• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shape and diffusion instabilities of two non-spherical gas bubbles under ultrasonic conditions

    2024-01-25 07:30:14WurihanBao包烏日汗andDeXinWang王德鑫
    Chinese Physics B 2024年1期
    關(guān)鍵詞:烏日

    Wurihan Bao(包烏日汗) and De-Xin Wang(王德鑫)

    College of Physics and Electronics,Inner Mongolia Minzu University,Tongliao 028043,China

    Keywords: non-spherical bubble,shape instability,diffusive instability

    1.Introduction

    When sound waves propagate through a liquid, they induce a sequence of cavitation phenomena within minute bubbles immersed in the liquid due to the influence of a driving acoustic field.[1]As the driving acoustic pressure attains the inertial cavitation threshold, the bubbles collapse, accompanied by concurrent light radiation under specific conditions,a phenomenon termed sonoluminescence.[2,3]In recent years,owing to the rapid progress in science and technology,the extensive application of ultrasonic cavitation technology has become prevalent across various domains, encompassing ultrasonic cleaning, pulverization, sterilization, ultrasonic extraction,and ultrasonic therapy.

    The presence of multiple bubbles is primarily responsible for the acoustic cavitation effect in liquid.However,the intricate interplay between these bubbles and environmental conditions poses challenges for accurately simulating diverse experimental scenarios using numerical modeling.In contrast,simulating the cavitation of two bubbles in liquid is considerably more straightforward compared to the complexities associated with multiple-bubble acoustic cavitation.When subjected to a driving acoustic field, the oscillation of bubbles give rise to mutual attractive or repulsive forces, known as the secondary Bjerknes forces.Under the influence of the secondary Bjerknes forces, distinct acoustic phenomena occur on the bubbles immersed in the liquid,deviating from those observed in isolated bubble systems.[4–6]

    Acoustic cavitation bubbles, renowned for their intricate dynamics, have instigated a comprehensive exploration spanning both theoretical and experimental domains.In this captivating realm, the attention has particularly focused on the dynamics of two gas bubbles due to their versatile applications.Noteworthy is the work of Luet al.,[7]who extended the theoretical framework by employing the velocity potential superposition theory to elucidate the complexities inherent in the ultrasonic dynamics of two gas bubbles with distinct frequencies.Their research not only sheds light on the intricate interactions intrinsic to bubble behavior but also establishes the groundwork for a deeper comprehension of their dynamics.Empirical insights further enrich this landscape.Maet al.[8–10]delved into the dynamics of bubble volume under secondary Bjerknes forces,utilizing the Lagrange equation to reveal the interplay of parameters influencing oscillation amplitude and initial phase.This empirical depth not only complements theoretical insights but also provides tangible validation through experimental observations.Extending the inquiry to non-spherical bubbles,Wanget al.[11]harnessed the modified Keller–Miksis equation to quantify fluctuations in the radius of two gas bubbles,secondary Bjerknes forces,and temperature during acoustic cavitation.These experimental findings seamlessly align with theoretical constructs,fortifying the foundational principles governing bubble dynamics.Moreover,the pioneering study conducted by Zilonovaet al.[12]has delved into the intriguing dynamics of bubble-bubble interactions within viscous media, revealing their pronounced influence on the behavior of individual bubbles.That study notably highlights a distance-dependent relationship, wherein mutual influence diminishes as the inter-bubble distance increases,becoming negligible at distances of a few millimeters.This insight assumes even greater significance when extended to the realm of viscous media,warranting further exploration.In the broader context of the cavitation of two bubbles, it is noteworthy to acknowledge the significant contributions of other researchers.Studies conducted in Refs.[13–19] have illuminated various facets of cavitation involving two bubbles,collectively enhancing our understanding of this intricate phenomenon.

    In all of these investigations, Prosperettiet al.have predominantly focused on the stability characteristics of spherical bubbles, primarily considering the influence of fluid viscosity.However, the stability characteristics of non-spherical bubbles have not been addressed in their research.[20]Studies on bubble dynamics often rely on the assumption of ideal spherical bubbles.However, real-world experiments involve the presence of numerous non-spherical bubbles,rendering the spherical model inapplicable.Wanget al.[21]have proposed a non-spherical model for sonoluminescence in a non-spherical acoustic field and have determined a stable range for sonoluminescence.They have discovered that bubbles exhibit nonspherical oscillations within specific parameter intervals.Wuet al.have investigated the translation and non-spherical oscillation of a single bubble, concluding the work that, under a constant initial bubble radius and driving acoustic pressure amplitude, the non-spherical oscillation becomes more pronounced with an increasing initial speed of the bubble center.Moreover, the corresponding instability region in theR0–Paphase diagram gradually expands.[22]

    In the present study,based upon literature,[16]we investigate the impact of various initial radius, distance, and perturbation parameters on the shape instability and diffusive equilibrium curve properties of two non-spherical gas bubbles.To accomplish this,we employ the modified Keller–Miksis equation.Our findings contribute theoretical evidence for the examination of instability characteristics in non-spherical multibubbles and bubble clouds.

    2.Theoretical model for two non-spherical gas bubbles

    To facilitate the analysis, we initially developed a simplified theoretical model of two non-spherical gas bubbles,as illustrated in Fig.1.Although this is a schematic diagram of a three-dimensional model,the bubble dynamics model under the three-dimensional model is very complex.In this study,only two non-spherical gas bubbles under two-dimensional conditions are considered, and their long radii of ellipses are represented asR1andR2respectively.It can be observed from Fig.1 thatr2=r1?d,whered=(0,0,d)represents the coordinate vector of the displacementdbetween bubbles.Assuming thatR1+R2?d, we consider a random pointPlocated outside the two bubbles,r1andr2represent the displacements of the centers of bubbles 1 and 2 from the pointP.Under the assumptions of an incompressible and irrotational ideal fluid,the particle velocity potential function at any point within the liquid satisfies the Laplace equation

    If we take the central point of bubble 1 as the origin coordinate, the velocity potential of the liquid due solely to radial pulsations of bubble 1 is then represented as[16]

    Similarly,potential generated by radial pulsations of bubble 2 would be

    whereΦ1(r1)is the velocity potentials of bubble 1,Φ2(r2)is the velocity potentials of bubble 2, respectively.To carry out the calculation further we need to be able to transform coordinates from(r1,θ1)to(r2,θ2),and vice versa(see Fig.1).Herepnis thenthLegendre polynomial.We can expandΦ2in the local coordinate of bubble 1 as

    Similarly,we haveΦ1in the local coordinate of bubble 2,

    Fig.1.A three-dimensional schematic diagram of two non-spherical gas bubbles in an acoustic field.

    To describe the oscillation of two non-spherical gas bubbles in the acoustic field, we introduce a perturbation in the driving acoustic pressure.The distance between the center point of any non-spherical bubble and any pointPon the surface of that bubble can be expressed as follows:[17]

    whereRi(t) is the initial radius of the bubble with no perturbation.Ymn(θ,Φ) represents the spherical harmonics ofnorder, wheren ≥2, andai(t) is the amplitude of the surface distortion.During the oscillation process, the bubbles are rotationally symmetric.Then,we only need to consider the bubbles’radial oscillation,and their velocity potentials can be expressed as

    We further view the part containingθiin Eq.(7)as a perturbation item and neglect its high order small quantities,then we obtain the velocity potentials inside and outside the nonspherical bubble interfaces as follows:

    Then substituting Eq.(8) into the Bernoulli equation yields

    whereP(ri)andP(∞)denote the pressures at the positionsPand infinity in the liquid,εis a small perturbation parameter,

    whereμis the viscosity coefficient of the liquid, andσis the surface tension coefficient.P0is the ambient pressure,Pd=?Pasin(ωt)is the driving acoustic pressure on the bubble surface,ω=2π fwithfbeing the frequency of acoustic field,andγdenotes the polytropic exponent.

    WhenPdis not too large, because of its symmetry, nonspherical bubbles from persisting for an extended period under uniform acoustic driving.Therefore, it becomes necessary to introduce a small non-spherical symmetrical acoustic pressure to correct the driving pressure:[23]

    whereδis the boundary layer thickness,(i=1,2), onlyn=2 is considered in this study, quadruple distortion.By substituting the two-non-spherical-gas-bubble potentialΦ(ri,θi) into Eq.(9), whenr=R1, we can obtain the shape instability equation of bubble 1 as follows:

    Similarly,whenr=R2,we can obtain the shape instability equation of bubble 2 as follows:

    The right sides of Eqs.(14) and (16) describe the spherical asymmetric perturbation of sound waves,[23]whereδ pnrepresents the deviation of the driving sound pressure from the spherical symmetry.

    Considering the compressibility of the liquid in a highly intense acoustic field,the Rayleigh–Plesset model cannot satisfy the requirement that the radial oscillation velocity of bubbles in the liquid is lower than the speed of sound.Consequently, in this study, we adopt the assumption of incompressible liquid.To meet this condition, we used the Keller–Miksis equation to describe the variation in the radius of two non-spherical gas bubbles, instead of the Rayleigh–Plesset equations (13) and (15).The Keller–Miksis equation is expressed as

    3.Factors influencing the instability characteristics of two non-spherical gas bubbles

    Compared to a single bubble, calculating the shape instabilityR0–Paphase diagram and diffusive equilibrium curve of two non-spherical gas bubbles requires more extensive effort and entails increased complexity.Therefore, our primary focus in this paper is to examine the influence of bubble radius, distance and perturbation parameter on the instability characteristics of cavitation bubbles.Based on previous research,[23,24]the instability of non-spherical bubbles can be classified into three main types: shape instability,diffusion instability, and chemical instability.The shape instability type can be further classified into three categories: (a) Rayleigh–Taylor(RT)instability,(b)rebound instability,and(c)parameter instability.Studies have confirmed that RT and parameter instabilities play a dominant role in the stability characteristics of bubbles, with their respectiveR0–Paphase diagrams exhibiting comparable features.Therefore, our investigation primarily focuses on the RT instability, for which the corresponding instability criterion can be expressed as[25]

    To provide a more intuitive description of the instability characteristics of non-spherical bubbles,we conducted numerical simulations to observe the instability states over five acoustic cycles.We incorporated the parameter conditions for the three instabilities of a single bubble as provided in the literature[24]into our modified models for two non-spherical gas bubbles.Subsequently, we investigated the instability characteristics of the bubbles by considering the parameters of perturbation amplitude,which changes over time,and the bubble radii.These parameters are as follows: (a)R0=2.5 μm,Pa=1.5 atm;(b)R0=4.0μm,Pa=1.3 atm;(c)R0=5.2μm,Pa=1.0 atm.We performed calculations and generated diagrams illustrating the normalized perturbation amplitude as it varies with time and the bubbles’radii,presented in Figs.2(a)–2(c).Using Eqs.(13)–(16) and employing the Runge–Kutta method,we conducted numerical simulations for the three instabilities of non-spherical bubble.In our proposed model,we assigned the following physical parameters:f=25 kHz,ρ=1000 kg/m3,c=1485 m/s,γ=1.4,P0=1.013×105Pa,P0=P(∞),σ=0.0725 N/m,andμ=0.001 kg/m·s.

    Figure 2(solid lines)illustrates the behavior of cavitation bubbles over five complete acoustic cycles.Within each cycle,the bubbles initially undergo slow expansion.During the first 0.5 cycles of acoustic pressure, their radii reach a peak and then sharply decrease.Subsequently, within 0.6 cycles of acoustic pressure, the radii reach their minima.Following this, the bubbles oscillate in a stable manner.The corresponding maximal expansion ratios of the cavitation bubbles for the three instabilities are 1.7, 8.0, and 20, respectively.It can be observed that the expansion ratios of the bubbles differ depending on their initial radius.Under the same amplitude of the driving pressure,it is observed that cavitation bubbles with larger initial radius tend to exhibit relatively higher expansion ratios.This phenomenon could potentially be attributed to the proximity of larger initial bubbles to the resonant radius within the examined parameters.Notably,previous studies[26–28]have demonstrated that the maximum expansion ratio is achieved when bubbles are driven under resonant conditions.The oscillation of the bubble radii can be roughly divided into three periods: expansion,collapse,and rebound.

    In order to explore the impact of the initial radius, distance,and perturbation parameters of two bubbles on their instability characteristics, we conducted numerical simulations to obtain the shape instabilityR0–Paphase diagrams and diffusive equilibrium curves.The diffusive equilibrium condition can be mathematically expressed as[25]

    Here,C∞is the gas concentration far away from the bubble,C0is the saturation(mass)concentration of the gas in liquid,and〈〉denotes the time average.

    Fig.2.The dashed lines correspond to the normalized perturbation amplitude a2/R0 varying with acoustic cycles; the solid lines correspond to the radius R/R0 varying with acoustic cycles: (a) Rayleigh–Taylor instability(R0 =2.5μm, Pa =1.5 atm), (b)rebound instability(R0 =4.0 μm, Pa =1.3 atm), (c) parameter instability (R0 =5.2 μm,Pa=1.0 atm).

    The shape instability caused by the interaction between two bubbles can be observed through the secondary Bjerknes force.[29]The secondary Bjerknes force between two gas bubbles can be expressed as

    whereV1andV2denote the volumes of bubbles 1 and 2, respectively,V1=4/3πR31andV2=4/3πR32;eris the radial unit vector.In order to present the results,the variation of the secondary Bjerknes force is often portrayed using the secondary Bjerknes force coefficient,denoted asfB.It is defined as

    Therefore,by observing the sign offB,we can discern the interaction between the two bubbles: whenfB>0, the bubbles attract each other;whenfB<0,the bubbles repel each other.

    3.1.Influence of the radius between bubbles

    Figures 3(b)–3(c)illustrate the influence of different initial radius of bubble 2 on the shape instability and the diffusion equilibrium curve of bubble 1 inR0–Paphase diagrams for the two-non-spherical-gas-bubble model presented in this paper.Figure 3(a) shows the results of a single bubble under the same conditions, in comparison with the two-bubble model.Bubbles are driven by sound waves with a frequency of 25 kHz in water at 293 K and 1 atm ambient pressure,without considering perturbation.In the figures,black areas represent regions of shape instability,whereas white areas represent regions of shape stability.The stability threshold corresponds to the boundary between the black and white areas of the figures.The curves represent the diffusive equilibrium of the bubble under different relative concentrations ofC∞/C0,with a positive slope indicating a stable diffusive equilibrium and a negative slope indicating an unstable diffusive equilibrium.

    Fig.3.Shape instability and diffusive equilibrium curves in R0–Pa phase diagrams, under a constant distance d =20 mm without perturbation for various relative concentrations C∞/C0: (a)single bubble,[(b),(c)]the initial radius of bubble 2 with R20=1μm and R20=5μm,respectively.

    It is known that in the case of single-bubble cavitation,after undergoing several oscillation cycles,due to rectification effects,the interior of the bubble eventually contains only argon gas.[30]The results presented in Figs.3(b) and 3(c) reveal important findings regarding the stability of two bubbles.When the distance between bubbles is kept constant, it becomes evident that the shape instability region of bubble 1 in theR0–Paphase diagram expands gradually as the initial radius of bubble 2 increases.Compared to the case of a single bubble,the unstable region has significantly increased,but its range is different.This could be due to the interaction forces between the two bubbles, specifically the secondary Bjerknes force, coming into play.In air and air-saturated water,the relative concentration of argon gas,C∞/C0=0.01.From Figs.3(b) and 3(c), it can be observed that with an increase in the initial radius of bubble 2, the curve ofC∞/C0=0.01 with a positive slope covers a decreasingParegion.This suggests that in terms of diffusive stability,due to the interaction forces between the two bubbles, the two-bubble model is not as stable as the single-bubble model under the same cavitation conditions.

    Additionally, from Figs.3(b) and 3(c), it is evident that some continuous stable regions emerge within the instability region.The stability theory of Mathieu(or Hill)equation can provide a good understanding of the general characteristics of instability.[31]Bubble oscillations are highly nonlinear,the Mathieu (or Hill) equation replacesan=bn/R3/2and retains only the linear terms in the spherical asymmetric perturbation.Calculations using the Mathieu(or Hill)equation can explain the emergence of continuous stable regions within the instability region of theR0–Paphase diagram.[32]

    3.2.Influence of the distance between bubbles

    The distance between bubbles plays a significant role in the secondary Bjerknes forces.Unlike the behavior of a single bubble, where stability and dynamics are relatively wellunderstood,the presence of two bubbles introduces a new level of complexity.Due to the influence of secondary Bjerknes forces and variations in the inherent resonance frequencies of the two bubbles,varying initial distances between bubbles lead to distinct interactions.To investigate the influence of the distance between bubbles on the shape instability of bubble 1 in the presence of two non-spherical gas bubbles,we conducted simulations and generated the shape instabilityR0–Paphase diagrams and diffusive equilibrium curves without perturbation.When the initial radius of bubble 2 is 5 μm, the initial distances between bubbles shown in Figs.4(a) and 4(b) are 2 mm and 0.2 mm,respectively.

    Fig.4.Shape instability and the diffusive equilibrium curves of bubble 1 in R0–Pa phase diagrams for various relative concentrations C∞/C0.The distance between bubbles is (a) d =2 mm and (b) d =0.2 mm,respectively.

    Comparing Fig.3(c) with Fig.4, one can conclude that the unstable region gradually increases with the reducing distance between bubbles, which may due to the frequent fluctuations in secondary Bjerknes forces.Therefore, we calculated the variation of the secondary Bjerknes force coefficientfBin theR10–R20plane with different distance between bubbles,as shown in Fig.5.According to the region boundary in Fig.4,we selected the driving sound pressure as 1.15 atm.The white regions represent repulsive force,(i.e,fB<0),while the gray scale regions represent attractive forces(i.e,fB>0).The darker the color, the higher the absolute value offB.For better visualization, the complete symmetric data are shown.In Fig.5,as the distance between the bubbles reduces(i.e.,they approach each other),the repulsion region gradually decreases and the boundaries of these regions shift towards larger bubble radius,while the changes in the attraction region are minimal.This phenomenon may be attributed to the natural resonance of bubbles increasing as they approach each other.[29]Consequently, when bubbles approach each other, there is a possibility that the sign offBfor the cases near the boundaries changes, potentially leading to an inversion of the secondary Bjerknes force in some bubble pairs.A reduction in the distance between bubbles results in the widening of pressure ranges associated with the positive slope regions in the diffusion curves, particularly when considering a relative concentration ofC∞/C0at 0.01.This observation aligns harmoniously with the outcomes documented in earlier research studies.[25]

    Fig.5.The variations of the secondary Bjerknes force coefficient fB in the R10–R20 plane for driving pressure Pa =1.15 atm under different distance between bubbles.The planes are given for distances: (a)d=20 mm,(b)d=2 mm,and(c)d=0.2 mm.

    3.3.Influence of the spherical asymmetric perturbation parameter

    The spherical asymmetric perturbation parameterδ p2in Eq.(12) is challenging to evaluate directly.In this paper,we have chosen to simplify by settingδ p2= 1×10?5Pa,1×10?7Pa,values that were previously used for a single bubble under similar conditions[23]and were demonstrated with the best fit to the experimental data in Ref.[33],and the parameters used in the instability analysis of other bubble models.[25]

    In Figs.6(a)–6(c), we can see that, in the bubble-1 shape instabilityR0–Paphase diagram and diffusive equilibrium curve under a varying initial radius with driving pressure when the distance between bubbles is 20 mm,the initial radius of bubble 2 is 5μm and the spherical asymmetric perturbation parameterδ p2is 0Pa,1×10?5Pa,1×10?7Pa,respectively.

    From Figs.6(a)and 6(b),we can observe that,under the same perturbation parameter,with the initial radius of bubble 2 in the two-bubble model being constant, the instability region of bubble 1 is larger compared to that of a single bubble.This illustrates that perturbation parameter has a substantial influence on the shape instability of bubbles.

    Comparing Fig.3(c) with Fig.6, we can observe that in the presence of perturbation parameter in the two-bubble model, larger perturbation parameters lead to an increase in the instability region of bubble 1.

    Fig.6.Shape instability and the diffusive equilibrium curves of bubble 1 in R0–Pa phase diagrams,for d=20 mm,and the spherical asymmetric perturbation parameter: (a) the single bubble model, δ p2 =1×10?5Pa, (b) the two-nonspherical-bubble model, R20 =5μm,δ p2=1×10?5Pa,(c)the two-nonspherical-bubble model,R20=5μm,δ p2=1×10?7Pa.

    Conversely,smaller perturbation parameter tends to facilitate the formation of stable oscillations, resulting in a reduction of the instability region.However,it is important to note that the relationship between perturbation parameter and shape instability is likely nonlinear,and the specific mechanisms involved require further investigation.

    From Figs.3(c), 6(b), and 6(c), we selected the region boundary as 1.3 atm and calculated the secondary Bjerknes force coefficientfBin theR10–R20plane corresponding to the three figures, as shown in Fig.7.The perturbation parameter has minimal impact on the overall trend of the secondary Bjerknes force.It only induces slight variations at the boundaries between the repulsion and attraction regions in the twononspherical-bubble model.

    Fig.7.The secondary Bjerknes force coefficient fB in the R10–R20 plane for driving presure Pa=1.3 atm with different spherical asymmetric perturbation parameter.The planes are given for perturbation: (a)δ p2=0,(b)δ p2=1×10?5Pa,and(c)δ p2=1×10?7Pa.

    4.Conclusion

    We have investigated the instability characteristics of two-nonspherical-gas-bubble cavitation and explored the influence of various factors.Using numerical simulations and the Keller–Miksis equation, we establish a theoretical model considering initial bubble radius, distance, and perturbation parameter.With this model,we find the unique stability characteristics arising from interactions between two bubbles as opposed to a single bubble under similar cavitation conditions.The pivotal role played by the secondary Bjerknes force and resonance frequencies is highlighted.Furthermore,alterations in the initial distance of two bubbles and perturbation parameters exert substantial influence on the extent of the instability region.Notably,the nonlinear nature of the relationship between perturbation parameters and shape stability calls for further in-depth investigation to elucidate its intricacies.These findings contribute to understanding two-nonsphericalgas-bubble cavitation and provide a foundation for achieving stable bubble sonoluminescence.

    Acknowledgment

    Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region(Grant No.NJZY23100).

    猜你喜歡
    烏日
    一葉輕舟承載祖孫情
    馬頭琴奏出世界風:難忘父母甩賣了半個牛群
    蘇日娜、周念祺、于婧、烏日罕作品
    烏日根 對表演的熱忱從未改變
    時尚北京(2020年11期)2020-11-16 02:08:18
    烏日嘎和他的烏潤合爾
    滿族文學(2020年4期)2020-09-03 04:29:23
    烏日嘎和他的烏潤合爾
    烏日嘎的蒙古馬
    安徽文學(2020年1期)2020-01-15 04:27:42
    烏日更達賴:播綠還“心債”
    額爾敦-烏日勒對AS家兔肝低密度脂蛋白受體(RDLR)表達的影響
    蒙藥薩烏日勒為主方治療薩病臨床療效分析
    国产 一区精品| 国产精品久久久久久av不卡| 你懂的网址亚洲精品在线观看| 日韩av在线大香蕉| 亚州av有码| 日韩av不卡免费在线播放| 国产一级毛片七仙女欲春2| 欧美最新免费一区二区三区| 成人一区二区视频在线观看| 国产亚洲av片在线观看秒播厂 | 久久99蜜桃精品久久| 亚洲欧美成人精品一区二区| 亚洲av成人精品一区久久| 亚洲av在线观看美女高潮| 成人性生交大片免费视频hd| 99久国产av精品国产电影| 日本av手机在线免费观看| 日韩成人av中文字幕在线观看| 国产精品人妻久久久影院| 精品久久久久久久久亚洲| 亚洲精品亚洲一区二区| 卡戴珊不雅视频在线播放| 久久久久久久久久成人| 亚洲精品一二三| 尤物成人国产欧美一区二区三区| 亚洲久久久久久中文字幕| 18禁动态无遮挡网站| 久久99热6这里只有精品| 婷婷色综合www| 99热网站在线观看| 水蜜桃什么品种好| 国产精品av视频在线免费观看| 美女国产视频在线观看| 亚洲欧洲日产国产| 免费看美女性在线毛片视频| 亚州av有码| 亚洲精品国产成人久久av| 偷拍熟女少妇极品色| 嫩草影院入口| 国产亚洲av嫩草精品影院| 日本欧美国产在线视频| 久久久色成人| 国产精品嫩草影院av在线观看| 精品人妻熟女av久视频| 国产亚洲av嫩草精品影院| 男女国产视频网站| av在线亚洲专区| 极品少妇高潮喷水抽搐| 亚洲人成网站在线观看播放| 国产探花极品一区二区| 三级经典国产精品| 欧美不卡视频在线免费观看| 国内精品美女久久久久久| 午夜福利在线观看免费完整高清在| 亚洲欧美精品自产自拍| 人妻夜夜爽99麻豆av| 亚洲av中文av极速乱| 男女边摸边吃奶| 国产女主播在线喷水免费视频网站 | 岛国毛片在线播放| 久久久久免费精品人妻一区二区| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区四那| 精品人妻一区二区三区麻豆| 99热这里只有精品一区| 亚洲美女视频黄频| 大话2 男鬼变身卡| 街头女战士在线观看网站| 久久99蜜桃精品久久| 亚洲伊人久久精品综合| 淫秽高清视频在线观看| 精品久久久久久久末码| 99热这里只有是精品在线观看| 中文字幕制服av| 久久精品国产亚洲av天美| 色尼玛亚洲综合影院| 日韩欧美国产在线观看| av黄色大香蕉| 欧美一级a爱片免费观看看| 日韩成人伦理影院| 亚洲人成网站在线观看播放| 午夜免费观看性视频| 欧美高清性xxxxhd video| 午夜激情久久久久久久| 免费看不卡的av| 又黄又爽又刺激的免费视频.| av黄色大香蕉| 真实男女啪啪啪动态图| 国产大屁股一区二区在线视频| 亚洲在线自拍视频| 极品少妇高潮喷水抽搐| 欧美一级a爱片免费观看看| 老女人水多毛片| 亚洲欧美清纯卡通| 午夜精品一区二区三区免费看| 久久精品熟女亚洲av麻豆精品 | 亚洲在线自拍视频| 国产成人freesex在线| av天堂中文字幕网| 99视频精品全部免费 在线| 日韩精品青青久久久久久| 草草在线视频免费看| 色综合亚洲欧美另类图片| 日韩大片免费观看网站| 亚洲av电影在线观看一区二区三区 | 色综合色国产| 国产精品99久久久久久久久| 熟妇人妻久久中文字幕3abv| 美女被艹到高潮喷水动态| 波多野结衣巨乳人妻| 亚洲人成网站在线观看播放| 免费看光身美女| h日本视频在线播放| 老司机影院毛片| 在线天堂最新版资源| 我的老师免费观看完整版| 日韩一本色道免费dvd| 搡女人真爽免费视频火全软件| 亚州av有码| 久久99热这里只有精品18| 最近最新中文字幕大全电影3| 成人一区二区视频在线观看| 国产精品一区二区在线观看99 | 午夜福利在线在线| 热99在线观看视频| 国产精品一及| 免费看a级黄色片| 国产毛片a区久久久久| 熟妇人妻不卡中文字幕| 久久97久久精品| 国产伦精品一区二区三区视频9| 国产男女超爽视频在线观看| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 特大巨黑吊av在线直播| 欧美zozozo另类| 嫩草影院精品99| 亚洲美女视频黄频| 午夜日本视频在线| 国产精品1区2区在线观看.| 天堂av国产一区二区熟女人妻| 久热久热在线精品观看| 日本爱情动作片www.在线观看| 欧美日韩精品成人综合77777| 亚洲无线观看免费| 免费av观看视频| 国产精品1区2区在线观看.| 自拍偷自拍亚洲精品老妇| 自拍偷自拍亚洲精品老妇| 最近最新中文字幕免费大全7| 精品久久久久久久久亚洲| 亚洲综合色惰| 国产黄色小视频在线观看| 国产老妇伦熟女老妇高清| 午夜激情福利司机影院| 欧美变态另类bdsm刘玥| 国产熟女欧美一区二区| 搡女人真爽免费视频火全软件| 69人妻影院| 久久人人爽人人片av| 久久久a久久爽久久v久久| 国产伦一二天堂av在线观看| av网站免费在线观看视频 | xxx大片免费视频| 噜噜噜噜噜久久久久久91| 欧美zozozo另类| 久久6这里有精品| 欧美性感艳星| 超碰av人人做人人爽久久| 搡老妇女老女人老熟妇| 日日干狠狠操夜夜爽| 在线免费十八禁| 色尼玛亚洲综合影院| 中文字幕久久专区| 欧美高清性xxxxhd video| 舔av片在线| 一级毛片我不卡| 国产单亲对白刺激| 亚洲三级黄色毛片| av在线亚洲专区| 国产精品99久久久久久久久| 大陆偷拍与自拍| 欧美精品一区二区大全| 国内揄拍国产精品人妻在线| 乱人视频在线观看| 免费看光身美女| 熟女电影av网| 亚洲欧美日韩无卡精品| 亚洲av电影在线观看一区二区三区 | 久久精品人妻少妇| 国产精品三级大全| 成年人午夜在线观看视频 | 亚洲性久久影院| 婷婷色麻豆天堂久久| a级一级毛片免费在线观看| 欧美激情国产日韩精品一区| 免费av不卡在线播放| 最新中文字幕久久久久| 久久国产乱子免费精品| 亚洲一区高清亚洲精品| 一级片'在线观看视频| 99久久中文字幕三级久久日本| 熟女电影av网| 六月丁香七月| 视频中文字幕在线观看| 一级毛片电影观看| 亚洲内射少妇av| 久久99精品国语久久久| 91久久精品电影网| 亚洲欧美成人精品一区二区| 午夜久久久久精精品| 国产v大片淫在线免费观看| 禁无遮挡网站| 色综合站精品国产| 日本猛色少妇xxxxx猛交久久| 欧美日韩综合久久久久久| 少妇猛男粗大的猛烈进出视频 | 国产探花极品一区二区| 99re6热这里在线精品视频| 日日啪夜夜撸| 激情五月婷婷亚洲| 毛片女人毛片| 久久精品国产亚洲av天美| 最近最新中文字幕大全电影3| 亚洲欧美日韩东京热| 亚洲无线观看免费| 成人亚洲精品一区在线观看 | 国产精品久久久久久av不卡| 啦啦啦啦在线视频资源| 日韩成人伦理影院| 久久精品人妻少妇| 一级a做视频免费观看| 亚洲四区av| 观看免费一级毛片| 成人亚洲欧美一区二区av| 免费av毛片视频| 亚洲欧美清纯卡通| av在线老鸭窝| 精品国产露脸久久av麻豆 | 国产亚洲av嫩草精品影院| 老女人水多毛片| 免费观看在线日韩| 色吧在线观看| 能在线免费看毛片的网站| 亚洲av成人精品一区久久| av在线蜜桃| 久久久久久国产a免费观看| 久久精品夜色国产| 男女那种视频在线观看| 亚洲性久久影院| 亚洲激情五月婷婷啪啪| 亚洲国产精品专区欧美| 综合色丁香网| 麻豆成人午夜福利视频| 亚洲国产成人一精品久久久| 91狼人影院| 日韩av在线免费看完整版不卡| 又粗又硬又长又爽又黄的视频| 大香蕉97超碰在线| 国产淫语在线视频| 22中文网久久字幕| 嫩草影院精品99| 色视频www国产| av在线亚洲专区| 日本色播在线视频| 国产免费视频播放在线视频 | 亚洲av成人精品一二三区| 午夜福利在线观看吧| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品久久久久久| 亚洲熟妇中文字幕五十中出| 麻豆成人午夜福利视频| 天堂av国产一区二区熟女人妻| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 特大巨黑吊av在线直播| 身体一侧抽搐| videossex国产| 亚洲性久久影院| 久久人人爽人人爽人人片va| 久久久a久久爽久久v久久| 日本色播在线视频| 水蜜桃什么品种好| 三级国产精品欧美在线观看| 好男人视频免费观看在线| 国产午夜精品论理片| 亚洲怡红院男人天堂| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 女人久久www免费人成看片| av福利片在线观看| 亚洲av在线观看美女高潮| 久久久久久久久久成人| 国产一区二区在线观看日韩| 女人十人毛片免费观看3o分钟| 99热这里只有是精品在线观看| 午夜免费男女啪啪视频观看| 男女啪啪激烈高潮av片| 久久精品综合一区二区三区| 国产亚洲精品久久久com| 国产v大片淫在线免费观看| kizo精华| 亚洲精品乱码久久久久久按摩| 搡老乐熟女国产| 午夜激情福利司机影院| 国产激情偷乱视频一区二区| 男的添女的下面高潮视频| 中国国产av一级| 晚上一个人看的免费电影| 国产精品.久久久| 免费不卡的大黄色大毛片视频在线观看 | 天天躁日日操中文字幕| 丝袜喷水一区| av网站免费在线观看视频 | 国产一级毛片在线| 亚洲色图av天堂| 亚州av有码| 三级毛片av免费| www.av在线官网国产| 国产 亚洲一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 国产亚洲最大av| 久久久久久久国产电影| 国产av码专区亚洲av| 亚洲av成人av| 亚洲成人精品中文字幕电影| 国产精品一及| 性色avwww在线观看| 韩国av在线不卡| www.av在线官网国产| eeuss影院久久| 激情 狠狠 欧美| 国产视频内射| 国产精品1区2区在线观看.| 国产精品蜜桃在线观看| av.在线天堂| 午夜亚洲福利在线播放| 在线免费观看不下载黄p国产| 欧美不卡视频在线免费观看| 亚洲18禁久久av| 啦啦啦啦在线视频资源| 一级毛片黄色毛片免费观看视频| 亚洲精品国产成人久久av| 免费黄网站久久成人精品| 天堂中文最新版在线下载 | 精品一区二区三区人妻视频| 99九九线精品视频在线观看视频| 久久精品国产鲁丝片午夜精品| 男女边摸边吃奶| 亚洲国产精品成人综合色| 日韩欧美一区视频在线观看 | 综合色丁香网| 午夜福利视频1000在线观看| 麻豆av噜噜一区二区三区| 久久久久免费精品人妻一区二区| 蜜臀久久99精品久久宅男| 日本一二三区视频观看| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影| 青春草国产在线视频| 高清午夜精品一区二区三区| 激情 狠狠 欧美| 黄色欧美视频在线观看| 久久99热这里只有精品18| 午夜爱爱视频在线播放| 熟妇人妻久久中文字幕3abv| 亚洲怡红院男人天堂| 日韩 亚洲 欧美在线| 免费看光身美女| 国产男人的电影天堂91| 91精品国产九色| 亚洲精品自拍成人| 在线观看免费高清a一片| 中文字幕久久专区| av国产免费在线观看| 国产精品日韩av在线免费观看| 欧美极品一区二区三区四区| 国产女主播在线喷水免费视频网站 | 一个人免费在线观看电影| 男女那种视频在线观看| 深夜a级毛片| av女优亚洲男人天堂| 看十八女毛片水多多多| 深爱激情五月婷婷| 99久久精品一区二区三区| 精品一区二区免费观看| 韩国高清视频一区二区三区| 波野结衣二区三区在线| 国国产精品蜜臀av免费| 精品久久久久久成人av| 永久免费av网站大全| 欧美最新免费一区二区三区| 99re6热这里在线精品视频| 亚洲国产精品专区欧美| 久热久热在线精品观看| 国产极品天堂在线| 乱系列少妇在线播放| 波野结衣二区三区在线| 青青草视频在线视频观看| 中文字幕av在线有码专区| 国产成人免费观看mmmm| 99热这里只有精品一区| 亚洲精品自拍成人| 国产淫片久久久久久久久| 亚洲在久久综合| 少妇的逼好多水| 乱码一卡2卡4卡精品| 热99在线观看视频| 欧美 日韩 精品 国产| 国产精品一区二区三区四区免费观看| 亚州av有码| 少妇熟女欧美另类| 国产精品久久久久久久电影| 观看美女的网站| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 99视频精品全部免费 在线| 搡老妇女老女人老熟妇| 日韩一区二区视频免费看| 免费av毛片视频| 嘟嘟电影网在线观看| 亚洲成人av在线免费| 久久99热这里只频精品6学生| 一级毛片aaaaaa免费看小| 草草在线视频免费看| 久久精品久久久久久久性| 国产女主播在线喷水免费视频网站 | 精品久久久精品久久久| 亚洲欧美日韩东京热| 噜噜噜噜噜久久久久久91| 真实男女啪啪啪动态图| 麻豆国产97在线/欧美| 免费av观看视频| 国产黄色小视频在线观看| 女人久久www免费人成看片| 97热精品久久久久久| 国产一级毛片七仙女欲春2| 乱系列少妇在线播放| 午夜福利在线在线| 午夜福利成人在线免费观看| 高清日韩中文字幕在线| 成人美女网站在线观看视频| or卡值多少钱| 九草在线视频观看| 春色校园在线视频观看| 91午夜精品亚洲一区二区三区| 免费在线观看成人毛片| 91av网一区二区| 如何舔出高潮| 最近最新中文字幕免费大全7| 精品国内亚洲2022精品成人| 深爱激情五月婷婷| 久久久久久久久久久免费av| 美女cb高潮喷水在线观看| 久久久精品94久久精品| 免费无遮挡裸体视频| 我要看日韩黄色一级片| 久久久精品免费免费高清| 国产成人精品婷婷| 又爽又黄a免费视频| 久久这里只有精品中国| 晚上一个人看的免费电影| 免费观看a级毛片全部| 久久精品久久久久久久性| 国产三级在线视频| 成年免费大片在线观看| 免费看a级黄色片| 韩国高清视频一区二区三区| 国产亚洲5aaaaa淫片| 少妇熟女欧美另类| 久久99蜜桃精品久久| 欧美3d第一页| 亚洲欧美日韩无卡精品| 嘟嘟电影网在线观看| 亚洲欧美日韩无卡精品| 人妻系列 视频| 国产三级在线视频| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 男女视频在线观看网站免费| 成人高潮视频无遮挡免费网站| 国产一区二区亚洲精品在线观看| 精品亚洲乱码少妇综合久久| 久久精品久久久久久噜噜老黄| 女人被狂操c到高潮| 中文欧美无线码| 成年免费大片在线观看| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 九九在线视频观看精品| 日韩欧美精品免费久久| 黄色日韩在线| 一区二区三区四区激情视频| 日韩成人伦理影院| 亚洲精品国产成人久久av| 亚洲在线观看片| 亚洲自偷自拍三级| 免费黄频网站在线观看国产| 亚洲欧美成人综合另类久久久| 成年av动漫网址| 国产精品国产三级专区第一集| 亚洲成人久久爱视频| 22中文网久久字幕| 毛片女人毛片| 天堂中文最新版在线下载 | 一级毛片 在线播放| 国产精品麻豆人妻色哟哟久久 | 日韩欧美国产在线观看| 亚洲欧洲国产日韩| 国产单亲对白刺激| 街头女战士在线观看网站| 成人性生交大片免费视频hd| 午夜福利网站1000一区二区三区| 亚洲国产色片| 大话2 男鬼变身卡| 久久久久九九精品影院| 人人妻人人澡人人爽人人夜夜 | 亚洲久久久久久中文字幕| 久久99热这里只频精品6学生| 免费大片黄手机在线观看| 丝袜美腿在线中文| 免费av不卡在线播放| 99久国产av精品国产电影| 欧美精品一区二区大全| 99热6这里只有精品| av免费观看日本| 久久久久久久国产电影| 亚洲怡红院男人天堂| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 亚洲精品中文字幕在线视频 | 婷婷六月久久综合丁香| 天堂影院成人在线观看| 黑人高潮一二区| 国产色婷婷99| 搞女人的毛片| 91av网一区二区| 欧美3d第一页| 26uuu在线亚洲综合色| 亚洲av在线观看美女高潮| eeuss影院久久| 啦啦啦啦在线视频资源| 成人毛片a级毛片在线播放| 97热精品久久久久久| 欧美日韩综合久久久久久| 午夜免费激情av| 欧美三级亚洲精品| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| 精品欧美国产一区二区三| 成人亚洲欧美一区二区av| 久久6这里有精品| 少妇熟女aⅴ在线视频| 午夜福利视频精品| av天堂中文字幕网| 高清欧美精品videossex| 你懂的网址亚洲精品在线观看| 禁无遮挡网站| 日本黄大片高清| 成年人午夜在线观看视频 | 蜜臀久久99精品久久宅男| 免费在线观看成人毛片| 国产乱人视频| 在现免费观看毛片| 国产av码专区亚洲av| 日韩欧美精品免费久久| 国产有黄有色有爽视频| 一本久久精品| 边亲边吃奶的免费视频| 最近的中文字幕免费完整| 亚洲在久久综合| 日本免费a在线| 国产在线男女| 成人漫画全彩无遮挡| 国产午夜精品论理片| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验| 日韩强制内射视频| 国产欧美日韩精品一区二区| 青春草亚洲视频在线观看| 麻豆成人av视频| 99九九线精品视频在线观看视频| kizo精华| 欧美性感艳星| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 伦理电影大哥的女人| 国产亚洲av嫩草精品影院| 亚洲精品aⅴ在线观看| 日韩一区二区三区影片| 3wmmmm亚洲av在线观看| 99久久人妻综合| 男女下面进入的视频免费午夜| 精品久久久久久成人av| 国产精品国产三级国产av玫瑰| 伊人久久国产一区二区| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 免费播放大片免费观看视频在线观看| 国产v大片淫在线免费观看| av免费观看日本| 99久久人妻综合| 亚洲国产欧美在线一区| 中国美白少妇内射xxxbb| av在线播放精品| 一级毛片黄色毛片免费观看视频| 亚洲国产色片| 国产精品福利在线免费观看| 欧美成人午夜免费资源| 男女下面进入的视频免费午夜| 日本一本二区三区精品| 中文精品一卡2卡3卡4更新|