• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shape and diffusion instabilities of two non-spherical gas bubbles under ultrasonic conditions

    2024-01-25 07:30:14WurihanBao包烏日汗andDeXinWang王德鑫
    Chinese Physics B 2024年1期
    關(guān)鍵詞:烏日

    Wurihan Bao(包烏日汗) and De-Xin Wang(王德鑫)

    College of Physics and Electronics,Inner Mongolia Minzu University,Tongliao 028043,China

    Keywords: non-spherical bubble,shape instability,diffusive instability

    1.Introduction

    When sound waves propagate through a liquid, they induce a sequence of cavitation phenomena within minute bubbles immersed in the liquid due to the influence of a driving acoustic field.[1]As the driving acoustic pressure attains the inertial cavitation threshold, the bubbles collapse, accompanied by concurrent light radiation under specific conditions,a phenomenon termed sonoluminescence.[2,3]In recent years,owing to the rapid progress in science and technology,the extensive application of ultrasonic cavitation technology has become prevalent across various domains, encompassing ultrasonic cleaning, pulverization, sterilization, ultrasonic extraction,and ultrasonic therapy.

    The presence of multiple bubbles is primarily responsible for the acoustic cavitation effect in liquid.However,the intricate interplay between these bubbles and environmental conditions poses challenges for accurately simulating diverse experimental scenarios using numerical modeling.In contrast,simulating the cavitation of two bubbles in liquid is considerably more straightforward compared to the complexities associated with multiple-bubble acoustic cavitation.When subjected to a driving acoustic field, the oscillation of bubbles give rise to mutual attractive or repulsive forces, known as the secondary Bjerknes forces.Under the influence of the secondary Bjerknes forces, distinct acoustic phenomena occur on the bubbles immersed in the liquid,deviating from those observed in isolated bubble systems.[4–6]

    Acoustic cavitation bubbles, renowned for their intricate dynamics, have instigated a comprehensive exploration spanning both theoretical and experimental domains.In this captivating realm, the attention has particularly focused on the dynamics of two gas bubbles due to their versatile applications.Noteworthy is the work of Luet al.,[7]who extended the theoretical framework by employing the velocity potential superposition theory to elucidate the complexities inherent in the ultrasonic dynamics of two gas bubbles with distinct frequencies.Their research not only sheds light on the intricate interactions intrinsic to bubble behavior but also establishes the groundwork for a deeper comprehension of their dynamics.Empirical insights further enrich this landscape.Maet al.[8–10]delved into the dynamics of bubble volume under secondary Bjerknes forces,utilizing the Lagrange equation to reveal the interplay of parameters influencing oscillation amplitude and initial phase.This empirical depth not only complements theoretical insights but also provides tangible validation through experimental observations.Extending the inquiry to non-spherical bubbles,Wanget al.[11]harnessed the modified Keller–Miksis equation to quantify fluctuations in the radius of two gas bubbles,secondary Bjerknes forces,and temperature during acoustic cavitation.These experimental findings seamlessly align with theoretical constructs,fortifying the foundational principles governing bubble dynamics.Moreover,the pioneering study conducted by Zilonovaet al.[12]has delved into the intriguing dynamics of bubble-bubble interactions within viscous media, revealing their pronounced influence on the behavior of individual bubbles.That study notably highlights a distance-dependent relationship, wherein mutual influence diminishes as the inter-bubble distance increases,becoming negligible at distances of a few millimeters.This insight assumes even greater significance when extended to the realm of viscous media,warranting further exploration.In the broader context of the cavitation of two bubbles, it is noteworthy to acknowledge the significant contributions of other researchers.Studies conducted in Refs.[13–19] have illuminated various facets of cavitation involving two bubbles,collectively enhancing our understanding of this intricate phenomenon.

    In all of these investigations, Prosperettiet al.have predominantly focused on the stability characteristics of spherical bubbles, primarily considering the influence of fluid viscosity.However, the stability characteristics of non-spherical bubbles have not been addressed in their research.[20]Studies on bubble dynamics often rely on the assumption of ideal spherical bubbles.However, real-world experiments involve the presence of numerous non-spherical bubbles,rendering the spherical model inapplicable.Wanget al.[21]have proposed a non-spherical model for sonoluminescence in a non-spherical acoustic field and have determined a stable range for sonoluminescence.They have discovered that bubbles exhibit nonspherical oscillations within specific parameter intervals.Wuet al.have investigated the translation and non-spherical oscillation of a single bubble, concluding the work that, under a constant initial bubble radius and driving acoustic pressure amplitude, the non-spherical oscillation becomes more pronounced with an increasing initial speed of the bubble center.Moreover, the corresponding instability region in theR0–Paphase diagram gradually expands.[22]

    In the present study,based upon literature,[16]we investigate the impact of various initial radius, distance, and perturbation parameters on the shape instability and diffusive equilibrium curve properties of two non-spherical gas bubbles.To accomplish this,we employ the modified Keller–Miksis equation.Our findings contribute theoretical evidence for the examination of instability characteristics in non-spherical multibubbles and bubble clouds.

    2.Theoretical model for two non-spherical gas bubbles

    To facilitate the analysis, we initially developed a simplified theoretical model of two non-spherical gas bubbles,as illustrated in Fig.1.Although this is a schematic diagram of a three-dimensional model,the bubble dynamics model under the three-dimensional model is very complex.In this study,only two non-spherical gas bubbles under two-dimensional conditions are considered, and their long radii of ellipses are represented asR1andR2respectively.It can be observed from Fig.1 thatr2=r1?d,whered=(0,0,d)represents the coordinate vector of the displacementdbetween bubbles.Assuming thatR1+R2?d, we consider a random pointPlocated outside the two bubbles,r1andr2represent the displacements of the centers of bubbles 1 and 2 from the pointP.Under the assumptions of an incompressible and irrotational ideal fluid,the particle velocity potential function at any point within the liquid satisfies the Laplace equation

    If we take the central point of bubble 1 as the origin coordinate, the velocity potential of the liquid due solely to radial pulsations of bubble 1 is then represented as[16]

    Similarly,potential generated by radial pulsations of bubble 2 would be

    whereΦ1(r1)is the velocity potentials of bubble 1,Φ2(r2)is the velocity potentials of bubble 2, respectively.To carry out the calculation further we need to be able to transform coordinates from(r1,θ1)to(r2,θ2),and vice versa(see Fig.1).Herepnis thenthLegendre polynomial.We can expandΦ2in the local coordinate of bubble 1 as

    Similarly,we haveΦ1in the local coordinate of bubble 2,

    Fig.1.A three-dimensional schematic diagram of two non-spherical gas bubbles in an acoustic field.

    To describe the oscillation of two non-spherical gas bubbles in the acoustic field, we introduce a perturbation in the driving acoustic pressure.The distance between the center point of any non-spherical bubble and any pointPon the surface of that bubble can be expressed as follows:[17]

    whereRi(t) is the initial radius of the bubble with no perturbation.Ymn(θ,Φ) represents the spherical harmonics ofnorder, wheren ≥2, andai(t) is the amplitude of the surface distortion.During the oscillation process, the bubbles are rotationally symmetric.Then,we only need to consider the bubbles’radial oscillation,and their velocity potentials can be expressed as

    We further view the part containingθiin Eq.(7)as a perturbation item and neglect its high order small quantities,then we obtain the velocity potentials inside and outside the nonspherical bubble interfaces as follows:

    Then substituting Eq.(8) into the Bernoulli equation yields

    whereP(ri)andP(∞)denote the pressures at the positionsPand infinity in the liquid,εis a small perturbation parameter,

    whereμis the viscosity coefficient of the liquid, andσis the surface tension coefficient.P0is the ambient pressure,Pd=?Pasin(ωt)is the driving acoustic pressure on the bubble surface,ω=2π fwithfbeing the frequency of acoustic field,andγdenotes the polytropic exponent.

    WhenPdis not too large, because of its symmetry, nonspherical bubbles from persisting for an extended period under uniform acoustic driving.Therefore, it becomes necessary to introduce a small non-spherical symmetrical acoustic pressure to correct the driving pressure:[23]

    whereδis the boundary layer thickness,(i=1,2), onlyn=2 is considered in this study, quadruple distortion.By substituting the two-non-spherical-gas-bubble potentialΦ(ri,θi) into Eq.(9), whenr=R1, we can obtain the shape instability equation of bubble 1 as follows:

    Similarly,whenr=R2,we can obtain the shape instability equation of bubble 2 as follows:

    The right sides of Eqs.(14) and (16) describe the spherical asymmetric perturbation of sound waves,[23]whereδ pnrepresents the deviation of the driving sound pressure from the spherical symmetry.

    Considering the compressibility of the liquid in a highly intense acoustic field,the Rayleigh–Plesset model cannot satisfy the requirement that the radial oscillation velocity of bubbles in the liquid is lower than the speed of sound.Consequently, in this study, we adopt the assumption of incompressible liquid.To meet this condition, we used the Keller–Miksis equation to describe the variation in the radius of two non-spherical gas bubbles, instead of the Rayleigh–Plesset equations (13) and (15).The Keller–Miksis equation is expressed as

    3.Factors influencing the instability characteristics of two non-spherical gas bubbles

    Compared to a single bubble, calculating the shape instabilityR0–Paphase diagram and diffusive equilibrium curve of two non-spherical gas bubbles requires more extensive effort and entails increased complexity.Therefore, our primary focus in this paper is to examine the influence of bubble radius, distance and perturbation parameter on the instability characteristics of cavitation bubbles.Based on previous research,[23,24]the instability of non-spherical bubbles can be classified into three main types: shape instability,diffusion instability, and chemical instability.The shape instability type can be further classified into three categories: (a) Rayleigh–Taylor(RT)instability,(b)rebound instability,and(c)parameter instability.Studies have confirmed that RT and parameter instabilities play a dominant role in the stability characteristics of bubbles, with their respectiveR0–Paphase diagrams exhibiting comparable features.Therefore, our investigation primarily focuses on the RT instability, for which the corresponding instability criterion can be expressed as[25]

    To provide a more intuitive description of the instability characteristics of non-spherical bubbles,we conducted numerical simulations to observe the instability states over five acoustic cycles.We incorporated the parameter conditions for the three instabilities of a single bubble as provided in the literature[24]into our modified models for two non-spherical gas bubbles.Subsequently, we investigated the instability characteristics of the bubbles by considering the parameters of perturbation amplitude,which changes over time,and the bubble radii.These parameters are as follows: (a)R0=2.5 μm,Pa=1.5 atm;(b)R0=4.0μm,Pa=1.3 atm;(c)R0=5.2μm,Pa=1.0 atm.We performed calculations and generated diagrams illustrating the normalized perturbation amplitude as it varies with time and the bubbles’radii,presented in Figs.2(a)–2(c).Using Eqs.(13)–(16) and employing the Runge–Kutta method,we conducted numerical simulations for the three instabilities of non-spherical bubble.In our proposed model,we assigned the following physical parameters:f=25 kHz,ρ=1000 kg/m3,c=1485 m/s,γ=1.4,P0=1.013×105Pa,P0=P(∞),σ=0.0725 N/m,andμ=0.001 kg/m·s.

    Figure 2(solid lines)illustrates the behavior of cavitation bubbles over five complete acoustic cycles.Within each cycle,the bubbles initially undergo slow expansion.During the first 0.5 cycles of acoustic pressure, their radii reach a peak and then sharply decrease.Subsequently, within 0.6 cycles of acoustic pressure, the radii reach their minima.Following this, the bubbles oscillate in a stable manner.The corresponding maximal expansion ratios of the cavitation bubbles for the three instabilities are 1.7, 8.0, and 20, respectively.It can be observed that the expansion ratios of the bubbles differ depending on their initial radius.Under the same amplitude of the driving pressure,it is observed that cavitation bubbles with larger initial radius tend to exhibit relatively higher expansion ratios.This phenomenon could potentially be attributed to the proximity of larger initial bubbles to the resonant radius within the examined parameters.Notably,previous studies[26–28]have demonstrated that the maximum expansion ratio is achieved when bubbles are driven under resonant conditions.The oscillation of the bubble radii can be roughly divided into three periods: expansion,collapse,and rebound.

    In order to explore the impact of the initial radius, distance,and perturbation parameters of two bubbles on their instability characteristics, we conducted numerical simulations to obtain the shape instabilityR0–Paphase diagrams and diffusive equilibrium curves.The diffusive equilibrium condition can be mathematically expressed as[25]

    Here,C∞is the gas concentration far away from the bubble,C0is the saturation(mass)concentration of the gas in liquid,and〈〉denotes the time average.

    Fig.2.The dashed lines correspond to the normalized perturbation amplitude a2/R0 varying with acoustic cycles; the solid lines correspond to the radius R/R0 varying with acoustic cycles: (a) Rayleigh–Taylor instability(R0 =2.5μm, Pa =1.5 atm), (b)rebound instability(R0 =4.0 μm, Pa =1.3 atm), (c) parameter instability (R0 =5.2 μm,Pa=1.0 atm).

    The shape instability caused by the interaction between two bubbles can be observed through the secondary Bjerknes force.[29]The secondary Bjerknes force between two gas bubbles can be expressed as

    whereV1andV2denote the volumes of bubbles 1 and 2, respectively,V1=4/3πR31andV2=4/3πR32;eris the radial unit vector.In order to present the results,the variation of the secondary Bjerknes force is often portrayed using the secondary Bjerknes force coefficient,denoted asfB.It is defined as

    Therefore,by observing the sign offB,we can discern the interaction between the two bubbles: whenfB>0, the bubbles attract each other;whenfB<0,the bubbles repel each other.

    3.1.Influence of the radius between bubbles

    Figures 3(b)–3(c)illustrate the influence of different initial radius of bubble 2 on the shape instability and the diffusion equilibrium curve of bubble 1 inR0–Paphase diagrams for the two-non-spherical-gas-bubble model presented in this paper.Figure 3(a) shows the results of a single bubble under the same conditions, in comparison with the two-bubble model.Bubbles are driven by sound waves with a frequency of 25 kHz in water at 293 K and 1 atm ambient pressure,without considering perturbation.In the figures,black areas represent regions of shape instability,whereas white areas represent regions of shape stability.The stability threshold corresponds to the boundary between the black and white areas of the figures.The curves represent the diffusive equilibrium of the bubble under different relative concentrations ofC∞/C0,with a positive slope indicating a stable diffusive equilibrium and a negative slope indicating an unstable diffusive equilibrium.

    Fig.3.Shape instability and diffusive equilibrium curves in R0–Pa phase diagrams, under a constant distance d =20 mm without perturbation for various relative concentrations C∞/C0: (a)single bubble,[(b),(c)]the initial radius of bubble 2 with R20=1μm and R20=5μm,respectively.

    It is known that in the case of single-bubble cavitation,after undergoing several oscillation cycles,due to rectification effects,the interior of the bubble eventually contains only argon gas.[30]The results presented in Figs.3(b) and 3(c) reveal important findings regarding the stability of two bubbles.When the distance between bubbles is kept constant, it becomes evident that the shape instability region of bubble 1 in theR0–Paphase diagram expands gradually as the initial radius of bubble 2 increases.Compared to the case of a single bubble,the unstable region has significantly increased,but its range is different.This could be due to the interaction forces between the two bubbles, specifically the secondary Bjerknes force, coming into play.In air and air-saturated water,the relative concentration of argon gas,C∞/C0=0.01.From Figs.3(b) and 3(c), it can be observed that with an increase in the initial radius of bubble 2, the curve ofC∞/C0=0.01 with a positive slope covers a decreasingParegion.This suggests that in terms of diffusive stability,due to the interaction forces between the two bubbles, the two-bubble model is not as stable as the single-bubble model under the same cavitation conditions.

    Additionally, from Figs.3(b) and 3(c), it is evident that some continuous stable regions emerge within the instability region.The stability theory of Mathieu(or Hill)equation can provide a good understanding of the general characteristics of instability.[31]Bubble oscillations are highly nonlinear,the Mathieu (or Hill) equation replacesan=bn/R3/2and retains only the linear terms in the spherical asymmetric perturbation.Calculations using the Mathieu(or Hill)equation can explain the emergence of continuous stable regions within the instability region of theR0–Paphase diagram.[32]

    3.2.Influence of the distance between bubbles

    The distance between bubbles plays a significant role in the secondary Bjerknes forces.Unlike the behavior of a single bubble, where stability and dynamics are relatively wellunderstood,the presence of two bubbles introduces a new level of complexity.Due to the influence of secondary Bjerknes forces and variations in the inherent resonance frequencies of the two bubbles,varying initial distances between bubbles lead to distinct interactions.To investigate the influence of the distance between bubbles on the shape instability of bubble 1 in the presence of two non-spherical gas bubbles,we conducted simulations and generated the shape instabilityR0–Paphase diagrams and diffusive equilibrium curves without perturbation.When the initial radius of bubble 2 is 5 μm, the initial distances between bubbles shown in Figs.4(a) and 4(b) are 2 mm and 0.2 mm,respectively.

    Fig.4.Shape instability and the diffusive equilibrium curves of bubble 1 in R0–Pa phase diagrams for various relative concentrations C∞/C0.The distance between bubbles is (a) d =2 mm and (b) d =0.2 mm,respectively.

    Comparing Fig.3(c) with Fig.4, one can conclude that the unstable region gradually increases with the reducing distance between bubbles, which may due to the frequent fluctuations in secondary Bjerknes forces.Therefore, we calculated the variation of the secondary Bjerknes force coefficientfBin theR10–R20plane with different distance between bubbles,as shown in Fig.5.According to the region boundary in Fig.4,we selected the driving sound pressure as 1.15 atm.The white regions represent repulsive force,(i.e,fB<0),while the gray scale regions represent attractive forces(i.e,fB>0).The darker the color, the higher the absolute value offB.For better visualization, the complete symmetric data are shown.In Fig.5,as the distance between the bubbles reduces(i.e.,they approach each other),the repulsion region gradually decreases and the boundaries of these regions shift towards larger bubble radius,while the changes in the attraction region are minimal.This phenomenon may be attributed to the natural resonance of bubbles increasing as they approach each other.[29]Consequently, when bubbles approach each other, there is a possibility that the sign offBfor the cases near the boundaries changes, potentially leading to an inversion of the secondary Bjerknes force in some bubble pairs.A reduction in the distance between bubbles results in the widening of pressure ranges associated with the positive slope regions in the diffusion curves, particularly when considering a relative concentration ofC∞/C0at 0.01.This observation aligns harmoniously with the outcomes documented in earlier research studies.[25]

    Fig.5.The variations of the secondary Bjerknes force coefficient fB in the R10–R20 plane for driving pressure Pa =1.15 atm under different distance between bubbles.The planes are given for distances: (a)d=20 mm,(b)d=2 mm,and(c)d=0.2 mm.

    3.3.Influence of the spherical asymmetric perturbation parameter

    The spherical asymmetric perturbation parameterδ p2in Eq.(12) is challenging to evaluate directly.In this paper,we have chosen to simplify by settingδ p2= 1×10?5Pa,1×10?7Pa,values that were previously used for a single bubble under similar conditions[23]and were demonstrated with the best fit to the experimental data in Ref.[33],and the parameters used in the instability analysis of other bubble models.[25]

    In Figs.6(a)–6(c), we can see that, in the bubble-1 shape instabilityR0–Paphase diagram and diffusive equilibrium curve under a varying initial radius with driving pressure when the distance between bubbles is 20 mm,the initial radius of bubble 2 is 5μm and the spherical asymmetric perturbation parameterδ p2is 0Pa,1×10?5Pa,1×10?7Pa,respectively.

    From Figs.6(a)and 6(b),we can observe that,under the same perturbation parameter,with the initial radius of bubble 2 in the two-bubble model being constant, the instability region of bubble 1 is larger compared to that of a single bubble.This illustrates that perturbation parameter has a substantial influence on the shape instability of bubbles.

    Comparing Fig.3(c) with Fig.6, we can observe that in the presence of perturbation parameter in the two-bubble model, larger perturbation parameters lead to an increase in the instability region of bubble 1.

    Fig.6.Shape instability and the diffusive equilibrium curves of bubble 1 in R0–Pa phase diagrams,for d=20 mm,and the spherical asymmetric perturbation parameter: (a) the single bubble model, δ p2 =1×10?5Pa, (b) the two-nonspherical-bubble model, R20 =5μm,δ p2=1×10?5Pa,(c)the two-nonspherical-bubble model,R20=5μm,δ p2=1×10?7Pa.

    Conversely,smaller perturbation parameter tends to facilitate the formation of stable oscillations, resulting in a reduction of the instability region.However,it is important to note that the relationship between perturbation parameter and shape instability is likely nonlinear,and the specific mechanisms involved require further investigation.

    From Figs.3(c), 6(b), and 6(c), we selected the region boundary as 1.3 atm and calculated the secondary Bjerknes force coefficientfBin theR10–R20plane corresponding to the three figures, as shown in Fig.7.The perturbation parameter has minimal impact on the overall trend of the secondary Bjerknes force.It only induces slight variations at the boundaries between the repulsion and attraction regions in the twononspherical-bubble model.

    Fig.7.The secondary Bjerknes force coefficient fB in the R10–R20 plane for driving presure Pa=1.3 atm with different spherical asymmetric perturbation parameter.The planes are given for perturbation: (a)δ p2=0,(b)δ p2=1×10?5Pa,and(c)δ p2=1×10?7Pa.

    4.Conclusion

    We have investigated the instability characteristics of two-nonspherical-gas-bubble cavitation and explored the influence of various factors.Using numerical simulations and the Keller–Miksis equation, we establish a theoretical model considering initial bubble radius, distance, and perturbation parameter.With this model,we find the unique stability characteristics arising from interactions between two bubbles as opposed to a single bubble under similar cavitation conditions.The pivotal role played by the secondary Bjerknes force and resonance frequencies is highlighted.Furthermore,alterations in the initial distance of two bubbles and perturbation parameters exert substantial influence on the extent of the instability region.Notably,the nonlinear nature of the relationship between perturbation parameters and shape stability calls for further in-depth investigation to elucidate its intricacies.These findings contribute to understanding two-nonsphericalgas-bubble cavitation and provide a foundation for achieving stable bubble sonoluminescence.

    Acknowledgment

    Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region(Grant No.NJZY23100).

    猜你喜歡
    烏日
    一葉輕舟承載祖孫情
    馬頭琴奏出世界風:難忘父母甩賣了半個牛群
    蘇日娜、周念祺、于婧、烏日罕作品
    烏日根 對表演的熱忱從未改變
    時尚北京(2020年11期)2020-11-16 02:08:18
    烏日嘎和他的烏潤合爾
    滿族文學(2020年4期)2020-09-03 04:29:23
    烏日嘎和他的烏潤合爾
    烏日嘎的蒙古馬
    安徽文學(2020年1期)2020-01-15 04:27:42
    烏日更達賴:播綠還“心債”
    額爾敦-烏日勒對AS家兔肝低密度脂蛋白受體(RDLR)表達的影響
    蒙藥薩烏日勒為主方治療薩病臨床療效分析
    精品国产超薄肉色丝袜足j| 久久影院123| h视频一区二区三区| 丁香六月欧美| 日韩制服骚丝袜av| 一级片免费观看大全| 色94色欧美一区二区| 无遮挡黄片免费观看| 久久久久国产精品人妻一区二区| 男男h啪啪无遮挡| 欧美国产精品一级二级三级| 欧美日韩视频精品一区| 亚洲精品一二三| 黑人巨大精品欧美一区二区蜜桃| 岛国在线观看网站| 美女扒开内裤让男人捅视频| 超色免费av| 女性生殖器流出的白浆| 在线观看一区二区三区激情| 丝袜脚勾引网站| 人人澡人人妻人| 操出白浆在线播放| 黄频高清免费视频| 国产真人三级小视频在线观看| 亚洲五月色婷婷综合| 国产av国产精品国产| 欧美一级毛片孕妇| 久久香蕉激情| 久久久久久久久久久久大奶| www.av在线官网国产| 丁香六月天网| 在线观看www视频免费| 淫妇啪啪啪对白视频 | 啦啦啦 在线观看视频| 国产成人系列免费观看| 欧美成人午夜精品| 搡老乐熟女国产| 亚洲国产av新网站| 色94色欧美一区二区| 亚洲国产精品999| 亚洲全国av大片| 老熟妇乱子伦视频在线观看 | 搡老熟女国产l中国老女人| 一区在线观看完整版| 国产在线视频一区二区| 啦啦啦啦在线视频资源| av又黄又爽大尺度在线免费看| 如日韩欧美国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 国产亚洲精品第一综合不卡| 亚洲三区欧美一区| 欧美激情久久久久久爽电影 | av网站在线播放免费| 香蕉丝袜av| 亚洲精品美女久久av网站| av在线app专区| 久久久久国产精品人妻一区二区| 人人妻人人添人人爽欧美一区卜| 黄色片一级片一级黄色片| 国产精品久久久久久人妻精品电影 | 欧美激情高清一区二区三区| 国产成人系列免费观看| 在线观看www视频免费| 欧美乱码精品一区二区三区| 国产激情久久老熟女| 美女主播在线视频| 色精品久久人妻99蜜桃| 日韩视频一区二区在线观看| 久久久精品免费免费高清| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美精品综合一区二区三区| 午夜91福利影院| 精品久久久久久久毛片微露脸 | 在线精品无人区一区二区三| 美女午夜性视频免费| 亚洲三区欧美一区| 99国产精品一区二区三区| 久久 成人 亚洲| 人人澡人人妻人| 国产精品欧美亚洲77777| e午夜精品久久久久久久| 欧美精品一区二区免费开放| 香蕉丝袜av| 亚洲精品粉嫩美女一区| 国产伦理片在线播放av一区| 97在线人人人人妻| 天天影视国产精品| 国产在线观看jvid| 亚洲精品国产av蜜桃| 日韩中文字幕欧美一区二区| 下体分泌物呈黄色| 91九色精品人成在线观看| 欧美精品av麻豆av| 操美女的视频在线观看| 一区二区av电影网| 国产精品成人在线| 亚洲精品日韩在线中文字幕| 国产亚洲精品久久久久5区| 国产主播在线观看一区二区| 国产一区有黄有色的免费视频| 自线自在国产av| 天天躁夜夜躁狠狠躁躁| 一级黄色大片毛片| netflix在线观看网站| 一级毛片女人18水好多| 国产人伦9x9x在线观看| 成人三级做爰电影| 爱豆传媒免费全集在线观看| 18禁黄网站禁片午夜丰满| 最黄视频免费看| 波多野结衣一区麻豆| 久久精品成人免费网站| 最近最新免费中文字幕在线| 最近最新中文字幕大全免费视频| 老汉色av国产亚洲站长工具| 亚洲国产看品久久| 国产亚洲av片在线观看秒播厂| 亚洲少妇的诱惑av| 亚洲国产成人一精品久久久| 人妻人人澡人人爽人人| 精品高清国产在线一区| 50天的宝宝边吃奶边哭怎么回事| av一本久久久久| 欧美另类亚洲清纯唯美| 欧美中文综合在线视频| 亚洲国产av新网站| 国产男女内射视频| 丰满人妻熟妇乱又伦精品不卡| 自拍欧美九色日韩亚洲蝌蚪91| 欧美一级毛片孕妇| 国产精品免费大片| 制服人妻中文乱码| 91老司机精品| 精品少妇久久久久久888优播| 在线观看免费高清a一片| 50天的宝宝边吃奶边哭怎么回事| 青青草视频在线视频观看| 久久人人爽av亚洲精品天堂| 精品一区二区三区av网在线观看 | 丝袜美足系列| 成人影院久久| 中国国产av一级| 精品少妇久久久久久888优播| 看免费av毛片| 男女国产视频网站| 中文字幕最新亚洲高清| 久久久精品94久久精品| 成人国产av品久久久| 在线永久观看黄色视频| 亚洲中文av在线| 国产精品一区二区在线观看99| 久久久水蜜桃国产精品网| 在线天堂中文资源库| 欧美黄色片欧美黄色片| 欧美变态另类bdsm刘玥| 日韩视频在线欧美| 国产精品香港三级国产av潘金莲| 涩涩av久久男人的天堂| 嫩草影视91久久| 老熟妇仑乱视频hdxx| 成人av一区二区三区在线看 | 免费观看人在逋| 黄频高清免费视频| 麻豆av在线久日| 亚洲欧美色中文字幕在线| 999精品在线视频| www日本在线高清视频| 精品少妇内射三级| 日日摸夜夜添夜夜添小说| 久久国产亚洲av麻豆专区| 美国免费a级毛片| av电影中文网址| 美国免费a级毛片| 91精品伊人久久大香线蕉| 男男h啪啪无遮挡| 女人爽到高潮嗷嗷叫在线视频| 久久人人爽av亚洲精品天堂| 亚洲精品av麻豆狂野| 亚洲精品成人av观看孕妇| 日韩 亚洲 欧美在线| 精品国内亚洲2022精品成人 | 久久香蕉激情| 亚洲视频免费观看视频| 丝袜美足系列| 亚洲精品国产一区二区精华液| 18禁裸乳无遮挡动漫免费视频| www.熟女人妻精品国产| 久久ye,这里只有精品| 91老司机精品| 久久 成人 亚洲| 欧美性长视频在线观看| 99国产精品一区二区三区| 老熟妇乱子伦视频在线观看 | 国产精品影院久久| 天天躁狠狠躁夜夜躁狠狠躁| 巨乳人妻的诱惑在线观看| 国产又色又爽无遮挡免| 在线精品无人区一区二区三| 深夜精品福利| 亚洲精品粉嫩美女一区| 国产有黄有色有爽视频| 久久99一区二区三区| 69av精品久久久久久 | 香蕉丝袜av| 亚洲av欧美aⅴ国产| 亚洲美女黄色视频免费看| 在线观看免费午夜福利视频| 国产成人欧美在线观看 | 亚洲精品国产区一区二| 老熟妇仑乱视频hdxx| 日本欧美视频一区| 宅男免费午夜| 亚洲中文av在线| 少妇裸体淫交视频免费看高清 | 亚洲精品乱久久久久久| 777米奇影视久久| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区免费| 97人妻天天添夜夜摸| 建设人人有责人人尽责人人享有的| 嫩草影视91久久| 亚洲国产看品久久| 十八禁网站免费在线| 欧美xxⅹ黑人| 91国产中文字幕| 成人国语在线视频| 国产一区二区 视频在线| 久久 成人 亚洲| 老司机亚洲免费影院| 12—13女人毛片做爰片一| 国产成人系列免费观看| 黄色视频不卡| 国产精品 国内视频| 国产国语露脸激情在线看| www.精华液| netflix在线观看网站| 热re99久久精品国产66热6| 亚洲精品一区蜜桃| 午夜福利一区二区在线看| videosex国产| 国产精品久久久久久人妻精品电影 | 另类精品久久| 精品亚洲成a人片在线观看| 久久亚洲精品不卡| 亚洲成av片中文字幕在线观看| 黄频高清免费视频| 日本av免费视频播放| 大码成人一级视频| 久久综合国产亚洲精品| 欧美乱码精品一区二区三区| 亚洲欧美激情在线| 丁香六月天网| 精品少妇黑人巨大在线播放| 午夜91福利影院| xxxhd国产人妻xxx| 99国产精品一区二区三区| 丰满饥渴人妻一区二区三| 丁香六月天网| 亚洲精品美女久久久久99蜜臀| 成年美女黄网站色视频大全免费| 免费高清在线观看视频在线观看| 亚洲国产av影院在线观看| 精品一区在线观看国产| 亚洲av片天天在线观看| 日韩一区二区三区影片| 久久精品国产a三级三级三级| a级片在线免费高清观看视频| 国产有黄有色有爽视频| 久久久久国内视频| 国产精品亚洲av一区麻豆| 亚洲情色 制服丝袜| 老熟妇乱子伦视频在线观看 | 欧美xxⅹ黑人| 免费不卡黄色视频| 精品少妇久久久久久888优播| 9热在线视频观看99| 天天躁狠狠躁夜夜躁狠狠躁| 19禁男女啪啪无遮挡网站| 交换朋友夫妻互换小说| 99热网站在线观看| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 国产又色又爽无遮挡免| 亚洲国产精品一区二区三区在线| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 两性午夜刺激爽爽歪歪视频在线观看 | av天堂在线播放| 欧美黄色片欧美黄色片| cao死你这个sao货| 一本—道久久a久久精品蜜桃钙片| 国精品久久久久久国模美| 激情视频va一区二区三区| 男人添女人高潮全过程视频| 黑丝袜美女国产一区| bbb黄色大片| 亚洲情色 制服丝袜| 一级a爱视频在线免费观看| 国产在线观看jvid| 中文字幕人妻丝袜制服| 午夜精品久久久久久毛片777| 成人影院久久| 丝袜脚勾引网站| 国产一区有黄有色的免费视频| 国产av精品麻豆| 日本一区二区免费在线视频| 国产高清国产精品国产三级| 下体分泌物呈黄色| 在线观看一区二区三区激情| 欧美日韩亚洲综合一区二区三区_| 一区二区av电影网| 精品国内亚洲2022精品成人 | 蜜桃在线观看..| 一级,二级,三级黄色视频| 欧美国产精品一级二级三级| 久久久久网色| 国产在线观看jvid| 国产精品av久久久久免费| 国产成人一区二区三区免费视频网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲欧美激情在线| 亚洲男人天堂网一区| 欧美精品一区二区大全| 91麻豆av在线| 搡老熟女国产l中国老女人| 国产精品影院久久| 日韩精品免费视频一区二区三区| 国产在线免费精品| 免费高清在线观看日韩| 国产精品 国内视频| 国产成人啪精品午夜网站| 在线 av 中文字幕| 成年动漫av网址| 久久人妻熟女aⅴ| 久久久国产成人免费| 国产精品一区二区在线不卡| 曰老女人黄片| 丁香六月天网| 大陆偷拍与自拍| 亚洲国产av新网站| 啦啦啦视频在线资源免费观看| 精品国产超薄肉色丝袜足j| 国产不卡av网站在线观看| 美女大奶头黄色视频| 日韩大片免费观看网站| 亚洲欧美一区二区三区久久| 久久久久久久大尺度免费视频| 午夜福利一区二区在线看| 免费观看av网站的网址| 日本一区二区免费在线视频| 黄片播放在线免费| 亚洲欧美日韩另类电影网站| 亚洲国产成人一精品久久久| 精品人妻在线不人妻| 精品免费久久久久久久清纯 | 桃花免费在线播放| 久久ye,这里只有精品| 老司机在亚洲福利影院| 久久狼人影院| 狠狠狠狠99中文字幕| 99热网站在线观看| 亚洲av成人一区二区三| 天天影视国产精品| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 亚洲七黄色美女视频| 一区福利在线观看| 国产精品自产拍在线观看55亚洲 | 亚洲中文字幕日韩| 久久精品aⅴ一区二区三区四区| 日本a在线网址| 欧美一级毛片孕妇| 97人妻天天添夜夜摸| 国产精品国产av在线观看| 桃红色精品国产亚洲av| 亚洲av电影在线观看一区二区三区| 亚洲成人免费电影在线观看| 人妻一区二区av| 大型av网站在线播放| av一本久久久久| 精品少妇一区二区三区视频日本电影| 免费在线观看完整版高清| 中文欧美无线码| 啦啦啦中文免费视频观看日本| 久久久久久久国产电影| 久久天躁狠狠躁夜夜2o2o| 日本猛色少妇xxxxx猛交久久| 下体分泌物呈黄色| 久久天堂一区二区三区四区| 后天国语完整版免费观看| 色视频在线一区二区三区| 每晚都被弄得嗷嗷叫到高潮| av有码第一页| 爱豆传媒免费全集在线观看| 欧美性长视频在线观看| 久久亚洲精品不卡| 免费人妻精品一区二区三区视频| 日日摸夜夜添夜夜添小说| 天天躁夜夜躁狠狠躁躁| 日韩视频一区二区在线观看| 精品国产一区二区久久| 亚洲欧美清纯卡通| 精品一品国产午夜福利视频| 黄片大片在线免费观看| 一级毛片女人18水好多| 97在线人人人人妻| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 九色亚洲精品在线播放| 国产欧美日韩一区二区三 | 久久久久久亚洲精品国产蜜桃av| 无限看片的www在线观看| 波多野结衣av一区二区av| 亚洲七黄色美女视频| 精品一区在线观看国产| 三上悠亚av全集在线观看| 中文字幕人妻丝袜制服| 多毛熟女@视频| 女人被躁到高潮嗷嗷叫费观| 黄色视频,在线免费观看| 欧美中文综合在线视频| 丝袜在线中文字幕| 大陆偷拍与自拍| 欧美另类亚洲清纯唯美| 久久久精品区二区三区| 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品成人久久小说| 久久毛片免费看一区二区三区| 99精品久久久久人妻精品| 一区二区三区乱码不卡18| av视频免费观看在线观看| 久久九九热精品免费| 亚洲国产欧美网| 男人添女人高潮全过程视频| 欧美黄色片欧美黄色片| 亚洲七黄色美女视频| 国产黄频视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 各种免费的搞黄视频| 最新在线观看一区二区三区| 黑人猛操日本美女一级片| 天天躁日日躁夜夜躁夜夜| 免费在线观看影片大全网站| 国产成人精品在线电影| 老司机午夜福利在线观看视频 | 狂野欧美激情性xxxx| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三 | 少妇人妻久久综合中文| 久久精品亚洲熟妇少妇任你| 精品一区二区三卡| 国产黄频视频在线观看| 亚洲中文日韩欧美视频| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 91精品国产国语对白视频| 美女中出高潮动态图| 国产一区二区三区av在线| 一本久久精品| 在线永久观看黄色视频| 日本一区二区免费在线视频| 亚洲五月色婷婷综合| 免费高清在线观看日韩| 国产精品一区二区在线不卡| av在线app专区| 国产黄频视频在线观看| 一本大道久久a久久精品| 精品少妇黑人巨大在线播放| 老司机午夜福利在线观看视频 | 久久影院123| 波多野结衣av一区二区av| 欧美精品一区二区免费开放| 夜夜骑夜夜射夜夜干| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 纯流量卡能插随身wifi吗| 天天操日日干夜夜撸| 国精品久久久久久国模美| 考比视频在线观看| 操美女的视频在线观看| 一区二区三区激情视频| 国产主播在线观看一区二区| 国产国语露脸激情在线看| a级毛片黄视频| 亚洲精品美女久久av网站| 午夜成年电影在线免费观看| 午夜精品国产一区二区电影| 永久免费av网站大全| 国产1区2区3区精品| 国产欧美日韩一区二区三 | 丁香六月欧美| 久久亚洲精品不卡| 性少妇av在线| 啦啦啦啦在线视频资源| 日本a在线网址| 啦啦啦在线免费观看视频4| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 高清黄色对白视频在线免费看| 精品少妇内射三级| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美精品永久| 精品亚洲成国产av| 中文字幕人妻熟女乱码| 亚洲精品第二区| 69av精品久久久久久 | 亚洲欧美一区二区三区久久| 国产精品久久久人人做人人爽| 女人精品久久久久毛片| 在线亚洲精品国产二区图片欧美| 色精品久久人妻99蜜桃| 国产成+人综合+亚洲专区| 国产三级黄色录像| 丰满迷人的少妇在线观看| 在线观看一区二区三区激情| 18禁黄网站禁片午夜丰满| 精品国产超薄肉色丝袜足j| 亚洲国产欧美一区二区综合| 一本综合久久免费| 女人久久www免费人成看片| 国产精品一区二区免费欧美 | 各种免费的搞黄视频| 久久精品国产a三级三级三级| 69精品国产乱码久久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产一区二区在线观看av| 另类精品久久| 亚洲一区二区三区欧美精品| a级毛片黄视频| 肉色欧美久久久久久久蜜桃| 啦啦啦视频在线资源免费观看| 1024香蕉在线观看| 亚洲欧洲日产国产| 欧美97在线视频| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 欧美日韩福利视频一区二区| 午夜两性在线视频| 最近最新免费中文字幕在线| 女性被躁到高潮视频| 精品国产乱码久久久久久男人| 王馨瑶露胸无遮挡在线观看| 亚洲国产日韩一区二区| 精品少妇久久久久久888优播| 亚洲成人国产一区在线观看| 日本猛色少妇xxxxx猛交久久| av在线老鸭窝| 日本撒尿小便嘘嘘汇集6| 老熟妇仑乱视频hdxx| 成人黄色视频免费在线看| 不卡一级毛片| 麻豆国产av国片精品| 在线观看www视频免费| 国产成人影院久久av| av免费在线观看网站| 国产精品久久久久久人妻精品电影 | 亚洲av国产av综合av卡| 成年人午夜在线观看视频| 欧美xxⅹ黑人| 亚洲自偷自拍图片 自拍| 国产男女超爽视频在线观看| 亚洲精品av麻豆狂野| 美女高潮喷水抽搐中文字幕| 91大片在线观看| 国产91精品成人一区二区三区 | 免费不卡黄色视频| 久久久久久久国产电影| av福利片在线| 亚洲 国产 在线| 视频区图区小说| 成人av一区二区三区在线看 | 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 岛国在线观看网站| 大型av网站在线播放| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 美女脱内裤让男人舔精品视频| 99久久综合免费| 国产精品自产拍在线观看55亚洲 | av有码第一页| 少妇猛男粗大的猛烈进出视频| 亚洲国产日韩一区二区| 精品一区二区三区av网在线观看 | 一级毛片电影观看| 黑人巨大精品欧美一区二区蜜桃| 十八禁人妻一区二区| 一二三四在线观看免费中文在| 日韩人妻精品一区2区三区| 丝袜脚勾引网站| 亚洲黑人精品在线| 狂野欧美激情性bbbbbb| 亚洲av日韩在线播放| 五月天丁香电影| 国产精品久久久久久人妻精品电影 | 少妇的丰满在线观看| 精品亚洲成国产av| 777米奇影视久久| 午夜免费观看性视频| 国产人伦9x9x在线观看| 亚洲av美国av| 一区二区三区四区激情视频| 国产三级黄色录像| 精品久久久精品久久久| 亚洲人成77777在线视频| 咕卡用的链子| 欧美xxⅹ黑人| 精品福利观看| 久久久久国内视频| 国产无遮挡羞羞视频在线观看|