the QCRB can only reach sub-SNL whenris more than 0.95 withNc=0.5.Withr=0.65, the QCRB can beat HL whenNc ≤1.1 in Fig.4(b).Therefore, for the input of a coherent beam plus one of TSVB based on the MZI,the intensity difference detection is not preferred.

    3.2.Non-unit photon detection efficiency

    In this subsection,we consider the condition that the detection efficiency of the photon detectors is not ideal in Fig.5.Then the transformation of the operators in the scheme is expressed as

    where ?υ2(?υ1)and ?aoutT(?boutT)are the annihilation operators of the two input-output modes of the fictitious BS, respectively.T1andT2represent the transmissivity of the detector.Only the losses of the photon detectors are considered and we assume that there are no losses inside the interferometer.The slope is given by

    and the variance of intensity difference is Δ2?I?BT(Details can be seen in Appendix B).As displayed in Fig.6(a), withT2= 0.2 or 0.5, the phase sensitivity is always worse than SNL.WithT2=0.8,the phase sensitivity can beat SNL whenT1is larger than 0.73.When the photon detector has no loss(T2=1),the phase sensitivity is better than SNL withT1larger than 0.58.In this case, the better phase sensitivity can be achieved by the lower loss.According to Eq.(13), the transmissivityT1has no effects on the slope.The phase sensitivity is worse than SNL when the external power reference beam is absent (T1=0).The external beam can boost the phase sensitivity by reducing the variance and keeping the slope unchanged.Note that the intensity difference detection will become intensity detection withT1=0.The phase sensitivity can not beat SNL in this case.In Fig.6(b),the larger the valueT2, the better the sensitivity.The phase sensitivity can beat SNL withT2larger than 0.76 withT1=0.8.WhenT1=1,the phase sensitivity can still reach SNL withT2=0.7,which shows the good robustness of this scenario.In Fig.6, withr=1,Na0=10 andNc=102, the optimal phase sensitivity with intensity difference detection can not surpass the HL withT1=T2=1.

    Fig.6.Phase sensitivity with the increase of transmissivity T1 (a) and T2 (b),for r=1,Na0=10,and Nc=102.The other parameters are the same as those in Fig.2.

    4.Comparison

    4.1.Two coherent beams with an external coherent beam

    and the variance becomes

    Nco=.We also imposeφ1=0 andφ2=φin the error propagation formula.As displayed in Fig.8, with the employment of the external beam,the QCRB can not surpass SNL.In Figs.8(a)and 8(b),when the inputs are two coherent beams and another coherent beam is employed in the intensity difference detection, the phase sensitivity is worse than SNL.As displayed by Eqs.(14)and (15), when the external coherent beam is employed, the slope is unchanged and the variance becomes larger.BecauseNco≥0 andNb2≥0,andNco+Nb2≥Nco.Hence the external coherent beam can not boost the phase sensitivity and makes it worse.As shown in Fig.8(a), with the increase ofNa0,the photon number of the external coherent beam is larger and the phase sensitivities with the intensity difference detection can never approach SNL.Meanwhile, the QCRB can only reach SNL.In Fig.8(b),the phase sensitivity with the intensity difference detection is worse than SNL with the increase of the photon numberNc2.

    Fig.7.The device for phase sensitivity measurement based on the Mach–Zehnder interferometer with two coherent beams and another coherent beam as the external beam.The other parameters are the same as those in Fig.1.

    Fig.8.Phase sensitivity versus parameter Na0 (a)and Nc (b),for r=1,Na0 =10, and Nc =102.TCB means the phase sensitivity with two coherent beams and the intensity difference detection.The QCRB1 and QCRB2 are the quantum Cram′er–Rao bounds with bright entangled twin beams and two coherent beams.The other parameters are the same as those in Fig.2.

    4.2.One coherent beam plus one single-mode squeezed vacuum beam

    Ref.[42].In this case,the QCRB and the optimal phase sensitivity can reach HL,respectively.Considering the phase insensitive intensity squeezing degree being less than 10 dB,Gis below 5.5(r ≤1.5).

    As shown in Figs.9(a)and 9(b), withNc3=sinh2r3,the QCRB of the coherent beam plus the single-mode squeezed vacuum beam can surpass HL.Withr3=0.8, the QCRB of the coherent beam plus the BETB can beat HL.However,they are still worse than that of the coherent beam plus a singlemode squeezed vacuum beam.Note that the two scenarios have the same photon numbersNBand the BETB have been the TSVB withNc=0.In Figs.9(c) and 9(d), the practical experiments conditionsNc3?sinh2r3are considered.In this case, both the QCRBs of the Fig.1 and the coherent beam plus the single-mode squeezed vacuum state scenario can only reach sub-SNL.However, with the increase of the squeezing parameterr(r >1.86),the QCRB with BETB can beat QCRB of the coherent beam plus a single-mode squeezed vacuum beam in Fig.9(c).In Fig.9(d), the BETB have become the TSVB, and the QCRB1 can still beat the QCRB2 (r >1.8).According to Fig.9, in the HL scale, the QCRB of the scenario in Fig.1 is worse than that of the coherent beam plus a single-mode squeezed vacuum beam.However, in the sub-SNL region,with the high squeezing parameterr,the QCRB1 can beat the QCRB2.Though the squeezing parameter cannot be experimentally realized at present, it is hopeful that it can be achieved in the future.

    Fig.9.Phase sensitivity versus parameter r.In(a)and(b),r3=0.8,and in(c)and(d)r3=1.5. Na0=0.1 in(a)and(c).In(b)and(d),Na0=0.Nc3 =sinh2r3 in (a) and (b). Nc3+sinh2r3 =NB, and they have the same SNL and HL.QCRB1 and QCRB2 are the quantum Cram′er–Rao bounds of Fig.1 and the scenario with the input of a coherent beam plus a single-mode squeezed vacuum beam.The other parameters are the same as those in Fig.2.

    5.Conclusion

    In conclusion, this paper presents the phase sensitivity with the inputs of the BETB and coherent beams based on the MZI.The optimal phase sensitivity with intensity difference detection can reach sub-HL and approach QCRB while an external power reference beam is employed.When the inputs are a coherent beam plus one of the TSVB,the QCRB can beat HL and the optimal phase sensitivity with the intensity difference detection is worse than the SNL.We have a detailed discussion about the detection efficiencies of the photon detectors.The results show that the external beam play a vital role in the measurement process and the absence of the external beam can degrade the performance of the phase sensitivity dramatically.The QCRB of the scheme can be better than that of the coherent beam plus a single-mode squeezed vacuum beam input scenario with the high squeezing parameter.Meanwhile,the external coherent beam can not boost the phase sensitivity when the inputs are two coherent beams.This method of employing the external power reference beam offers a novel measurement way for the phase precision measurement.

    Appendix A: Exact expression of the QFI elements

    The QFI matrix elements can be expressed as

    Im(·)represents the imaginary part.

    Appendix B:Slope and variance of intensity difference with non-unit photon detection efficiency

    The slope is given by

    and the variance of intensity difference Δ2?I?BTyields

    In this part,for simplification,we assume thatφd=0.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12104190, 12104189,and 12204312), the Natural Science Foundation of Jiangsu Province (Grant No.BK20210874), the Jiangsu Provincial Key Research and Development Program (Grant No.BE2022143); the Jiangxi Provincial Natural Science Foundation (Grant Nos.20224BAB211014 and 20232BAB201042), and the General Project of Natural Science Research in Colleges and Universities of Jiangsu Province(Grant No.20KJB140008).

    猜你喜歡
    劉俊
    Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
    Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
    Synthetical optimization of the structure dimension for the thermoacoustic regenerator
    劉俊
    In fluence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48?x Co2Mn38+x Sn12(x=0,1.0,1.5,2.0, and 2.5)ferromagnetic shape memory alloys?
    我和你打個賭
    小飯店,大飯店
    三月三(2014年11期)2014-11-05 03:24:03
    漫漫看
    只送你更貴的
    意林(2011年17期)2011-04-09 05:47:31
    方向盤被盜
    遼河(2009年3期)2009-05-04 10:15:20
    亚洲精品乱码久久久v下载方式| 午夜激情福利司机影院| 精品免费久久久久久久清纯| 免费看美女性在线毛片视频| 亚洲国产欧美人成| 在线免费观看的www视频| 日日撸夜夜添| 五月玫瑰六月丁香| 亚洲自偷自拍三级| 久久精品国产清高在天天线| 亚洲欧洲日产国产| а√天堂www在线а√下载| 亚洲欧美日韩无卡精品| 久久国产乱子免费精品| 久久99热这里只有精品18| www日本黄色视频网| 国产不卡一卡二| 日韩欧美一区二区三区在线观看| 美女黄网站色视频| 日韩三级伦理在线观看| 日韩三级伦理在线观看| 九九热线精品视视频播放| 久久久久久久午夜电影| 最近中文字幕高清免费大全6| 超碰av人人做人人爽久久| 免费看美女性在线毛片视频| 精品久久久久久久末码| 性插视频无遮挡在线免费观看| 综合色丁香网| 性色avwww在线观看| 精品一区二区三区视频在线| 久久精品国产99精品国产亚洲性色| 久久韩国三级中文字幕| 国产成人影院久久av| 欧美成人一区二区免费高清观看| 国产成人影院久久av| 午夜免费激情av| 成人av在线播放网站| 日韩 亚洲 欧美在线| 免费在线观看成人毛片| 国产精品一二三区在线看| 秋霞在线观看毛片| 免费看日本二区| 蜜桃亚洲精品一区二区三区| 国产91av在线免费观看| 中文在线观看免费www的网站| 美女 人体艺术 gogo| 人妻少妇偷人精品九色| 18禁裸乳无遮挡免费网站照片| 18禁在线无遮挡免费观看视频| 乱人视频在线观看| 黄片wwwwww| 亚洲中文字幕日韩| 国产成人精品一,二区 | 91aial.com中文字幕在线观看| 国产极品天堂在线| 国产精品,欧美在线| 免费不卡的大黄色大毛片视频在线观看 | 成人高潮视频无遮挡免费网站| 婷婷亚洲欧美| 特级一级黄色大片| 国产午夜精品论理片| 国产伦理片在线播放av一区 | 亚洲国产欧美在线一区| 亚洲成人久久性| 特级一级黄色大片| 99久久精品一区二区三区| 亚洲国产精品成人综合色| 亚洲精品国产成人久久av| 亚洲精品色激情综合| 2021天堂中文幕一二区在线观| 熟妇人妻久久中文字幕3abv| 99久久精品一区二区三区| 99热6这里只有精品| 久久久久久大精品| 高清日韩中文字幕在线| 亚洲成人中文字幕在线播放| 大香蕉久久网| 国产v大片淫在线免费观看| 国产片特级美女逼逼视频| 成人午夜高清在线视频| 国产成年人精品一区二区| 美女大奶头视频| av天堂在线播放| 久久亚洲国产成人精品v| 91精品国产九色| 亚洲va在线va天堂va国产| 亚洲av一区综合| 国产亚洲91精品色在线| 亚洲精品亚洲一区二区| av福利片在线观看| 在线播放无遮挡| 久久久久久久亚洲中文字幕| 亚洲美女搞黄在线观看| 如何舔出高潮| 亚洲人与动物交配视频| 国产精品日韩av在线免费观看| 国产精品福利在线免费观看| 男女啪啪激烈高潮av片| 白带黄色成豆腐渣| 97超碰精品成人国产| 91精品国产九色| 成人性生交大片免费视频hd| 亚洲四区av| 国产精品三级大全| 天天躁夜夜躁狠狠久久av| 欧美+日韩+精品| 久久久久免费精品人妻一区二区| 色视频www国产| 亚洲精品久久国产高清桃花| 国产一区二区在线av高清观看| 久久精品91蜜桃| 99久久成人亚洲精品观看| 在线免费十八禁| 亚洲精品色激情综合| ponron亚洲| av专区在线播放| 高清毛片免费看| 晚上一个人看的免费电影| 亚洲乱码一区二区免费版| 亚洲av男天堂| 日日撸夜夜添| 中文精品一卡2卡3卡4更新| 91久久精品国产一区二区三区| 国产一区二区激情短视频| 超碰av人人做人人爽久久| 成人无遮挡网站| 久久精品国产亚洲网站| 特大巨黑吊av在线直播| 成人欧美大片| 小说图片视频综合网站| 哪个播放器可以免费观看大片| 久久精品夜夜夜夜夜久久蜜豆| 国产高潮美女av| .国产精品久久| 婷婷亚洲欧美| 久久精品国产自在天天线| 国产成人aa在线观看| 中文字幕免费在线视频6| 国产成人影院久久av| 日韩欧美三级三区| 精品不卡国产一区二区三区| 欧美高清性xxxxhd video| 亚洲四区av| 成人特级av手机在线观看| 欧美日韩在线观看h| 国产精品一区二区三区四区免费观看| 直男gayav资源| 亚洲精品国产av成人精品| 日韩欧美在线乱码| 久久99热6这里只有精品| 97热精品久久久久久| 亚洲精品粉嫩美女一区| 亚洲欧美成人综合另类久久久 | 国产一区二区三区在线臀色熟女| 亚洲无线观看免费| 欧美成人精品欧美一级黄| 卡戴珊不雅视频在线播放| 97在线视频观看| 色综合色国产| 国产熟女欧美一区二区| 日韩成人伦理影院| 欧美激情国产日韩精品一区| 国内精品一区二区在线观看| 成人特级黄色片久久久久久久| 国产精品野战在线观看| 少妇的逼水好多| 午夜免费男女啪啪视频观看| 亚洲精品乱码久久久v下载方式| 中文字幕熟女人妻在线| 亚洲高清免费不卡视频| 久久99热6这里只有精品| 最后的刺客免费高清国语| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| 噜噜噜噜噜久久久久久91| 少妇熟女欧美另类| 久久久久久久久久久免费av| 国产成年人精品一区二区| 能在线免费看毛片的网站| 国产69精品久久久久777片| 成人亚洲精品av一区二区| 午夜激情福利司机影院| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av不卡在线观看| 久久久久久久亚洲中文字幕| 欧美人与善性xxx| av.在线天堂| 精品久久久久久久久亚洲| 一边亲一边摸免费视频| 一区二区三区免费毛片| 久久久久九九精品影院| 国产淫片久久久久久久久| 中文字幕制服av| 小蜜桃在线观看免费完整版高清| 日韩国内少妇激情av| 12—13女人毛片做爰片一| 亚洲av男天堂| 色综合站精品国产| 久久久久九九精品影院| 中出人妻视频一区二区| 久久精品国产亚洲av天美| 亚洲欧美日韩高清在线视频| 最近2019中文字幕mv第一页| 欧美极品一区二区三区四区| 中文资源天堂在线| 永久网站在线| 国产亚洲5aaaaa淫片| 午夜a级毛片| 长腿黑丝高跟| 一边亲一边摸免费视频| 亚洲国产色片| 69av精品久久久久久| 国产中年淑女户外野战色| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 日本五十路高清| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女做爰动态图高潮gif福利片| 亚洲欧洲国产日韩| 99在线人妻在线中文字幕| 精品久久久久久久末码| 久久99热6这里只有精品| a级一级毛片免费在线观看| 九草在线视频观看| 成人午夜精彩视频在线观看| 国产单亲对白刺激| 国产午夜精品论理片| 成人欧美大片| 亚洲欧美精品综合久久99| 精品人妻熟女av久视频| 日本欧美国产在线视频| 亚洲欧美日韩卡通动漫| 亚洲无线观看免费| 丝袜喷水一区| 在线免费观看不下载黄p国产| 男人的好看免费观看在线视频| 欧美性猛交╳xxx乱大交人| 日日啪夜夜撸| 99久久久亚洲精品蜜臀av| 欧美区成人在线视频| 婷婷六月久久综合丁香| 亚洲无线在线观看| 少妇人妻精品综合一区二区 | 免费看av在线观看网站| 一级毛片aaaaaa免费看小| 日本成人三级电影网站| av免费在线看不卡| 国产精品精品国产色婷婷| 国产麻豆成人av免费视频| 大又大粗又爽又黄少妇毛片口| 国产精品国产高清国产av| 亚洲精品久久久久久婷婷小说 | 中文字幕制服av| 亚洲精华国产精华液的使用体验 | 久久精品国产清高在天天线| 欧美性猛交╳xxx乱大交人| 国产人妻一区二区三区在| 男人狂女人下面高潮的视频| 嘟嘟电影网在线观看| 亚洲图色成人| 黄色配什么色好看| 久久精品91蜜桃| 热99在线观看视频| 超碰av人人做人人爽久久| 青春草国产在线视频 | 在线国产一区二区在线| 成人特级黄色片久久久久久久| 久久精品国产清高在天天线| 国产极品天堂在线| 国产成人精品久久久久久| 国产伦理片在线播放av一区 | 日韩国内少妇激情av| 欧美日韩综合久久久久久| 国产极品精品免费视频能看的| 搞女人的毛片| 久久精品国产亚洲av涩爱 | 观看美女的网站| 国产精品人妻久久久影院| 中文精品一卡2卡3卡4更新| 亚洲精品国产成人久久av| 色综合亚洲欧美另类图片| 永久网站在线| 你懂的网址亚洲精品在线观看 | 亚洲人成网站在线播| 99久国产av精品| 日韩大尺度精品在线看网址| 国产黄片美女视频| 日本与韩国留学比较| 九色成人免费人妻av| 国产精品日韩av在线免费观看| 精品久久国产蜜桃| 高清毛片免费观看视频网站| 国产v大片淫在线免费观看| 国产伦精品一区二区三区四那| 大香蕉久久网| 神马国产精品三级电影在线观看| 日韩欧美一区二区三区在线观看| 97在线视频观看| 嫩草影院新地址| 国产成人aa在线观看| 欧美+日韩+精品| 成年女人看的毛片在线观看| 18禁黄网站禁片免费观看直播| 亚洲熟妇中文字幕五十中出| av在线播放精品| 国产成人aa在线观看| 色尼玛亚洲综合影院| 久久久久国产网址| 国产成人freesex在线| 国产爱豆传媒在线观看| 日韩欧美一区二区三区在线观看| 久久久精品欧美日韩精品| 99热网站在线观看| 国产精品爽爽va在线观看网站| 国产一区二区在线av高清观看| 国产成人a∨麻豆精品| 亚洲人成网站在线播| 熟妇人妻久久中文字幕3abv| 国产免费一级a男人的天堂| 久久亚洲精品不卡| 国产黄色小视频在线观看| 色视频www国产| 国产精品野战在线观看| 国内精品美女久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片电影观看 | 夫妻性生交免费视频一级片| av天堂在线播放| 国产高清视频在线观看网站| 最后的刺客免费高清国语| 国产精品蜜桃在线观看 | 特级一级黄色大片| 国产三级中文精品| 长腿黑丝高跟| av卡一久久| 午夜激情福利司机影院| 精品久久久久久久人妻蜜臀av| 一个人看的www免费观看视频| 村上凉子中文字幕在线| 国产成人精品婷婷| 高清毛片免费观看视频网站| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| 国产亚洲5aaaaa淫片| 天堂√8在线中文| 最近手机中文字幕大全| 国产久久久一区二区三区| 久久久久久久久久成人| 日本黄大片高清| 国产高清视频在线观看网站| 国产黄片视频在线免费观看| 成人鲁丝片一二三区免费| 尾随美女入室| 亚洲乱码一区二区免费版| 国产成年人精品一区二区| 国产成人影院久久av| 午夜久久久久精精品| 全区人妻精品视频| 久久精品久久久久久噜噜老黄 | 在线观看免费视频日本深夜| 少妇被粗大猛烈的视频| 免费大片18禁| 桃色一区二区三区在线观看| 一本精品99久久精品77| 免费无遮挡裸体视频| 神马国产精品三级电影在线观看| av又黄又爽大尺度在线免费看 | 国产午夜福利久久久久久| 国产精品一及| 亚洲婷婷狠狠爱综合网| 中文字幕免费在线视频6| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久久电影| 日本与韩国留学比较| 一边亲一边摸免费视频| 99国产精品一区二区蜜桃av| 99久国产av精品| 97超碰精品成人国产| 在线观看av片永久免费下载| 九色成人免费人妻av| 18禁裸乳无遮挡免费网站照片| 男人狂女人下面高潮的视频| 日韩,欧美,国产一区二区三区 | 人体艺术视频欧美日本| 久久精品国产清高在天天线| 亚洲欧美清纯卡通| 天堂影院成人在线观看| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 丰满乱子伦码专区| 亚洲人与动物交配视频| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 波多野结衣高清作品| 成人av在线播放网站| 亚洲精华国产精华液的使用体验 | 日韩欧美精品免费久久| 丝袜喷水一区| 12—13女人毛片做爰片一| 有码 亚洲区| 国产精品一区www在线观看| 啦啦啦观看免费观看视频高清| 一级黄色大片毛片| 亚洲欧洲国产日韩| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 午夜福利在线观看免费完整高清在 | 亚洲色图av天堂| 亚洲精品色激情综合| 国产日本99.免费观看| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 性色avwww在线观看| 久久久a久久爽久久v久久| 又粗又爽又猛毛片免费看| 国产精品久久视频播放| 久久午夜福利片| 最近的中文字幕免费完整| 国语自产精品视频在线第100页| 亚洲av男天堂| 免费在线观看成人毛片| 欧美最新免费一区二区三区| 一级毛片电影观看 | 成人午夜高清在线视频| 天堂影院成人在线观看| 日日啪夜夜撸| 午夜老司机福利剧场| av在线老鸭窝| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美中文字幕日韩二区| 黄色一级大片看看| 国产国拍精品亚洲av在线观看| 美女 人体艺术 gogo| 国产毛片a区久久久久| 久久久久久大精品| 在线播放国产精品三级| 亚洲激情五月婷婷啪啪| 一区二区三区免费毛片| 18+在线观看网站| 色吧在线观看| 麻豆精品久久久久久蜜桃| 少妇高潮的动态图| 色哟哟·www| 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说 | av免费在线看不卡| 国产中年淑女户外野战色| 国产精品1区2区在线观看.| 久久人人爽人人爽人人片va| 干丝袜人妻中文字幕| 小说图片视频综合网站| 大型黄色视频在线免费观看| 久久久午夜欧美精品| 亚洲aⅴ乱码一区二区在线播放| 免费黄网站久久成人精品| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 亚洲精品日韩在线中文字幕 | 国产色爽女视频免费观看| 亚洲av中文av极速乱| 性插视频无遮挡在线免费观看| av黄色大香蕉| 国产亚洲5aaaaa淫片| 欧美zozozo另类| av专区在线播放| 亚洲成人中文字幕在线播放| 乱系列少妇在线播放| 内射极品少妇av片p| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 黄色日韩在线| 亚洲精品国产成人久久av| 国产亚洲av片在线观看秒播厂 | 亚洲熟妇中文字幕五十中出| 国产亚洲欧美98| 国产极品精品免费视频能看的| 久久综合国产亚洲精品| 黄色欧美视频在线观看| 91aial.com中文字幕在线观看| 校园人妻丝袜中文字幕| 亚洲欧美日韩高清在线视频| 五月伊人婷婷丁香| 能在线免费观看的黄片| 国内精品一区二区在线观看| 国产男人的电影天堂91| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| 久久午夜福利片| 国产伦精品一区二区三区四那| 男女下面进入的视频免费午夜| 日韩亚洲欧美综合| 国语自产精品视频在线第100页| 爱豆传媒免费全集在线观看| 麻豆精品久久久久久蜜桃| 老熟妇乱子伦视频在线观看| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 欧美精品一区二区大全| 美女内射精品一级片tv| 麻豆一二三区av精品| 亚洲精品自拍成人| 国产精品久久视频播放| 色5月婷婷丁香| 国产男人的电影天堂91| 国产91av在线免费观看| 国产真实伦视频高清在线观看| 免费人成视频x8x8入口观看| 国产成人午夜福利电影在线观看| 日韩欧美精品免费久久| 午夜视频国产福利| 欧美bdsm另类| 人妻系列 视频| 天堂中文最新版在线下载 | 免费观看在线日韩| 久久韩国三级中文字幕| 国产日韩欧美在线精品| eeuss影院久久| 最后的刺客免费高清国语| 亚洲人成网站在线观看播放| 国产精品av视频在线免费观看| 亚洲va在线va天堂va国产| 中国美白少妇内射xxxbb| av免费在线看不卡| 国产精品永久免费网站| 亚洲成人av在线免费| 舔av片在线| 亚洲美女搞黄在线观看| 日韩欧美 国产精品| 色播亚洲综合网| 在线国产一区二区在线| 边亲边吃奶的免费视频| 色哟哟·www| 午夜福利成人在线免费观看| 日本黄色视频三级网站网址| 久久久久久久久久黄片| 少妇熟女欧美另类| 国产极品精品免费视频能看的| 村上凉子中文字幕在线| 精品一区二区三区视频在线| 三级男女做爰猛烈吃奶摸视频| 久久综合国产亚洲精品| 又黄又爽又刺激的免费视频.| 日日啪夜夜撸| 免费在线观看成人毛片| 麻豆久久精品国产亚洲av| 免费人成视频x8x8入口观看| 成人一区二区视频在线观看| 日产精品乱码卡一卡2卡三| 插阴视频在线观看视频| 久久久久久久久久久免费av| 亚洲精品国产成人久久av| 日韩视频在线欧美| 亚洲18禁久久av| 亚洲美女搞黄在线观看| 国产三级中文精品| 在线观看午夜福利视频| 国产伦在线观看视频一区| 青春草亚洲视频在线观看| 天堂网av新在线| 久久精品国产自在天天线| 在线免费观看不下载黄p国产| 成人午夜精彩视频在线观看| 不卡一级毛片| 女人十人毛片免费观看3o分钟| 国产成人精品一,二区 | 深爱激情五月婷婷| 啦啦啦韩国在线观看视频| avwww免费| 国产精品一区www在线观看| 不卡一级毛片| 嫩草影院入口| 久久鲁丝午夜福利片| 激情 狠狠 欧美| 国产欧美日韩精品一区二区| 波多野结衣高清作品| 精品久久久久久久久久久久久| 三级国产精品欧美在线观看| 春色校园在线视频观看| 成年版毛片免费区| 91久久精品国产一区二区三区| 亚洲美女搞黄在线观看| 97人妻精品一区二区三区麻豆| 国产真实乱freesex| 网址你懂的国产日韩在线| 欧美性猛交╳xxx乱大交人| 欧美日韩国产亚洲二区| 嫩草影院精品99| 成人午夜精彩视频在线观看| 国产私拍福利视频在线观看| 久久久久久久久久久丰满| 国产午夜精品久久久久久一区二区三区| 99久久精品国产国产毛片| 国产精品久久久久久久电影| 国产成人a∨麻豆精品| 97超碰精品成人国产| 日韩强制内射视频| 高清毛片免费看| 最新中文字幕久久久久| 久99久视频精品免费| 搞女人的毛片| 欧美性猛交黑人性爽| 99热精品在线国产| 日韩欧美三级三区| 欧美另类亚洲清纯唯美| 日韩欧美一区二区三区在线观看| 蜜桃亚洲精品一区二区三区| 只有这里有精品99| 狂野欧美白嫩少妇大欣赏| 免费看a级黄色片| 午夜激情福利司机影院| 亚洲中文字幕一区二区三区有码在线看| 成人午夜高清在线视频| 看免费成人av毛片|