• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect

    2024-04-14 14:26:46ShupingLi李淑萍TingLei雷挺ZhongxingYan嚴仲興YanWang王燕LikeZhang張黎可HuayaoTu涂華垚WenhuaShi時文華andZhongmingZeng曾中明
    Chinese Physics B 2024年1期
    關(guān)鍵詞:張黎淑萍王燕

    Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(嚴仲興),Yan Wang(王燕), Like Zhang(張黎可), Huayao Tu(涂華垚),Wenhua Shi(時文華),?, and Zhongming Zeng(曾中明),§

    1Suzhou Industrial Park Institute of Services Outsourcing,Suzhou 215123,China

    2Nanofabrication Facility,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    3School of Nano Technology and Nano Bionics,University of Science and Technology of China,Hefei 230026,China

    4School of Electronics and Information Engineering,Wuxi University,Wuxi 214105,China

    Keywords: WSe2,heterostructure,photodetector,photogating effect

    1.Introduction

    Photodetectors based on transition metal dichalcogenides(TMDCs)such as MoS2and WSe2have received much attention due to their flexible structure,[1,2]tunable bandgap,[3,4]and high absorption coefficient.[5,6]Previous studies have demonstrated that the photodetection efficiency of monolayer MoS2and WSe2photodetectors is as low as a few hundred mA/W, due to the light absorption limitations and the effects of non-optimal contact at the metal electrode and material interface.[7,8]Therefore, to obtain high-performance photodetectors, many researchers have turned to heterostructures based on graphene/TMDCs to prepare low-resistance devices.[9–11]Moreover, graphene-based heterostructures retain the inherent photoelectronic properties of a single material due to weak van der Waals forces between layers and the lack of surface dangling bonds, which can further improve device performance.[12–15]For example, Tanet al.and Yehet al.reported that the photodetection efficiency of WSe2and WS2photodetectors increased to 350 A/W and 3.5 A/W,respectively,by using graphene as a transparent contact electrode.[16,17]

    The tungsten disulfide (WSe2) has a tunable bandgap(1.2 eV–1.67 eV), bipolar transport behavior, and excellent photoelectronic properties, and has been widely studied as a potential candidate for next-generation optoelectronic devices, such as solar cells, photodetectors, and photonic modulators.[18–21]In addition, graphene can achieve wideband photodetection from ultraviolet to terahertz wavelengths due to its unique zero bandgap structure.[22,23]Furthermore, graphene-based photodetectors exhibit super-fast response speeds due to their ultra-high carrier mobility.[24]Unfortunately, the light absorption efficiency of monolayer graphene is only about 2.3% and usually lacks high photoresponsivity.[25]To generate higher photocurrent, it is possible to construct an internal electric field to separate photo-generated electron–hole pairs, thereby extending the carrier lifetime.[10,26]Therefore,by fabricating a vertical heterostructure device and combining the advantages of WSe2and graphene, it is promising to improve the overall performance of the photodetector.

    In the present research,we fabricated a high photodetection efficiency photodetector based on a graphene/WSe2vertical heterostructure.The device covered a layer of high lightabsorbing WSe2material on the graphene channel,which significantly enhanced the device’s light absorption.At the same time,we used the localized grating layer formed by the WSe2material to regulate the carrier concentration of the underlying graphene.At room temperature, the external quantum efficiency of the device reached 1.3×107%,and the photodetection efficiency reached 3.85×104A/W,which is 2–3 orders of magnitude higher than that of the WSe2photodetector.These results demonstrate that using WSe2material as the localized grating layer is an effective way to achieve high photoresponsivity and high external quantum efficiency.

    2.Experimental details

    2.1.Device fabrication

    The graphene/WSe2vdW heterostructure was fabricated using mechanical exfoliation technique.First, few layers graphene flake was exfoliated using 3M tape.Next, the graphene device was fabricated using layout design software(L-edit), electron beam lithography, and electron beam evaporation processes.Finally, WSe2thin film material is obtained through mechanical exfoliation and transferred onto the previously fabricated graphene device, resulting in the graphene/WSe2vertical device.

    2.2.Device characterization

    The morphology and thickness of the graphene/WSe2vdW heterostructure were measured using an atomic force microscope(AFM).The quality of the heterostructure device was characterized using a Raman spectrometer with a laser wavelength of 532 nm.The photoelectric performance was measured using a semiconductor parameter analyzer (Keithley 2400 and 2612B)in a dark room at room temperature and a laser source with a tunable wavelength of 365 nm–965 nm.

    3.Results and discussion

    3.1.Device structure and microscopic characterization

    Figure 1(a) shows a schematic diagram of the graphene/WSe2vertical heterostructure device on an Si/SiO2substrate.The device is obtained by mechanically exfoliating WSe2thin film material and transferring it onto a previously fabricated graphene device.Figure 1(b) shows an optical image of the graphene/WSe2heterostructure, where WSe2is used as the light-absorbing layer and the localized grating layer, and graphene as the conductive channel layer.The built-in electric field between graphene and WSe2can enhance the separation of electron–hole pairs and reduce the recombination probability.The morphology and thickness of the heterostructure device were characterized by atomic force microscopy (AFM).Figure 1(c) shows the AFM image of the graphene/WSe2vertical heterostructure device,where the orange dashed line represents WSe2, the red dashed line represents graphene, and the scale bar is 10 μm.The thickness information of the graphene/WSe2heterostructure device was extracted from the inset, where the thicknesses of WSe2and graphene were 11 nm and 7 nm,respectively.

    Figure 1(d)shows the Raman spectroscopy characterization results of the WSe2and the graphene/WSe2heterostructure region.For the pristine WSe2material, the Raman spectrum exhibits three prominent peaks: E2gat 249 cm?1,2LA(M) at 257 cm?1, and B2gat 308 cm?1, respectively.The Raman spectrum of the graphene/WSe2heterostructure region shows an additional characteristic peak of graphene at 1582.5 cm?1.This G peak originates from the E2gphonon mode,and the two-dimensional(2D)vibration mode’s characteristic peak is located at 2715.6 cm?1,corresponding to double phonon resonance.In the heterostructure region,the signal peak of graphene is much weaker than the Raman intensity of the WSe2material, due to the fact that the WSe2material is covered on top of graphene, causing it to receive much less Raman laser power.

    3.2.Electrical characterizations of the graphene/WSe2 heterostructure device

    Figures 2(a) and 2(b) show the output characteristics of the WSe2/h-BN heterostructure device at different gate voltages(Vg).As theVgincreases from 0 V to 50 V,the source–drain current(Ids)also increases,and the output characteristics exhibit a sub-linear behavior due to the Fermi level pinning effect between the metal electrode and the thin film material,as shown in the logarithmic coordinate plot in Fig.S1.As theVgvaries from?60 V to?10 V,the overall magnitude of theIdsincreases with the increase of theVg,corresponding to the transfer characteristic curve shown in Fig.S2, indicating that the WSe2/h-BN heterostructure device exhibits bipolar semiconductor characteristics.The electric field mobility(μFE)of the WSe2/h-BN heterostructure device is calculated using the following formula:

    whereμis the mobility of the device,Lis the channel length (5.4 μm),Wis the channel width (8.3 μm),εrepresents the vacuum permittivity (8.854×1012F/m),εrrepresents the relative permittivity of the material (3.9 for SiO2and 3.5 for h-BN), anddrepresents the thickness of SiO2(300 nm).Based on Eqs.(1)and(2),the electron(hole)mobility of the WSe2/h-BN heterostructure device at a source–drain voltage (Vds) of 1 V can be calculated as 7.20 cm2·V?1·s?1(25.17 cm2·V?1·s?1).

    Fig.2.Electrical characteristics of WSe2/h-BN heterostructure device and graphene/WSe2 heterostructure device under dark conditions.(a) Output characteristic curve of WSe2/h-BN heterostructure device with gate voltage ranging from 0 V to 50 V; (b) output characteristic curve with gate voltage ranging from ?60 V to ?10 V; (c) output characteristic curve of graphene/WSe2 heterostructure device with gate voltage ranging from 0 V to 90 V;(d)output characteristic curve with gate voltage ranging from ?90 V to 0 V.

    Figures 2(c) and 2(d) show the output characteristics of the heterostructure device as theVgvaries from 0 V to 90 V and from?90 V to 0 V,respectively.The results indicate Ohmic contact between graphene and the metal electrode without a Schottky barrier.The concentration of graphene conductive channel can be controlled by theVg.As theVgincreases from 0 V to 90 V,theIdsincreases.Conversely,as theVgincreases from?90 V to 0 V,theIdsdecreases.This is consistent with the transfer characteristics curve shown in Fig.S3, demonstrating the bipolar semiconductor behavior of the heterostructure device.

    Based on the above outstanding electrical performance,we further investigated the photodetection performance of WSe2/h-BN heterostructure devices.Figure 3(a) shows the output characteristics of the heterostructure device under visible light irradiation at 532 nm, withPinvalues ranging from 1.39 mW/cm2to 10.12 mW/cm2.As can be seen, the heterostructure device exhibits a large photocurrent at various light power densities, and the photocurrent increases with increasingPinvalues.WhenPinis 10.12 mW/cm2, theIdscan reach 5.74×10?6A, which is more than 5 μA higher than that under dark conditions.Figure 3(b) shows the dependence of the responsivity of the heterostructure device on theVdsand the incident light power density.The results show thatRsharply increases with increasing theVds, and reaches a maximum value of 1535.05 A/W atPin= 2.71 mW/cm2andVds=2 V.Figures 3(c) and 3(d) show the incident light power distribution curves of theRandD?of the heterostructure device,demonstrating good response characteristics of the WSe2/h-BN heterostructure device at various light power densities.Among them, whenPinis 1.39 mW/cm2and theIdsis 1 V, theRandD?can reach the highest values, which are 295.12 A/W and 4.19×109Jones,respectively.

    Next, we will delve into the photogating effect in the graphene/WSe2vertical heterostructure device and its origin, as shown in Fig.4(a).Taking the example of the graphene/WSe2vertical heterostructure device operating at a gate voltage ofVg<0 V,when WSe2and graphene come into contact with each other, due to the difference in carrier concentration and Fermi level,the holes in WSe2will diffuse towards graphene under the effect of carrier concentration gradient.Finally, under no external voltage, the diffusion and drift motions of the charge carriers are balanced, achieving dynamic equilibrium.In this state, an intrinsic electric field pointing from WSe2to graphene is generated in the depletion layer formed between them.By changing the external voltage,the width of the depletion layer and the strength of the intrinsic electric field can be further adjusted,thereby achieving the tuning of the heterostructure device’s performance.

    Fig.3.WSe2/h-BN heterostructure device: (a) output characteristic curves under different incident light intensities in dark conditions (wavelength λ =532 nm,Vg=0 V);(b)the 2D relationship between photoresponsivity and incident light power density and source–drain voltage(λ =532 nm,Vg=0 V);the variation of(c)photoresponsivity and(d)specific detectivity with incident light power density.

    Fig.4.Graphene/WSe2 vertical heterostructure device.Energy band diagrams of graphene/WSe2 vertical heterostructure devices under different gate voltages: (a) Vg <0 V and (b) Vg >0 V (with fixed incident wavelength of 365 nm, red represents holes and dark blue represents electrons);the schematic diagrams of(c)generation, (d)transfer, and(e)confinement of photoexcited electron–hole pairs.The upper layer is made of WSe2 material,the lower layer is made of graphene material,green circles represent electrons,red circles represent holes.

    Under dark conditions, the majority of theIdsin heterostructure devices comes from holes in graphene.When a 365-nm wavelength laser is irradiated on the heterostructure device,photo-generated electron–hole pairs are excited in both WSe2and graphene materials, as shown in Fig.4(c).Due to the formation of a built-in electric field from graphene to WSe2at the interface, the photogenerated electron–hole pairs are separated and move towards each material under the influence of the built-in electric field.Specifically,the holes in WSe2are transferred to the underlying graphene layer,while the photogenerated electrons in graphene are transferred to the upper WSe2layer,as shown in Fig.4(d).This process increases the hole concentration in the graphene conductive channel,and the holes drift under the influence of theVds,contributing to the increment of the photocurrent.In addition,due to the existence of the built-in electric field in the heterostructure device, the electrons transferred from graphene are confined to the WSe2layer, as shown in Fig.4(e).This confinement of electrons in the WSe2layer produces a modulation effect similar to the gate voltage.Under this strong coupling effect,electrons in the WSe2layer induce more holes to be generated in the graphene layer,thereby increasing the carrier concentration in the channel and improving the photo-detection performance of the heterostructure device by an order of magnitude.

    Based on the research of the electrical characteristics of heterostructure devices and the photoelectric properties of WSe2transistors,we continued to test the photo-detection performance of graphene/WSe2heterostructure devices under different conditions.When theVgwas 0 V,we tested the output characteristic curve of the heterostructure device under dark conditions and 365-nm incident wavelength light illumination,as shown in Fig.5(a).With the increase of theVds,the photoelectric current of the heterostructure device also increased,indicating that the collection efficiency of photo-generated carriers gradually improved.At the same time, we also tested the transfer characteristic curve of the heterostructure device under dark conditions and 365-nm incident wavelength light illumination with a fixedVdsof 1 V,as shown in Fig.5(b).It can be seen that the photoelectric current of the heterostructure device under theVgregulation shows a trend of decreasing first and then increasing,indicating that the heterostructure device has bipolar semiconductor characteristics consistent with the experimental results under dark conditions.

    Fig.5.Graphene/WSe2 vertical heterostructure device: (a) output characteristics under dark and 365-nm wavelength light illumination (Vg = 0 V);(b) transfer characteristics under dark (Vds =1 V); (c) extracted photocurrent as a function of Vds (Vg =0 V, λ =365 nm); (d) the relationship between responsivity R,(e)detectivity D?,and(f)external quantum efficiency(EQE)with Vds.

    Figures 5(d)and 5(e)show the curves ofRandD?of the graphene/WSe2vertical heterostructure device as a function of source–drain voltage (Vds), respectively.The results indicate that theRandD?values of the device also increase with the increase ofVds.TheRandD?of the heterostructure device can be expressed by the following equations:[27–31]

    wherePin,A,andeare the incident optical power density,effective illuminated area,and electron charge.

    When the device is illuminated with 365-nm wavelength light at a power density of 16.75 mW/cm2and the source–drain voltage is 1 V,RandD?reach 1.34×104A/W and 2.21×109Jones,respectively.When the source–drain voltage is further increased to 2 V,theRandD?of the device are improved to 3.85×104A/W and 6.62×109Jones,respectively.In addition, to further improve the photoresponsivity of the heterostructure device, the gate voltage of the device can be increased to adjust the carrier concentration in the conductive channel.Furthermore, figure 5(f) demonstrates the variation of external quantum efficiency (EQE) with different source–drain voltages.The EQE is a dimensionless quantity that represents the ratio of collected electrons to incident photons in a device,and can be calculated using the following formula:

    whereRis the photoresponsivity,his the Planck constant(6.63×10?34J·s),λrepresents the wavelength of the incident laser,andcis the speed of light in vacuum.For the heterostructure device,the EQE reaches 4.6×104%at a source–drain voltage of?2 V.Continuing to increase the voltage to?2 V, the EQE increases to 1.3×107%, indicating that the light absorption efficiency can be improved by changing the source–drain voltage of the device.Finally,This is also comparable to those in previous works (supporting information,Table S1).

    4.Conclusion

    In summary, we demonstrated a graphene/WSe2vertical heterostructure based highly sensitive photodetector, where the WSe2layer plays a dual role of both the light absorption layer and the localized grating layer.The graphene conductive channel is induced to produce more charge carriers by capacitive coupling.Under the strong photogating effect,graphene/WSe2vertical heterostructure exhibits excellent optoelectronic properties at room temperature, with a detectivity and external quantum efficiency of 6.62×109Jones and 1.3×107%,respectively.Furthermore,the photoresponsivity reaches 3.85×104A/W,which is two to three orders of magnitude higher than that of theWSe2photodetector.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11974379), the National Key Basic Research and Development Program of China (Grant No.2021YFC2203400), and Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio(Grant No.2022-13).

    猜你喜歡
    張黎淑萍王燕
    Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing
    Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
    永恒的梁祝 永遠的蝴蝶
    一代鴻儒王應(yīng)麟
    月湖書生徐時棟
    喬淑萍:山城兒童的守護神
    Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide
    Clinical observation on acupoint injection for back pain in patients w ith primary osteoporosis
    變臉
    絕情刀
    国产精品精品国产色婷婷| 国产免费一级a男人的天堂| 99热精品在线国产| 亚洲欧美日韩高清在线视频| 蜜桃久久精品国产亚洲av| 男插女下体视频免费在线播放| 欧美成人a在线观看| 女人十人毛片免费观看3o分钟| 亚洲欧美清纯卡通| 欧美3d第一页| 亚洲人成网站在线播| 日韩 亚洲 欧美在线| 男插女下体视频免费在线播放| 中国国产av一级| 日韩制服骚丝袜av| 国产精品无大码| 久久精品久久久久久噜噜老黄 | 亚洲一区高清亚洲精品| 午夜久久久久精精品| 两性午夜刺激爽爽歪歪视频在线观看| 日本免费一区二区三区高清不卡| 97超视频在线观看视频| 亚洲国产精品成人综合色| 美女高潮的动态| a级一级毛片免费在线观看| 亚洲第一区二区三区不卡| 亚洲综合色惰| 嫩草影院新地址| 亚洲一区高清亚洲精品| 欧美潮喷喷水| 人妻夜夜爽99麻豆av| 国产私拍福利视频在线观看| 亚洲婷婷狠狠爱综合网| 女人被狂操c到高潮| 真实男女啪啪啪动态图| 婷婷精品国产亚洲av| 国产 一区精品| 俄罗斯特黄特色一大片| 一级黄片播放器| 国产欧美日韩精品一区二区| 日本黄大片高清| 97超视频在线观看视频| 美女cb高潮喷水在线观看| 亚洲第一电影网av| 三级男女做爰猛烈吃奶摸视频| 欧美bdsm另类| 狠狠狠狠99中文字幕| 一级av片app| 欧美绝顶高潮抽搐喷水| 村上凉子中文字幕在线| 最近视频中文字幕2019在线8| 国产黄色视频一区二区在线观看 | 别揉我奶头 嗯啊视频| 不卡视频在线观看欧美| 成人三级黄色视频| 综合色丁香网| 啦啦啦啦在线视频资源| 国产精品亚洲美女久久久| 成人毛片a级毛片在线播放| 麻豆国产97在线/欧美| 成人性生交大片免费视频hd| 美女被艹到高潮喷水动态| 身体一侧抽搐| 深夜精品福利| 国产欧美日韩一区二区精品| 国内久久婷婷六月综合欲色啪| h日本视频在线播放| 搡女人真爽免费视频火全软件 | 中文资源天堂在线| 免费看a级黄色片| 中文字幕熟女人妻在线| 中文字幕精品亚洲无线码一区| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 国产在线男女| 日产精品乱码卡一卡2卡三| 97在线视频观看| 嫩草影院精品99| 91在线精品国自产拍蜜月| 亚洲精品久久国产高清桃花| 日韩 亚洲 欧美在线| 国产精品永久免费网站| 人人妻人人看人人澡| 国产白丝娇喘喷水9色精品| 欧美bdsm另类| 在线观看午夜福利视频| 日韩欧美国产在线观看| 日本黄色视频三级网站网址| 亚洲精品色激情综合| 禁无遮挡网站| 天堂网av新在线| 12—13女人毛片做爰片一| 久久精品综合一区二区三区| 韩国av在线不卡| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 精品久久国产蜜桃| 国产精品一区www在线观看| 真实男女啪啪啪动态图| 亚洲人成网站高清观看| 3wmmmm亚洲av在线观看| 18禁黄网站禁片免费观看直播| 国产真实伦视频高清在线观看| 三级经典国产精品| 亚洲第一区二区三区不卡| 国产高清视频在线观看网站| 99在线视频只有这里精品首页| 啦啦啦韩国在线观看视频| 在线观看av片永久免费下载| 久久久精品欧美日韩精品| a级毛色黄片| 亚洲,欧美,日韩| 五月伊人婷婷丁香| 久久天躁狠狠躁夜夜2o2o| 国产在视频线在精品| 亚洲成人av在线免费| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 亚洲av第一区精品v没综合| 日本免费a在线| 男女之事视频高清在线观看| 欧美成人a在线观看| 夜夜爽天天搞| 一级黄片播放器| 又黄又爽又刺激的免费视频.| 特级一级黄色大片| 大型黄色视频在线免费观看| 久久久成人免费电影| 久久久久国内视频| 青春草视频在线免费观看| 人人妻,人人澡人人爽秒播| 亚洲av一区综合| 亚洲av电影不卡..在线观看| 国产精品亚洲一级av第二区| 国产精品日韩av在线免费观看| 国产亚洲欧美98| 国产精品一区二区三区四区免费观看 | 亚洲自拍偷在线| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 日韩av不卡免费在线播放| 日本免费a在线| 色尼玛亚洲综合影院| 午夜福利在线观看免费完整高清在 | 激情 狠狠 欧美| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 免费高清视频大片| a级毛色黄片| 亚洲av二区三区四区| 亚州av有码| 午夜激情福利司机影院| 老熟妇乱子伦视频在线观看| 亚洲国产欧洲综合997久久,| 少妇熟女欧美另类| 欧美激情久久久久久爽电影| 久久中文看片网| 亚洲成人久久爱视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品国产三级普通话版| 午夜精品在线福利| 久久亚洲国产成人精品v| 精品国产三级普通话版| 别揉我奶头~嗯~啊~动态视频| av在线亚洲专区| 久久这里只有精品中国| 老司机影院成人| 日韩成人伦理影院| 亚洲综合色惰| 99热6这里只有精品| 成人高潮视频无遮挡免费网站| 免费av毛片视频| 成人性生交大片免费视频hd| 日韩,欧美,国产一区二区三区 | 男人舔女人下体高潮全视频| 在现免费观看毛片| av在线亚洲专区| 亚洲av.av天堂| 狂野欧美白嫩少妇大欣赏| 日韩精品中文字幕看吧| 九色成人免费人妻av| 久久久国产成人精品二区| 免费av不卡在线播放| 少妇的逼好多水| 女人被狂操c到高潮| 你懂的网址亚洲精品在线观看 | 亚洲熟妇中文字幕五十中出| 国产亚洲欧美98| 亚洲精品一卡2卡三卡4卡5卡| 国产国拍精品亚洲av在线观看| 在线看三级毛片| 国语自产精品视频在线第100页| 免费不卡的大黄色大毛片视频在线观看 | 欧美潮喷喷水| 97超碰精品成人国产| 色综合色国产| 欧美一区二区精品小视频在线| 国产免费一级a男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| 国产成年人精品一区二区| 99riav亚洲国产免费| 亚洲第一电影网av| 国语自产精品视频在线第100页| 日本 av在线| 99久久无色码亚洲精品果冻| 麻豆一二三区av精品| 日本 av在线| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 哪里可以看免费的av片| 国产视频内射| 欧美极品一区二区三区四区| 热99在线观看视频| 精品久久久久久久久av| 免费搜索国产男女视频| 在现免费观看毛片| 桃色一区二区三区在线观看| 中文字幕久久专区| 亚洲第一区二区三区不卡| 免费不卡的大黄色大毛片视频在线观看 | 国产av麻豆久久久久久久| 国产精品久久视频播放| 三级毛片av免费| 大又大粗又爽又黄少妇毛片口| 99热这里只有是精品在线观看| 欧美不卡视频在线免费观看| 九九热线精品视视频播放| 亚洲国产精品久久男人天堂| 此物有八面人人有两片| 18禁裸乳无遮挡免费网站照片| 色5月婷婷丁香| 亚州av有码| 如何舔出高潮| av在线蜜桃| 久久韩国三级中文字幕| 波多野结衣巨乳人妻| 精品一区二区免费观看| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 欧美绝顶高潮抽搐喷水| 校园春色视频在线观看| 欧美日韩国产亚洲二区| 久久久午夜欧美精品| 嫩草影院新地址| 在线播放国产精品三级| 悠悠久久av| АⅤ资源中文在线天堂| 乱系列少妇在线播放| 看黄色毛片网站| 嫩草影视91久久| 卡戴珊不雅视频在线播放| 国产探花在线观看一区二区| 亚洲乱码一区二区免费版| 亚洲国产精品成人综合色| 久久久a久久爽久久v久久| 日韩av不卡免费在线播放| 天天躁日日操中文字幕| 国产91av在线免费观看| 国产女主播在线喷水免费视频网站 | 搡女人真爽免费视频火全软件 | 熟妇人妻久久中文字幕3abv| 我的女老师完整版在线观看| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 国内揄拍国产精品人妻在线| 亚洲精品久久国产高清桃花| 黄色欧美视频在线观看| 国产一区二区三区av在线 | 久久午夜福利片| 免费黄网站久久成人精品| 免费av不卡在线播放| 成人国产麻豆网| 春色校园在线视频观看| 青春草视频在线免费观看| 欧美又色又爽又黄视频| 亚洲七黄色美女视频| 欧美国产日韩亚洲一区| 亚洲欧美日韩无卡精品| 一进一出抽搐动态| 中文亚洲av片在线观看爽| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 精品乱码久久久久久99久播| 亚洲人成网站在线播| 国产三级在线视频| 最近在线观看免费完整版| 婷婷精品国产亚洲av| 天美传媒精品一区二区| 97超碰精品成人国产| 国产av不卡久久| 精品人妻一区二区三区麻豆 | 午夜激情欧美在线| 12—13女人毛片做爰片一| 99riav亚洲国产免费| 欧美激情久久久久久爽电影| 免费看美女性在线毛片视频| 在线国产一区二区在线| 十八禁网站免费在线| 日本在线视频免费播放| 美女大奶头视频| 日本欧美国产在线视频| .国产精品久久| 欧美精品国产亚洲| 性欧美人与动物交配| 午夜福利在线观看免费完整高清在 | 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区视频9| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 男人的好看免费观看在线视频| 一个人看的www免费观看视频| 我要看日韩黄色一级片| 99久久精品一区二区三区| 五月玫瑰六月丁香| 久久久a久久爽久久v久久| 日韩制服骚丝袜av| 国产精品久久电影中文字幕| 久久精品国产自在天天线| 性欧美人与动物交配| 午夜福利在线在线| 精品人妻熟女av久视频| 一进一出抽搐gif免费好疼| 亚洲va在线va天堂va国产| 国产精品乱码一区二三区的特点| 长腿黑丝高跟| 男女那种视频在线观看| 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 美女免费视频网站| 99热全是精品| 亚洲激情五月婷婷啪啪| 免费搜索国产男女视频| 晚上一个人看的免费电影| 亚洲国产色片| 国产精品不卡视频一区二区| 国产一区二区在线观看日韩| 男女视频在线观看网站免费| 国产精华一区二区三区| 亚洲四区av| 可以在线观看毛片的网站| 又粗又爽又猛毛片免费看| 18禁在线无遮挡免费观看视频 | 色噜噜av男人的天堂激情| 亚洲欧美日韩高清专用| 看免费成人av毛片| 国产高清视频在线观看网站| 乱系列少妇在线播放| 人妻制服诱惑在线中文字幕| 亚洲熟妇中文字幕五十中出| 国产亚洲欧美98| 插逼视频在线观看| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国产69精品久久久久777片| 国内少妇人妻偷人精品xxx网站| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 国产女主播在线喷水免费视频网站 | av国产免费在线观看| 亚洲欧美中文字幕日韩二区| 日本成人三级电影网站| 美女xxoo啪啪120秒动态图| 精品久久久久久久久久免费视频| 成人av一区二区三区在线看| 日本爱情动作片www.在线观看 | 欧美色欧美亚洲另类二区| 国产成人一区二区在线| 免费av毛片视频| 最新在线观看一区二区三区| 欧美区成人在线视频| 日韩强制内射视频| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩精品一区二区| 久久精品久久久久久噜噜老黄 | 一个人看视频在线观看www免费| 热99在线观看视频| 久久6这里有精品| 欧美最黄视频在线播放免费| 久久精品人妻少妇| av免费在线看不卡| 听说在线观看完整版免费高清| 97热精品久久久久久| 久久久久久久久中文| 欧美日韩综合久久久久久| eeuss影院久久| 欧美成人一区二区免费高清观看| 国产欧美日韩精品一区二区| 男人舔女人下体高潮全视频| 麻豆国产av国片精品| 久久久精品大字幕| 男女啪啪激烈高潮av片| 午夜亚洲福利在线播放| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 国产伦精品一区二区三区视频9| 亚洲一区高清亚洲精品| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 伦精品一区二区三区| 免费看a级黄色片| 久99久视频精品免费| 99视频精品全部免费 在线| 深爱激情五月婷婷| 欧美潮喷喷水| 美女黄网站色视频| 国产91av在线免费观看| 免费看a级黄色片| 国产淫片久久久久久久久| av天堂中文字幕网| 久久综合国产亚洲精品| 国产探花在线观看一区二区| 国产精品久久久久久精品电影| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 欧美成人一区二区免费高清观看| 国产亚洲精品综合一区在线观看| 欧美精品国产亚洲| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av在线| 久久午夜亚洲精品久久| 在线观看66精品国产| 综合色丁香网| 人人妻人人看人人澡| 亚洲av成人av| 国产aⅴ精品一区二区三区波| 色噜噜av男人的天堂激情| 桃色一区二区三区在线观看| 男人舔奶头视频| 国产成人aa在线观看| 不卡一级毛片| 亚洲精品影视一区二区三区av| 中文资源天堂在线| 床上黄色一级片| 精品久久久久久久久久久久久| av国产免费在线观看| 夜夜夜夜夜久久久久| 国产乱人视频| 精品一区二区三区视频在线| 国产黄片美女视频| 狠狠狠狠99中文字幕| 日韩成人伦理影院| 丰满乱子伦码专区| 天堂网av新在线| av免费在线看不卡| 久久精品国产亚洲av天美| 少妇人妻一区二区三区视频| 最近2019中文字幕mv第一页| 免费观看在线日韩| 18禁在线无遮挡免费观看视频 | 99国产精品一区二区蜜桃av| 亚洲性久久影院| 嫩草影院精品99| 黄色一级大片看看| 在线观看66精品国产| 国产一区二区亚洲精品在线观看| 久久久久久久亚洲中文字幕| 日韩中字成人| 久久久国产成人精品二区| 国产三级中文精品| 秋霞在线观看毛片| 日韩精品有码人妻一区| av在线老鸭窝| 久久久精品94久久精品| 国产精品国产高清国产av| 日韩欧美精品免费久久| 22中文网久久字幕| 男人狂女人下面高潮的视频| 国产精品,欧美在线| 99精品在免费线老司机午夜| 男女之事视频高清在线观看| 在线天堂最新版资源| 国产麻豆成人av免费视频| 日本色播在线视频| 中文在线观看免费www的网站| 久久人人爽人人爽人人片va| 搞女人的毛片| 免费搜索国产男女视频| 国产高潮美女av| 久久99热6这里只有精品| 国产伦精品一区二区三区视频9| 人妻丰满熟妇av一区二区三区| 成人漫画全彩无遮挡| .国产精品久久| 简卡轻食公司| 欧美日韩精品成人综合77777| 国产 一区 欧美 日韩| 成人特级av手机在线观看| 黄色配什么色好看| 美女cb高潮喷水在线观看| 精品熟女少妇av免费看| 国产日本99.免费观看| 美女免费视频网站| 精品一区二区三区av网在线观看| 舔av片在线| 老熟妇乱子伦视频在线观看| 亚洲国产精品成人久久小说 | 久久久精品94久久精品| 亚洲av五月六月丁香网| 99在线视频只有这里精品首页| 成人av一区二区三区在线看| 国产亚洲精品久久久com| 全区人妻精品视频| 一个人观看的视频www高清免费观看| 尾随美女入室| 深爱激情五月婷婷| 欧美日韩国产亚洲二区| or卡值多少钱| 赤兔流量卡办理| 亚洲精品色激情综合| 真实男女啪啪啪动态图| 国产精品免费一区二区三区在线| 内地一区二区视频在线| 人人妻,人人澡人人爽秒播| 日本撒尿小便嘘嘘汇集6| 亚洲av中文av极速乱| 99热全是精品| 亚洲精品一区av在线观看| 蜜桃久久精品国产亚洲av| 床上黄色一级片| 久久久久国产精品人妻aⅴ院| 亚洲精品久久国产高清桃花| 国产av在哪里看| 久久午夜亚洲精品久久| 18禁黄网站禁片免费观看直播| 99热这里只有是精品50| 免费看美女性在线毛片视频| 亚洲国产高清在线一区二区三| 国产亚洲欧美98| 在线免费观看的www视频| 中文资源天堂在线| 亚洲欧美清纯卡通| 国产真实伦视频高清在线观看| 国产精品久久久久久久久免| 久久人人爽人人爽人人片va| 国产精品一区二区三区四区免费观看 | 国产精品99久久久久久久久| 亚洲欧美清纯卡通| 免费在线观看影片大全网站| 午夜精品在线福利| 欧美日本视频| 欧美又色又爽又黄视频| 精品一区二区三区视频在线| 国产高清视频在线播放一区| 插阴视频在线观看视频| 国产视频一区二区在线看| 久久久久九九精品影院| 国产午夜福利久久久久久| 国产片特级美女逼逼视频| 此物有八面人人有两片| 性欧美人与动物交配| 男人舔女人下体高潮全视频| 久久精品国产鲁丝片午夜精品| 亚州av有码| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 亚洲成人av在线免费| 日本黄色片子视频| 亚洲熟妇中文字幕五十中出| 少妇高潮的动态图| 亚洲成人久久爱视频| 日韩欧美一区二区三区在线观看| 午夜日韩欧美国产| 一区二区三区免费毛片| 午夜福利18| 亚洲在线自拍视频| 亚洲欧美日韩卡通动漫| 欧美+亚洲+日韩+国产| 国产大屁股一区二区在线视频| 观看美女的网站| 国产高潮美女av| 色尼玛亚洲综合影院| 我要看日韩黄色一级片| 精品一区二区三区视频在线观看免费| 老司机午夜福利在线观看视频| 床上黄色一级片| 国产高清不卡午夜福利| 干丝袜人妻中文字幕| 亚洲熟妇熟女久久| 看十八女毛片水多多多| 国产视频内射| 国产欧美日韩精品亚洲av| h日本视频在线播放| 夜夜夜夜夜久久久久| 长腿黑丝高跟| 亚洲专区国产一区二区| 久久99热6这里只有精品| 欧美精品国产亚洲| 婷婷精品国产亚洲av| 麻豆av噜噜一区二区三区| АⅤ资源中文在线天堂| 在线观看66精品国产| 欧美3d第一页| 国产精品三级大全| 中文亚洲av片在线观看爽| 欧美成人免费av一区二区三区| 国产精品三级大全| 在线天堂最新版资源| 成熟少妇高潮喷水视频| 中文字幕熟女人妻在线| 欧美日韩综合久久久久久| 老司机午夜福利在线观看视频| 欧美一区二区国产精品久久精品| 你懂的网址亚洲精品在线观看 | 欧美xxxx黑人xx丫x性爽| 日韩精品青青久久久久久| 亚洲人成网站高清观看| 国产成人a∨麻豆精品| 国产精品福利在线免费观看| 国产色婷婷99| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品|