• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controllable high Curie temperature through 5d transition metal atom doping in CrI3

    2024-01-25 07:30:04XuebingPeng彭雪兵MingsuSi司明蘇andDaqiangGao高大強(qiáng)
    Chinese Physics B 2024年1期

    Xuebing Peng(彭雪兵), Mingsu Si(司明蘇), and Daqiang Gao(高大強(qiáng)),?

    1School of Physical Science and Technology,Lanzhou University,Lanzhou 730000,China

    2School of Materials and Energy,Lanzhou University,Lanzhou 730000,China

    Keywords: ferromagnetism,magnetic anisotropy energy,Curie temperature,half-metal

    1.Introduction

    Although two-dimensional (2D) materials have been explored for more than a decade,magnetic order rarely survives in atomically thin films due to thermal fluctuations.[1,2]The realization of 2D magnets is a big challenge.An early strategy was to introduce local defect states with magnetic elements into non-magnetic materials.[3–6]The magnetism introduced by this method is short-range.A new method to achieve lowdimensional ferromagnets is to use intrinsic magnetic order.In 2017, monolayer CrI3and few-layer Cr2Ge2Te6were simultaneously reported.[7,8]Immediately afterwards, in 2018,Denget al.successfully prepared monolayer Fe3GeTe2with intrinsic ferromagnetism.[9]These works opened the door for the study of 2D magnetic materials and provided a novel material platform for the future development of low-dimensional spintronics.

    CrI3as a layered magnetic material was first systematically studied by Dillon and Olson[10]and realized in the monolayer limit by Huanget al.[7]A spin-orientation-controlled band structure offers the opportunity for the study of second harmonics in solid state physics.[13,14]Due to its special crystal structure,CrI3has a topologically protected spin magnetic moment[15]as well as Kitaev interaction induced by shared edge I?.[16]With a strong layer-dependent effect,the magnetic ground state can be changed from ferromagnetic(FM)to antiferromagnetic(AFM)as the monolayer becomes a bilayer.[17]The excellent magnetism of CrI3makes it potentially promising for applications in the field of spintronics.Most research is based on the intrinsic magnetism of CrI3.However,the Curie temperature(Tc)of CrI3is only 45 K,[18]which severely limits practical applications.Thus, increasing theTcof CrI3is a focus of research.

    The magnetism of monolayer CrI3has been modulated by strain,[19,20]carrier doping,[21]defect introduction,[22,23]applied electric field[24]and surface adsorption.[25–27]For example,Guoet al.adsorbed Li atoms on the surface to semimetallize CrI3and increaseTc.[28]Yanget al.used Sc atoms to dope CrI3and increasedTcfrom 47 K to 131 K.[29]The gain or loss of electrons causes an increase in the magnetic moment of Cr, which eventually increasesTc.In fact, the above methods are not particularly effective ways to increaseTcbecause Li and Sc atoms have almost no magnetic moment in a honeycomb lattice.Recently, Birgeneau’s group successfully prepared Fe5GeTe2,which has a higherTc(over 400 K)than Fe3GeTe2.The underlying physics originates from the increasing coordination number of the Fe ion.[30]Based on the above ideas,we chose 5d transition metal(TM)atoms to dope CrI3,because 5d TM atoms with a larger spin–orbit coupling(SOC) may increase the magnetic anisotropy energy (MAE)to stabilize long-range FM order.

    In this work, we investigate the crystal stability, MAE,Tc,FM stability and electronic properties of TM@CrI3based on first-principles calculations.Formation energy and phonon spectra calculations show that TM@CrI3is thermodynamically stable, and the absence of imaginary modes in phonon spectra indicates that TM@CrI3monolayers (TM=Hf, Ta,W, Re and Os) are also dynamically stable.Due to the increase in magnetic moment induced by the doping of TM atoms,TM@CrI3has a higherTcthrough Monte–Carlo(MC)simulation.Among these,Tcof W@CrI3reaches 254 K.By further increasing the doping concentration of W atoms, aTcabove room temperature can be achieved.Intriguingly,a large MAE for W@CrI3can stabilize long-range FM order.Moreover,FM stability of TM@CrI3is enhanced.Most TM@CrI3change from a semiconductor to a half-metal.These results provide knowledge relevant to potential applications of CrI3monolayers in spintronics.

    2.Computational details

    We use the framework of density functional theory as implemented in the Viennaab initiosimulation package to perform first-principles calculations.[31,32]The Monkhorst–Pack scheme of 5×5×1k-point sampling in the entire Brillouin zone (BZ) was used to perform momentum space integration for a 2×2×1 TM@CrI3supercell.[33]MAE was calculated with a 12×12×1k-point mesh.The plane-wave cutoff energy was set to 500 eV.The generalized gradient approximation with the Perdew–Burke–Ernzerhof realization was used for the exchange correlation functional.[34]The Hellmann–Feynman forces acting on each atom were entirely relaxed during structural optimization until they were less than 10?3eV·?A?1;the electronic convergence requirement was set to 10?7eV.Since the system is a 2D nanosheet,a vacuum region of 20 ?A along the direction perpendicular to the surface of the nanosheet was introduced to avoid interference between the periodic images.A 30×30×1 supercell was used to simulateTcbased on the MC method.[35]

    3.Results and discussion

    Monolayer CrI3possesses the space group ofp-31m(No.162).Cr3+ions are sandwiched by octahedra formed by shared-edge I?ions and form a hexagonal honeycomb structure, as shown in Fig.1(a).The optimized lattice constant isa=b=7.00 ?A.The Cr3+–I?and Cr3+–Cr3+bond distances are 2.7 ?A and 4.0 ?A, respectively.The magnetic moment of each Cr3+ion is 3.06μB.The band structure of CrI3is displayed in Fig.1(b).The valence band maximum and the conduction band minimum appear for the spin-up channel,giving a band gap of 1.21 eV.All these results are in good agreement with previously reported results.[29,36]Here, we dope CrI3with one 5d TM atom, introducing it into the interstitial hollow position of a 2×2×1 supercell,as shown in Fig.1(c).

    Fig.1.(a)Top(top panel)and side(bottom panel)views of the crystal structure of CrI3,where H represents the hollow position.(b)Calculated band structure of CrI3.The Fermi energy is set to 0 eV.(c)Crystal structure of a transition metal(TM)atom introduced into the hollow position.(d)Formation energies of TM@CrI3.(e)Calculated Curie temperature(Tc)of TM@CrI3 and host CrI3.(f)Magnetic moment and specific heat of W@CrI3 versus temperature from Monte–Carlo simulation.

    To reveal the thermodynamic stability of atomic doping, we calculate the formation energy, which is defined asFf=Edop?ECrI3?μTMwhereEdopis the total energy of TM@CrI3,ECrI3is the total energy of CrI3andμTMis the chemical potential of the TM atom.As shown in Fig.1(d),the formation energies of all TM@CrI3are negative, indicating that all are thermodynamically stable.We also calculate the phonon dispersion over a 2×2×1 supercell using the PHONOPY package,[37]which is based on density functional perturbation theory.[38]The absence of imaginary modes in the entire BZ is displayed in Figs.S1(a)–S1(e),indicating that monolayer TM@CrI3(TM=Hf, Ta, W, Re and Os) are dynamically stable.However, doping with Ir, Pt and Au atoms is not dynamically stable as the imaginary frequencies appear near theΓpoint(Figs.S1(f)–S1(h)).

    To estimateTcof TM@CrI3,we calculate exchange couplings between magnetic atoms via the Heisenberg exchange interaction,H=∑i,δ JNSi·Sδ, whereJNrepresents the exchange couplings between magnetic atoms,iis the magnetic atomic site andδrepresents the nearest neighbor distance.Siis the spin quantum number.Here, we mainly consider the nearest and next-nearest exchange couplings between Cr3+and Cr3+ions as well as the nearest exchange coupling between Cr3+ions and the TM atom, denoted asJ1,J2andJ3,respectively.J3is only considered for W and the Ta atoms with the larger magnetic moments.One FM and three AFM configurations(N′eel,zigzag and stripy)are used in the calculations of exchange coupling, as shown in Fig.3(a).The three magnetic coupling constants can be extracted from the following equations:

    whereSA,SBandSCare the spin operators of magnetic ions on A, B and C sites.The exchange coupling constants are given in Table S1.

    Based on the 2D Ising model, we employ Metropolis Monte–Carlo(MC)simulation to studyTc.Figure 1(e)shows theTcof TM@CrI3.Tcof the host CrI3is also calculated to be 45 K, which is in line with the result reported in previous work.[7]In TM@CrI3,Tcis significantly increased.Tcof Au@CrI3is about 64 K,which is slightly higher than that of the host CrI3.Tcof W@CrI3reaches 254 K, nearly six times higher than that of the host CrI3,and is much increased in comparison with 3d TM@CrI3.[29]Meanwhile,in Fig.1(f)variation of the average magnetic moment and specific heat of W@CrI3with temperature is shown.We further exploredTcfor W@CrI3for different doping concentrations: 5.9%and 8.6% represent 2×2×1 CrI3doped with two and three W atoms, respectively(Fig.S4).It is pleasing to note thatTcof CrI3is significantly improved with increasing W doping concentration.As shown in Fig.2(a),at a doping concentration of 5.9%,Tcincreases from 254 K to 306 K,which is above room temperature.With continuing increase in the doping concentration,Tcof W@CrI3is increased to 348 K(Fig.2(b)).

    Fig.2.Magnetic moment and specific heat versus temperature for doping concentrations of(a)5.9%and(b)8.6%for W@CrI3.

    To account for variation ofTc,we calculated the exchange energy, which is defined asEAFM–EFM.Here, zigzag-AFM is chosen as a reference due to its lower energy.Among the TM@CrI3, the W atom has the highest exchange energy, the Ta atom the next and the Au atom the least,but their exchange energy is greater than that of CrI3,as shown in Fig.3(b).The pattern of variation of exchange energy is consistent withTc.Similarly, the magnetic moments of TM atoms also show the same pattern of variation.For example, the W atom with the largest magnetic moment has the highestTc(Fig.3(c)).The Au atom has almost no magnetic moment,and the increase inTcis not significant.This result indicates thatTcis related to the magnetic moments of TM atoms.The magnetic moments of TM atoms increase the exchange coupling and coordination number between the magnetic atoms.Further, according to a mean-field treatment, results for the magnetic transition temperature follow, whereZNNandJNNare the coordination number and exchange coupling of magnetic atoms,respectively.[9,39]The larger the magnetic atomic coordination number, the exchange coupling and the magnetic moment,the higher the evaluatedTc.Therefore,the magnetic moments induced by doping with TM atoms can increaseTc.

    Fig.3.(a)Four magnetic configurations:ferromagnetic(FM),N′eel antiferromagnetic(AFM),zigzag AFM and stripy AFM.(b)The calculated exchange energy of TM@CrI3 and the host CrI3.(c)The magnetic moments of TM atoms and Cr3+ ions(TM,transition metal).

    Next,we discuss the underlying physics of the W atomic magnetic moment in W@CrI3.The spin-density distribution shows that the total magnetic moment stems from the Cr atoms and the W atom(Fig.4(a)).The W atom tends to lose the partial electrons of the outermost electron shell(5d46s2)through strong electronegative action around I?ions, and picks up a magnetic moment of about 2μB.We calculated the Bader charge of W@CrI3,where the W atom loses 0.6eand every I?ion gains 0.11e(Table S2).In the projected density of states,d-resolved orbitals of the W atom have a large spin polarization and hybridization(Fig.4(b)).Both the dxzand dyzorbitals are occupied by a fractional electron, and contribute 0.15μBand 0.14μB,respectively.In contrast,the dz2orbital with more spin-up electrons has a magnetic moment of 1.04μB.This is because the dz2orbital rarely overlaps with the p orbitals of the surrounding I?ions.The dx2?y2and dxyorbitals protected by C3symmetry are degenerate below the Fermi level, and their magnetic moments are 0.35μB.Furthermore, the magnitude of magnetic moments can be understood from the asymmetry of spin polarization below the Fermi level in the density of states(DOS)of TM atoms,as shown in Figs.4(c)–4(f).For example,the spin polarized asymmetry of the Hf atom is weaker than that of the Ta atom, so the magnetic moment of the Ta atom is larger.Similarly, the W atom has a larger spin polarized asymmetry than the Ta atom,leading to a larger value for the W atom.The Os atom has the weakest asymmetry.The W atom therefore has the largest magnetic moment.For low-dimensional materials, a large MAE driven by SOC would resist the thermal fluctuation to stabilize the longrange FM order.Due to the large SOC of 5d TM atoms,the induced MAE would be large, and is defined asEMAE=E(100)?E(001).Positive or negative values of MAE represent that the magnetic easy axis is along the out-of-plane or inplane direction, respectively.In Table 1, the magnetic easy axis of TM@CrI3(TM=Hf, Ta, W, Re and Ir) is along the out-of-plane direction: Re@CrI3has the largest MAE,which mainly originates from the Re atom.The magnetic easy axis for doping with Os,Pt and Au atoms is along the in-plane direction.Except for Os,the absolute values of MAE after doping are enhanced with respect to CrI3, whose MAE is about 0.804 meV.[20]Therefore,doping with TM atoms can enhance the MAE of CrI3.

    Fig.4.(a) The spin density distribution of W@CrI3 and (b) projected density of states (PDOS) of the W atom.Density of states (DOS) of(c) Hf, (d) W, (e) Ta and (f) Os atoms in TM@CrI3.The positive and negative values of DOS represent spin-up and spin-down channels,respectively.The Fermi energy is set to 0 eV.

    Table 1.The MAE(EMAE)in TM@CrI3.The contribution from Cr,I and TM atoms is also listed.The unit is meV.

    We now discuss the FM stability of TM@CrI3.The FM coupling of monolayer CrI3can be understood by the Goodenough–Kanamori–Anderson model as a competition between two exchange interactions: a direct exchange interaction between Cr3+ions by electron hopping and a superexchange between the Cr3+ions mediated by intermediate nonmagnetic I?ions.As schematically shown in Fig.5(a), stable AFM coupling depends sensitively on the distancedbetween Cr3+ions.Stable FM coupling is dominated by superexchange interactions and is controlled by theθof Cr3+–I?–Cr3+ions.Except for the Ta atom,dof Cr3+–Cr3+after doping is increased with respect to the host CrI3(Fig.5(b)),indicating that AFM coupling of direct exchange is weakened.Theθfor all TM@CrI3is decreased,and is close to 90°,giving rise to stronger FM stability.

    Fig.6.The band structure of TM@CrI3 (TM=Ta,W,Os,Ir,Pt,Au).The Fermi energy level EF is set to 0 eV.

    Electronic structure is a key concern in the study of physical properties.We display the band structure of TM@CrI3(TM=Ta, W, Os, Ir, Pt, Au) in Fig.6.Because of the gain or loss of valence electrons (Table S3), the impurity energy levels are induced in the band structure.Therefore,the energy bands of TM@CrI3(TM=Ta,W,Os,Ir,Pt)cross the Fermi energy level to change from semiconductors to half-metals.Hf@CrI3and Re@CrI3are also half-metals (Fig.S6).Such materials have promising applications in advanced magnetic recording,magnetic storage,high-efficiency magnetic sensors,spin-emitting diodes and many other fields.[40]In particular,for TM@CrI3(TM=W, Os, Ir), the band gaps of the spindown channel are greater than 1.5 eV, which prevents thermal activation effects from exciting the forbidden carriers to reduce the polarization rate.[41]Au@CrI3is a semiconductor because the Au atom has almost no gain or loss of electrons.

    4.Conclusions

    In summary, we have performed a systematic study of TM@CrI3through the combination of a first-principles method and MC simulation.All TM@CrI3are thermodynamically stable due to their negative formation energy, and the absence of imaginary modes in the phonon spectra indicates that TM@CrI3monolayers(TM=Hf,Ta,W,Re and Os)are also dynamically stable.Tcof TM@CrI3is increased, with a highest value of 254 K for W@CrI3.As the doping concentration of W atoms is increased to 8.6%,Tcis increased to above room temperature(348 K).Interestingly,W@CrI3has a large MAE of 4.999 meV to stabilize long-range FM order.Furthermore, the FM stability of TM@CrI3is enhanced.Except for doping with Au atoms,TM@CrI3become half-metallic.It is hoped that these results will provide theoretical guidance for experimentally tuning MAE,Tcand electronic structure.

    久久国产精品男人的天堂亚洲| 欧美黄色片欧美黄色片| 18禁动态无遮挡网站| 最近2019中文字幕mv第一页| 五月开心婷婷网| 亚洲经典国产精华液单| 色网站视频免费| 国产又色又爽无遮挡免| 久久精品国产亚洲av涩爱| 寂寞人妻少妇视频99o| 这个男人来自地球电影免费观看 | 日本-黄色视频高清免费观看| 成人手机av| 国产成人精品无人区| 如日韩欧美国产精品一区二区三区| 制服诱惑二区| 黄片无遮挡物在线观看| 在线天堂中文资源库| 国产成人精品在线电影| av网站免费在线观看视频| 黄色一级大片看看| 国产男女超爽视频在线观看| 亚洲人成77777在线视频| a级毛片在线看网站| 欧美日韩视频精品一区| 免费在线观看黄色视频的| 欧美另类一区| 欧美 亚洲 国产 日韩一| 国产精品一二三区在线看| 纯流量卡能插随身wifi吗| 国产成人精品一,二区| 精品少妇黑人巨大在线播放| 边亲边吃奶的免费视频| 亚洲av男天堂| 国产av国产精品国产| 狂野欧美激情性bbbbbb| 伊人久久国产一区二区| 久久久久精品人妻al黑| 永久免费av网站大全| 欧美日韩视频精品一区| 97在线视频观看| 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 宅男免费午夜| 日韩av不卡免费在线播放| 日韩三级伦理在线观看| 午夜福利视频精品| 久久精品久久久久久久性| 天天影视国产精品| 人人妻人人爽人人添夜夜欢视频| 大陆偷拍与自拍| 久久人妻熟女aⅴ| 只有这里有精品99| av片东京热男人的天堂| 制服人妻中文乱码| av国产精品久久久久影院| 99久国产av精品国产电影| 老汉色∧v一级毛片| 国产免费又黄又爽又色| 亚洲在久久综合| 亚洲成人av在线免费| 国产有黄有色有爽视频| 伦理电影大哥的女人| videosex国产| 男的添女的下面高潮视频| 国产极品粉嫩免费观看在线| www.熟女人妻精品国产| 久久精品久久久久久噜噜老黄| 大码成人一级视频| 黄片播放在线免费| 一级毛片我不卡| 国产精品嫩草影院av在线观看| 另类精品久久| 日本91视频免费播放| 国产在线视频一区二区| 亚洲国产精品一区二区三区在线| 男人操女人黄网站| 一级毛片 在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 精品午夜福利在线看| 亚洲内射少妇av| 伦理电影免费视频| 国产av国产精品国产| 婷婷色综合www| 韩国高清视频一区二区三区| 精品亚洲乱码少妇综合久久| 人妻 亚洲 视频| 国产有黄有色有爽视频| 一本色道久久久久久精品综合| av电影中文网址| 久久久国产欧美日韩av| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久 | 天天操日日干夜夜撸| 国产精品人妻久久久影院| 免费在线观看视频国产中文字幕亚洲 | 亚洲,欧美精品.| 老女人水多毛片| 天天影视国产精品| 1024香蕉在线观看| 国产成人精品一,二区| 久久久久视频综合| 国精品久久久久久国模美| 高清欧美精品videossex| 如何舔出高潮| 亚洲精品中文字幕在线视频| 国产不卡av网站在线观看| 一级毛片黄色毛片免费观看视频| 91午夜精品亚洲一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 中国国产av一级| 日韩免费高清中文字幕av| 日韩中文字幕欧美一区二区 | 日韩精品免费视频一区二区三区| 最近最新中文字幕大全免费视频 | 18在线观看网站| 欧美精品人与动牲交sv欧美| 国产成人精品在线电影| 久久女婷五月综合色啪小说| 成人国产麻豆网| 啦啦啦中文免费视频观看日本| 久久精品夜色国产| 人妻一区二区av| 男女啪啪激烈高潮av片| 久久人人爽av亚洲精品天堂| 晚上一个人看的免费电影| 国产成人一区二区在线| 五月伊人婷婷丁香| 黄色怎么调成土黄色| 亚洲av综合色区一区| kizo精华| 国产精品无大码| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 九草在线视频观看| 波多野结衣一区麻豆| 久久久久久久精品精品| 飞空精品影院首页| 亚洲人成77777在线视频| 亚洲国产av影院在线观看| 一二三四中文在线观看免费高清| 伊人久久国产一区二区| 亚洲第一区二区三区不卡| 美女国产高潮福利片在线看| 欧美av亚洲av综合av国产av | 少妇人妻精品综合一区二区| 亚洲中文av在线| 国产在线视频一区二区| 人妻一区二区av| 国产白丝娇喘喷水9色精品| 国产免费现黄频在线看| 国产又色又爽无遮挡免| 国产xxxxx性猛交| 国产精品久久久久久精品古装| 免费日韩欧美在线观看| 成人18禁高潮啪啪吃奶动态图| 国产成人av激情在线播放| 国产精品久久久久成人av| 侵犯人妻中文字幕一二三四区| 黄色 视频免费看| 韩国精品一区二区三区| 国产精品久久久av美女十八| 国产色婷婷99| 尾随美女入室| 美女高潮到喷水免费观看| 欧美激情高清一区二区三区 | 少妇的逼水好多| 午夜福利一区二区在线看| 亚洲在久久综合| 99国产综合亚洲精品| av.在线天堂| 男女下面插进去视频免费观看| 制服丝袜香蕉在线| 久久久欧美国产精品| 亚洲欧美成人精品一区二区| 亚洲欧美成人精品一区二区| 黄色配什么色好看| 欧美人与善性xxx| 日韩电影二区| 国产一区有黄有色的免费视频| 香蕉精品网在线| 丝袜喷水一区| 久久婷婷青草| h视频一区二区三区| 成人午夜精彩视频在线观看| 高清视频免费观看一区二区| 在线观看人妻少妇| 午夜福利乱码中文字幕| h视频一区二区三区| 国产成人精品福利久久| 另类亚洲欧美激情| 免费黄网站久久成人精品| 天天躁夜夜躁狠狠躁躁| 午夜福利视频在线观看免费| 欧美变态另类bdsm刘玥| 在线天堂中文资源库| 亚洲av日韩在线播放| 国产精品国产三级专区第一集| 美女国产视频在线观看| 欧美国产精品一级二级三级| 日日摸夜夜添夜夜爱| 国产精品免费视频内射| 国产一区二区三区综合在线观看| 女人精品久久久久毛片| 五月天丁香电影| 超碰97精品在线观看| 丝袜在线中文字幕| 久热久热在线精品观看| 侵犯人妻中文字幕一二三四区| 日本欧美国产在线视频| 9热在线视频观看99| 十八禁高潮呻吟视频| 国产成人精品久久久久久| 国产精品 欧美亚洲| 天堂俺去俺来也www色官网| 国产在线免费精品| 在线观看三级黄色| 久热久热在线精品观看| 天天操日日干夜夜撸| 观看美女的网站| av线在线观看网站| 汤姆久久久久久久影院中文字幕| 一本久久精品| 精品少妇黑人巨大在线播放| 国产男人的电影天堂91| 国产乱人偷精品视频| 国产成人精品久久久久久| 人人澡人人妻人| 国产日韩欧美在线精品| 欧美精品一区二区大全| 一级片免费观看大全| 飞空精品影院首页| 男人添女人高潮全过程视频| 亚洲成人av在线免费| 成人黄色视频免费在线看| 伦理电影免费视频| 超碰97精品在线观看| 18+在线观看网站| 中文天堂在线官网| 亚洲精品国产一区二区精华液| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 国产成人精品在线电影| 精品国产一区二区久久| 大片免费播放器 马上看| 波多野结衣av一区二区av| 免费女性裸体啪啪无遮挡网站| 亚洲美女视频黄频| 一区二区三区乱码不卡18| 亚洲欧美色中文字幕在线| 老鸭窝网址在线观看| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 99久久综合免费| 欧美 日韩 精品 国产| 国产探花极品一区二区| 亚洲人成电影观看| 一级毛片电影观看| 99久久精品国产国产毛片| 国产无遮挡羞羞视频在线观看| 国产免费又黄又爽又色| 老司机影院成人| 久久这里有精品视频免费| 夫妻性生交免费视频一级片| 最新的欧美精品一区二区| 亚洲美女黄色视频免费看| 制服诱惑二区| 天天躁夜夜躁狠狠久久av| 久久免费观看电影| 久久久欧美国产精品| 亚洲在久久综合| 亚洲经典国产精华液单| av卡一久久| 一区二区三区四区激情视频| 日韩中字成人| 在线观看一区二区三区激情| 欧美成人午夜免费资源| 精品人妻在线不人妻| 日韩在线高清观看一区二区三区| 少妇熟女欧美另类| 老司机亚洲免费影院| 在线观看www视频免费| 波多野结衣av一区二区av| 少妇被粗大的猛进出69影院| 人人妻人人爽人人添夜夜欢视频| 色94色欧美一区二区| 男女啪啪激烈高潮av片| 香蕉国产在线看| 18禁裸乳无遮挡动漫免费视频| 国产精品免费大片| 黑人欧美特级aaaaaa片| 午夜福利影视在线免费观看| 欧美日韩av久久| 性色av一级| 亚洲在久久综合| 亚洲国产av新网站| 99久久精品国产国产毛片| 热99久久久久精品小说推荐| 看非洲黑人一级黄片| 亚洲欧洲日产国产| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品古装| 精品人妻偷拍中文字幕| 久久99热这里只频精品6学生| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 欧美日韩亚洲高清精品| 美女脱内裤让男人舔精品视频| 可以免费在线观看a视频的电影网站 | 精品亚洲成国产av| 只有这里有精品99| videossex国产| 欧美97在线视频| av片东京热男人的天堂| 欧美成人午夜精品| 久久国产精品大桥未久av| 校园人妻丝袜中文字幕| 久久国产精品男人的天堂亚洲| 亚洲精品aⅴ在线观看| 免费在线观看视频国产中文字幕亚洲 | 中文字幕色久视频| 久久人人97超碰香蕉20202| 在线天堂最新版资源| 中文字幕色久视频| 久久久久国产精品人妻一区二区| 在线看a的网站| 国产精品一区二区在线不卡| 国产深夜福利视频在线观看| av网站免费在线观看视频| 夜夜骑夜夜射夜夜干| 久热这里只有精品99| 五月伊人婷婷丁香| 美女国产高潮福利片在线看| 交换朋友夫妻互换小说| 久久热在线av| 国产一区有黄有色的免费视频| 久久久久久伊人网av| 久久精品夜色国产| 欧美日韩综合久久久久久| 国产成人免费无遮挡视频| 国产色婷婷99| 久久这里只有精品19| 中文字幕精品免费在线观看视频| 人妻 亚洲 视频| 最黄视频免费看| 一本大道久久a久久精品| 黄色配什么色好看| 日韩av免费高清视频| 美女视频免费永久观看网站| 国产不卡av网站在线观看| av一本久久久久| 亚洲美女搞黄在线观看| 欧美精品人与动牲交sv欧美| xxxhd国产人妻xxx| 高清视频免费观看一区二区| 国产成人精品婷婷| 一本大道久久a久久精品| 美女脱内裤让男人舔精品视频| 欧美国产精品一级二级三级| 成年av动漫网址| 免费播放大片免费观看视频在线观看| 免费日韩欧美在线观看| 蜜桃在线观看..| 免费观看a级毛片全部| av国产精品久久久久影院| 在线天堂中文资源库| 国产激情久久老熟女| 三级国产精品片| 国产免费现黄频在线看| 美女福利国产在线| av在线老鸭窝| 香蕉国产在线看| 国产精品久久久久久精品古装| 久久久久久久久久人人人人人人| √禁漫天堂资源中文www| 一区福利在线观看| 最新中文字幕久久久久| 我要看黄色一级片免费的| 伦精品一区二区三区| 亚洲,一卡二卡三卡| 亚洲少妇的诱惑av| 国产97色在线日韩免费| 激情视频va一区二区三区| 精品国产乱码久久久久久男人| 日韩三级伦理在线观看| 国产日韩欧美在线精品| 免费观看a级毛片全部| 中文乱码字字幕精品一区二区三区| 在线天堂最新版资源| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 日韩一本色道免费dvd| 精品国产国语对白av| 少妇的逼水好多| 一区二区三区精品91| 国产 精品1| 99re6热这里在线精品视频| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 激情五月婷婷亚洲| 高清黄色对白视频在线免费看| 久久毛片免费看一区二区三区| 日韩视频在线欧美| 亚洲中文av在线| 亚洲一码二码三码区别大吗| 男女啪啪激烈高潮av片| 成年女人毛片免费观看观看9 | 另类亚洲欧美激情| 一级,二级,三级黄色视频| 国产精品 欧美亚洲| 日韩 亚洲 欧美在线| 久久人人97超碰香蕉20202| 色网站视频免费| 91aial.com中文字幕在线观看| 超碰成人久久| 日韩视频在线欧美| 久久久久久久久久久免费av| 午夜日本视频在线| 国产视频首页在线观看| 少妇熟女欧美另类| 亚洲国产精品国产精品| 国产成人午夜福利电影在线观看| 亚洲人成电影观看| 成人国产麻豆网| 日日摸夜夜添夜夜爱| 亚洲三区欧美一区| 国产高清不卡午夜福利| 美女主播在线视频| 多毛熟女@视频| 亚洲精品第二区| 亚洲,欧美,日韩| 久久精品国产自在天天线| 国精品久久久久久国模美| 久久精品国产亚洲av天美| 国产免费现黄频在线看| 日日撸夜夜添| 女性被躁到高潮视频| 日韩制服丝袜自拍偷拍| 亚洲人成77777在线视频| 免费播放大片免费观看视频在线观看| 黄色毛片三级朝国网站| 亚洲国产成人一精品久久久| 国产在线免费精品| 婷婷色综合大香蕉| 久久97久久精品| 亚洲国产成人一精品久久久| 91精品三级在线观看| 欧美精品国产亚洲| 丰满饥渴人妻一区二区三| 日本午夜av视频| 9热在线视频观看99| 90打野战视频偷拍视频| 久久午夜福利片| 亚洲精品一二三| 有码 亚洲区| 亚洲四区av| 在线观看免费视频网站a站| 人人妻人人澡人人看| 另类精品久久| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 欧美老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 久久这里有精品视频免费| 亚洲欧洲国产日韩| 99热全是精品| 欧美日韩视频精品一区| 久久精品夜色国产| 免费女性裸体啪啪无遮挡网站| 国产黄色视频一区二区在线观看| 可以免费在线观看a视频的电影网站 | 黄色毛片三级朝国网站| 最近中文字幕2019免费版| 亚洲色图综合在线观看| 国产av一区二区精品久久| 99香蕉大伊视频| 青春草国产在线视频| 亚洲精品,欧美精品| 少妇 在线观看| 看非洲黑人一级黄片| 香蕉精品网在线| 电影成人av| 在线 av 中文字幕| 色94色欧美一区二区| 五月天丁香电影| 最近中文字幕2019免费版| 人妻少妇偷人精品九色| 久久人妻熟女aⅴ| 亚洲三区欧美一区| 婷婷色麻豆天堂久久| 香蕉精品网在线| 国产 一区精品| 老熟女久久久| 久久精品国产自在天天线| 激情视频va一区二区三区| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| 国产精品免费大片| 久久狼人影院| 久久久久久久久免费视频了| 美女午夜性视频免费| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 91精品伊人久久大香线蕉| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 国产精品免费视频内射| a级毛片在线看网站| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 亚洲精品第二区| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 99热国产这里只有精品6| 精品一区二区三区四区五区乱码 | 色婷婷av一区二区三区视频| h视频一区二区三区| 久久久久国产一级毛片高清牌| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| 人妻 亚洲 视频| 国产亚洲最大av| 男人舔女人的私密视频| av网站在线播放免费| 一个人免费看片子| 国产精品一区二区在线不卡| 精品人妻在线不人妻| 久久国产亚洲av麻豆专区| 捣出白浆h1v1| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频| 桃花免费在线播放| 少妇被粗大的猛进出69影院| 91久久精品国产一区二区三区| 美女午夜性视频免费| 校园人妻丝袜中文字幕| 亚洲久久久国产精品| av天堂久久9| 99久久人妻综合| 观看av在线不卡| 色婷婷久久久亚洲欧美| 欧美97在线视频| av在线app专区| 日韩人妻精品一区2区三区| 国精品久久久久久国模美| 一级a爱视频在线免费观看| 欧美97在线视频| 精品国产乱码久久久久久小说| 性色avwww在线观看| 午夜福利视频在线观看免费| 男女边摸边吃奶| 色视频在线一区二区三区| 亚洲av在线观看美女高潮| 永久网站在线| 日韩av免费高清视频| 人妻系列 视频| 亚洲成av片中文字幕在线观看 | 性色av一级| 在线观看美女被高潮喷水网站| 夜夜骑夜夜射夜夜干| 999精品在线视频| 日韩欧美一区视频在线观看| 久久99精品国语久久久| 国产精品一区二区在线不卡| 97在线人人人人妻| 最近中文字幕2019免费版| 一级毛片我不卡| 国产精品久久久av美女十八| 亚洲伊人久久精品综合| 精品少妇一区二区三区视频日本电影 | 精品一品国产午夜福利视频| a级毛片在线看网站| 秋霞在线观看毛片| 永久网站在线| 99九九在线精品视频| 国产成人精品久久久久久| 热re99久久国产66热| 91精品三级在线观看| 毛片一级片免费看久久久久| 亚洲视频免费观看视频| 亚洲欧美成人综合另类久久久| 99九九在线精品视频| 欧美xxⅹ黑人| 色播在线永久视频| 日韩精品免费视频一区二区三区| 激情五月婷婷亚洲| 99久久人妻综合| 十分钟在线观看高清视频www| 国产乱来视频区| 久久女婷五月综合色啪小说| 午夜日韩欧美国产| 亚洲国产精品999| 精品国产一区二区久久| 少妇人妻精品综合一区二区| 国产精品成人在线| 97人妻天天添夜夜摸| 香蕉丝袜av| 亚洲情色 制服丝袜| 久久狼人影院| 99久久中文字幕三级久久日本| a级毛片黄视频| 国产精品偷伦视频观看了| 国产黄色视频一区二区在线观看| 亚洲精品,欧美精品| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| 热99国产精品久久久久久7| 国产免费现黄频在线看| 久久综合国产亚洲精品| 国产成人精品在线电影| 久久97久久精品|