• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect

    2024-04-14 14:26:46ShupingLi李淑萍TingLei雷挺ZhongxingYan嚴仲興YanWang王燕LikeZhang張黎可HuayaoTu涂華垚WenhuaShi時文華andZhongmingZeng曾中明
    Chinese Physics B 2024年1期
    關(guān)鍵詞:張黎淑萍王燕

    Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(嚴仲興),Yan Wang(王燕), Like Zhang(張黎可), Huayao Tu(涂華垚),Wenhua Shi(時文華),?, and Zhongming Zeng(曾中明),§

    1Suzhou Industrial Park Institute of Services Outsourcing,Suzhou 215123,China

    2Nanofabrication Facility,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    3School of Nano Technology and Nano Bionics,University of Science and Technology of China,Hefei 230026,China

    4School of Electronics and Information Engineering,Wuxi University,Wuxi 214105,China

    Keywords: WSe2,heterostructure,photodetector,photogating effect

    1.Introduction

    Photodetectors based on transition metal dichalcogenides(TMDCs)such as MoS2and WSe2have received much attention due to their flexible structure,[1,2]tunable bandgap,[3,4]and high absorption coefficient.[5,6]Previous studies have demonstrated that the photodetection efficiency of monolayer MoS2and WSe2photodetectors is as low as a few hundred mA/W, due to the light absorption limitations and the effects of non-optimal contact at the metal electrode and material interface.[7,8]Therefore, to obtain high-performance photodetectors, many researchers have turned to heterostructures based on graphene/TMDCs to prepare low-resistance devices.[9–11]Moreover, graphene-based heterostructures retain the inherent photoelectronic properties of a single material due to weak van der Waals forces between layers and the lack of surface dangling bonds, which can further improve device performance.[12–15]For example, Tanet al.and Yehet al.reported that the photodetection efficiency of WSe2and WS2photodetectors increased to 350 A/W and 3.5 A/W,respectively,by using graphene as a transparent contact electrode.[16,17]

    The tungsten disulfide (WSe2) has a tunable bandgap(1.2 eV–1.67 eV), bipolar transport behavior, and excellent photoelectronic properties, and has been widely studied as a potential candidate for next-generation optoelectronic devices, such as solar cells, photodetectors, and photonic modulators.[18–21]In addition, graphene can achieve wideband photodetection from ultraviolet to terahertz wavelengths due to its unique zero bandgap structure.[22,23]Furthermore, graphene-based photodetectors exhibit super-fast response speeds due to their ultra-high carrier mobility.[24]Unfortunately, the light absorption efficiency of monolayer graphene is only about 2.3% and usually lacks high photoresponsivity.[25]To generate higher photocurrent, it is possible to construct an internal electric field to separate photo-generated electron–hole pairs, thereby extending the carrier lifetime.[10,26]Therefore,by fabricating a vertical heterostructure device and combining the advantages of WSe2and graphene, it is promising to improve the overall performance of the photodetector.

    In the present research,we fabricated a high photodetection efficiency photodetector based on a graphene/WSe2vertical heterostructure.The device covered a layer of high lightabsorbing WSe2material on the graphene channel,which significantly enhanced the device’s light absorption.At the same time,we used the localized grating layer formed by the WSe2material to regulate the carrier concentration of the underlying graphene.At room temperature, the external quantum efficiency of the device reached 1.3×107%,and the photodetection efficiency reached 3.85×104A/W,which is 2–3 orders of magnitude higher than that of the WSe2photodetector.These results demonstrate that using WSe2material as the localized grating layer is an effective way to achieve high photoresponsivity and high external quantum efficiency.

    2.Experimental details

    2.1.Device fabrication

    The graphene/WSe2vdW heterostructure was fabricated using mechanical exfoliation technique.First, few layers graphene flake was exfoliated using 3M tape.Next, the graphene device was fabricated using layout design software(L-edit), electron beam lithography, and electron beam evaporation processes.Finally, WSe2thin film material is obtained through mechanical exfoliation and transferred onto the previously fabricated graphene device, resulting in the graphene/WSe2vertical device.

    2.2.Device characterization

    The morphology and thickness of the graphene/WSe2vdW heterostructure were measured using an atomic force microscope(AFM).The quality of the heterostructure device was characterized using a Raman spectrometer with a laser wavelength of 532 nm.The photoelectric performance was measured using a semiconductor parameter analyzer (Keithley 2400 and 2612B)in a dark room at room temperature and a laser source with a tunable wavelength of 365 nm–965 nm.

    3.Results and discussion

    3.1.Device structure and microscopic characterization

    Figure 1(a) shows a schematic diagram of the graphene/WSe2vertical heterostructure device on an Si/SiO2substrate.The device is obtained by mechanically exfoliating WSe2thin film material and transferring it onto a previously fabricated graphene device.Figure 1(b) shows an optical image of the graphene/WSe2heterostructure, where WSe2is used as the light-absorbing layer and the localized grating layer, and graphene as the conductive channel layer.The built-in electric field between graphene and WSe2can enhance the separation of electron–hole pairs and reduce the recombination probability.The morphology and thickness of the heterostructure device were characterized by atomic force microscopy (AFM).Figure 1(c) shows the AFM image of the graphene/WSe2vertical heterostructure device,where the orange dashed line represents WSe2, the red dashed line represents graphene, and the scale bar is 10 μm.The thickness information of the graphene/WSe2heterostructure device was extracted from the inset, where the thicknesses of WSe2and graphene were 11 nm and 7 nm,respectively.

    Figure 1(d)shows the Raman spectroscopy characterization results of the WSe2and the graphene/WSe2heterostructure region.For the pristine WSe2material, the Raman spectrum exhibits three prominent peaks: E2gat 249 cm?1,2LA(M) at 257 cm?1, and B2gat 308 cm?1, respectively.The Raman spectrum of the graphene/WSe2heterostructure region shows an additional characteristic peak of graphene at 1582.5 cm?1.This G peak originates from the E2gphonon mode,and the two-dimensional(2D)vibration mode’s characteristic peak is located at 2715.6 cm?1,corresponding to double phonon resonance.In the heterostructure region,the signal peak of graphene is much weaker than the Raman intensity of the WSe2material, due to the fact that the WSe2material is covered on top of graphene, causing it to receive much less Raman laser power.

    3.2.Electrical characterizations of the graphene/WSe2 heterostructure device

    Figures 2(a) and 2(b) show the output characteristics of the WSe2/h-BN heterostructure device at different gate voltages(Vg).As theVgincreases from 0 V to 50 V,the source–drain current(Ids)also increases,and the output characteristics exhibit a sub-linear behavior due to the Fermi level pinning effect between the metal electrode and the thin film material,as shown in the logarithmic coordinate plot in Fig.S1.As theVgvaries from?60 V to?10 V,the overall magnitude of theIdsincreases with the increase of theVg,corresponding to the transfer characteristic curve shown in Fig.S2, indicating that the WSe2/h-BN heterostructure device exhibits bipolar semiconductor characteristics.The electric field mobility(μFE)of the WSe2/h-BN heterostructure device is calculated using the following formula:

    whereμis the mobility of the device,Lis the channel length (5.4 μm),Wis the channel width (8.3 μm),εrepresents the vacuum permittivity (8.854×1012F/m),εrrepresents the relative permittivity of the material (3.9 for SiO2and 3.5 for h-BN), anddrepresents the thickness of SiO2(300 nm).Based on Eqs.(1)and(2),the electron(hole)mobility of the WSe2/h-BN heterostructure device at a source–drain voltage (Vds) of 1 V can be calculated as 7.20 cm2·V?1·s?1(25.17 cm2·V?1·s?1).

    Fig.2.Electrical characteristics of WSe2/h-BN heterostructure device and graphene/WSe2 heterostructure device under dark conditions.(a) Output characteristic curve of WSe2/h-BN heterostructure device with gate voltage ranging from 0 V to 50 V; (b) output characteristic curve with gate voltage ranging from ?60 V to ?10 V; (c) output characteristic curve of graphene/WSe2 heterostructure device with gate voltage ranging from 0 V to 90 V;(d)output characteristic curve with gate voltage ranging from ?90 V to 0 V.

    Figures 2(c) and 2(d) show the output characteristics of the heterostructure device as theVgvaries from 0 V to 90 V and from?90 V to 0 V,respectively.The results indicate Ohmic contact between graphene and the metal electrode without a Schottky barrier.The concentration of graphene conductive channel can be controlled by theVg.As theVgincreases from 0 V to 90 V,theIdsincreases.Conversely,as theVgincreases from?90 V to 0 V,theIdsdecreases.This is consistent with the transfer characteristics curve shown in Fig.S3, demonstrating the bipolar semiconductor behavior of the heterostructure device.

    Based on the above outstanding electrical performance,we further investigated the photodetection performance of WSe2/h-BN heterostructure devices.Figure 3(a) shows the output characteristics of the heterostructure device under visible light irradiation at 532 nm, withPinvalues ranging from 1.39 mW/cm2to 10.12 mW/cm2.As can be seen, the heterostructure device exhibits a large photocurrent at various light power densities, and the photocurrent increases with increasingPinvalues.WhenPinis 10.12 mW/cm2, theIdscan reach 5.74×10?6A, which is more than 5 μA higher than that under dark conditions.Figure 3(b) shows the dependence of the responsivity of the heterostructure device on theVdsand the incident light power density.The results show thatRsharply increases with increasing theVds, and reaches a maximum value of 1535.05 A/W atPin= 2.71 mW/cm2andVds=2 V.Figures 3(c) and 3(d) show the incident light power distribution curves of theRandD?of the heterostructure device,demonstrating good response characteristics of the WSe2/h-BN heterostructure device at various light power densities.Among them, whenPinis 1.39 mW/cm2and theIdsis 1 V, theRandD?can reach the highest values, which are 295.12 A/W and 4.19×109Jones,respectively.

    Next, we will delve into the photogating effect in the graphene/WSe2vertical heterostructure device and its origin, as shown in Fig.4(a).Taking the example of the graphene/WSe2vertical heterostructure device operating at a gate voltage ofVg<0 V,when WSe2and graphene come into contact with each other, due to the difference in carrier concentration and Fermi level,the holes in WSe2will diffuse towards graphene under the effect of carrier concentration gradient.Finally, under no external voltage, the diffusion and drift motions of the charge carriers are balanced, achieving dynamic equilibrium.In this state, an intrinsic electric field pointing from WSe2to graphene is generated in the depletion layer formed between them.By changing the external voltage,the width of the depletion layer and the strength of the intrinsic electric field can be further adjusted,thereby achieving the tuning of the heterostructure device’s performance.

    Fig.3.WSe2/h-BN heterostructure device: (a) output characteristic curves under different incident light intensities in dark conditions (wavelength λ =532 nm,Vg=0 V);(b)the 2D relationship between photoresponsivity and incident light power density and source–drain voltage(λ =532 nm,Vg=0 V);the variation of(c)photoresponsivity and(d)specific detectivity with incident light power density.

    Fig.4.Graphene/WSe2 vertical heterostructure device.Energy band diagrams of graphene/WSe2 vertical heterostructure devices under different gate voltages: (a) Vg <0 V and (b) Vg >0 V (with fixed incident wavelength of 365 nm, red represents holes and dark blue represents electrons);the schematic diagrams of(c)generation, (d)transfer, and(e)confinement of photoexcited electron–hole pairs.The upper layer is made of WSe2 material,the lower layer is made of graphene material,green circles represent electrons,red circles represent holes.

    Under dark conditions, the majority of theIdsin heterostructure devices comes from holes in graphene.When a 365-nm wavelength laser is irradiated on the heterostructure device,photo-generated electron–hole pairs are excited in both WSe2and graphene materials, as shown in Fig.4(c).Due to the formation of a built-in electric field from graphene to WSe2at the interface, the photogenerated electron–hole pairs are separated and move towards each material under the influence of the built-in electric field.Specifically,the holes in WSe2are transferred to the underlying graphene layer,while the photogenerated electrons in graphene are transferred to the upper WSe2layer,as shown in Fig.4(d).This process increases the hole concentration in the graphene conductive channel,and the holes drift under the influence of theVds,contributing to the increment of the photocurrent.In addition,due to the existence of the built-in electric field in the heterostructure device, the electrons transferred from graphene are confined to the WSe2layer, as shown in Fig.4(e).This confinement of electrons in the WSe2layer produces a modulation effect similar to the gate voltage.Under this strong coupling effect,electrons in the WSe2layer induce more holes to be generated in the graphene layer,thereby increasing the carrier concentration in the channel and improving the photo-detection performance of the heterostructure device by an order of magnitude.

    Based on the research of the electrical characteristics of heterostructure devices and the photoelectric properties of WSe2transistors,we continued to test the photo-detection performance of graphene/WSe2heterostructure devices under different conditions.When theVgwas 0 V,we tested the output characteristic curve of the heterostructure device under dark conditions and 365-nm incident wavelength light illumination,as shown in Fig.5(a).With the increase of theVds,the photoelectric current of the heterostructure device also increased,indicating that the collection efficiency of photo-generated carriers gradually improved.At the same time, we also tested the transfer characteristic curve of the heterostructure device under dark conditions and 365-nm incident wavelength light illumination with a fixedVdsof 1 V,as shown in Fig.5(b).It can be seen that the photoelectric current of the heterostructure device under theVgregulation shows a trend of decreasing first and then increasing,indicating that the heterostructure device has bipolar semiconductor characteristics consistent with the experimental results under dark conditions.

    Fig.5.Graphene/WSe2 vertical heterostructure device: (a) output characteristics under dark and 365-nm wavelength light illumination (Vg = 0 V);(b) transfer characteristics under dark (Vds =1 V); (c) extracted photocurrent as a function of Vds (Vg =0 V, λ =365 nm); (d) the relationship between responsivity R,(e)detectivity D?,and(f)external quantum efficiency(EQE)with Vds.

    Figures 5(d)and 5(e)show the curves ofRandD?of the graphene/WSe2vertical heterostructure device as a function of source–drain voltage (Vds), respectively.The results indicate that theRandD?values of the device also increase with the increase ofVds.TheRandD?of the heterostructure device can be expressed by the following equations:[27–31]

    wherePin,A,andeare the incident optical power density,effective illuminated area,and electron charge.

    When the device is illuminated with 365-nm wavelength light at a power density of 16.75 mW/cm2and the source–drain voltage is 1 V,RandD?reach 1.34×104A/W and 2.21×109Jones,respectively.When the source–drain voltage is further increased to 2 V,theRandD?of the device are improved to 3.85×104A/W and 6.62×109Jones,respectively.In addition, to further improve the photoresponsivity of the heterostructure device, the gate voltage of the device can be increased to adjust the carrier concentration in the conductive channel.Furthermore, figure 5(f) demonstrates the variation of external quantum efficiency (EQE) with different source–drain voltages.The EQE is a dimensionless quantity that represents the ratio of collected electrons to incident photons in a device,and can be calculated using the following formula:

    whereRis the photoresponsivity,his the Planck constant(6.63×10?34J·s),λrepresents the wavelength of the incident laser,andcis the speed of light in vacuum.For the heterostructure device,the EQE reaches 4.6×104%at a source–drain voltage of?2 V.Continuing to increase the voltage to?2 V, the EQE increases to 1.3×107%, indicating that the light absorption efficiency can be improved by changing the source–drain voltage of the device.Finally,This is also comparable to those in previous works (supporting information,Table S1).

    4.Conclusion

    In summary, we demonstrated a graphene/WSe2vertical heterostructure based highly sensitive photodetector, where the WSe2layer plays a dual role of both the light absorption layer and the localized grating layer.The graphene conductive channel is induced to produce more charge carriers by capacitive coupling.Under the strong photogating effect,graphene/WSe2vertical heterostructure exhibits excellent optoelectronic properties at room temperature, with a detectivity and external quantum efficiency of 6.62×109Jones and 1.3×107%,respectively.Furthermore,the photoresponsivity reaches 3.85×104A/W,which is two to three orders of magnitude higher than that of theWSe2photodetector.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11974379), the National Key Basic Research and Development Program of China (Grant No.2021YFC2203400), and Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio(Grant No.2022-13).

    猜你喜歡
    張黎淑萍王燕
    Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing
    Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
    永恒的梁祝 永遠的蝴蝶
    一代鴻儒王應(yīng)麟
    月湖書生徐時棟
    喬淑萍:山城兒童的守護神
    Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide
    Clinical observation on acupoint injection for back pain in patients w ith primary osteoporosis
    變臉
    絕情刀
    噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 精品99又大又爽又粗少妇毛片| 色婷婷av一区二区三区视频| 国产亚洲欧美精品永久| 一二三四中文在线观看免费高清| 午夜福利视频精品| 国产黄片视频在线免费观看| 国产av国产精品国产| 99热6这里只有精品| 最近最新中文字幕大全电影3| 人妻制服诱惑在线中文字幕| 国产一区二区在线观看日韩| 色视频在线一区二区三区| a 毛片基地| 国产日韩欧美在线精品| 九九在线视频观看精品| 一本色道久久久久久精品综合| 久久国产亚洲av麻豆专区| 免费看av在线观看网站| 欧美+日韩+精品| 这个男人来自地球电影免费观看 | 女性生殖器流出的白浆| 免费播放大片免费观看视频在线观看| 黄色怎么调成土黄色| 人妻系列 视频| h视频一区二区三区| 成年美女黄网站色视频大全免费 | 久久国产乱子免费精品| 91在线精品国自产拍蜜月| 国产美女午夜福利| 涩涩av久久男人的天堂| 夫妻性生交免费视频一级片| 欧美bdsm另类| 亚洲aⅴ乱码一区二区在线播放| 成人二区视频| 五月开心婷婷网| 亚洲天堂av无毛| 丰满迷人的少妇在线观看| 国产黄色视频一区二区在线观看| 在线观看免费视频网站a站| 国产精品久久久久久久电影| 亚洲精品乱久久久久久| 麻豆成人午夜福利视频| 国产又色又爽无遮挡免| 日韩一本色道免费dvd| 2018国产大陆天天弄谢| 99热6这里只有精品| 国产又色又爽无遮挡免| freevideosex欧美| 在线观看美女被高潮喷水网站| 99热全是精品| 亚洲性久久影院| 国产精品偷伦视频观看了| 男女国产视频网站| 成人二区视频| 99精国产麻豆久久婷婷| 国产精品一及| 亚洲精品日本国产第一区| 美女中出高潮动态图| 在线看a的网站| 国产成人免费观看mmmm| 精品国产三级普通话版| 午夜免费观看性视频| 一个人免费看片子| 秋霞伦理黄片| 内射极品少妇av片p| 国产免费福利视频在线观看| 五月伊人婷婷丁香| 色哟哟·www| 舔av片在线| 成人无遮挡网站| 高清欧美精品videossex| 国产精品一区www在线观看| 久久精品夜色国产| 欧美极品一区二区三区四区| 国产欧美日韩精品一区二区| 黄色日韩在线| 亚洲精品日韩在线中文字幕| 亚洲欧美成人综合另类久久久| 国产国拍精品亚洲av在线观看| 久久综合国产亚洲精品| 99久国产av精品国产电影| 最近2019中文字幕mv第一页| 如何舔出高潮| 中文在线观看免费www的网站| 国产免费又黄又爽又色| 亚洲在久久综合| 成人亚洲精品一区在线观看 | 亚洲天堂av无毛| 人人妻人人添人人爽欧美一区卜 | 22中文网久久字幕| 欧美bdsm另类| 99re6热这里在线精品视频| 97精品久久久久久久久久精品| 日本一二三区视频观看| 久久韩国三级中文字幕| 欧美zozozo另类| 国产成人免费无遮挡视频| 亚洲,一卡二卡三卡| 欧美国产精品一级二级三级 | 国产真实伦视频高清在线观看| 国产精品成人在线| 只有这里有精品99| 精品一区二区免费观看| 一级二级三级毛片免费看| 精品久久久精品久久久| 在线免费观看不下载黄p国产| 直男gayav资源| 国产av一区二区精品久久 | 深夜a级毛片| 亚洲一级一片aⅴ在线观看| 91精品国产九色| 精品亚洲成国产av| 久久av网站| 国产爱豆传媒在线观看| av播播在线观看一区| 一边亲一边摸免费视频| 国产精品久久久久久av不卡| 国产成人a区在线观看| 午夜福利网站1000一区二区三区| 国产高清国产精品国产三级 | 国产一区亚洲一区在线观看| 99热6这里只有精品| 久久精品国产亚洲av涩爱| 免费高清在线观看视频在线观看| 精品一区在线观看国产| 免费看日本二区| 国产精品.久久久| 亚洲av男天堂| 国产美女午夜福利| 亚洲经典国产精华液单| 国产男女内射视频| 亚洲国产成人一精品久久久| 大陆偷拍与自拍| 97超视频在线观看视频| 精品人妻熟女av久视频| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 乱系列少妇在线播放| kizo精华| 一级毛片 在线播放| 中文乱码字字幕精品一区二区三区| 国产 一区 欧美 日韩| 波野结衣二区三区在线| 国产精品国产三级国产av玫瑰| 国产亚洲精品久久久com| 极品少妇高潮喷水抽搐| 国产一区二区在线观看日韩| 日韩av不卡免费在线播放| 少妇人妻 视频| 国产综合精华液| 如何舔出高潮| 国产在线视频一区二区| 三级经典国产精品| 亚洲精品乱码久久久久久按摩| 欧美精品一区二区免费开放| 亚州av有码| 97在线视频观看| 一个人看视频在线观看www免费| 三级国产精品欧美在线观看| 男人舔奶头视频| 亚洲av男天堂| 18禁在线播放成人免费| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区国产| 久久精品国产a三级三级三级| 亚洲无线观看免费| 午夜福利在线观看免费完整高清在| 五月伊人婷婷丁香| 免费大片18禁| 女性被躁到高潮视频| av黄色大香蕉| 国产一区二区三区综合在线观看 | 看非洲黑人一级黄片| 中国国产av一级| 国产人妻一区二区三区在| 99热这里只有是精品50| 国产有黄有色有爽视频| 久久久午夜欧美精品| 久久久久久人妻| 国产在线一区二区三区精| a级一级毛片免费在线观看| 国产白丝娇喘喷水9色精品| 少妇人妻一区二区三区视频| 国产欧美另类精品又又久久亚洲欧美| 国产成人a∨麻豆精品| 欧美日韩亚洲高清精品| 联通29元200g的流量卡| 亚洲av日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄| 亚洲aⅴ乱码一区二区在线播放| 中文字幕制服av| a级一级毛片免费在线观看| 纵有疾风起免费观看全集完整版| 又粗又硬又长又爽又黄的视频| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 久久久久久久久久久免费av| 久久99精品国语久久久| 成人毛片a级毛片在线播放| 亚洲欧洲国产日韩| 最近中文字幕高清免费大全6| 免费在线观看成人毛片| 中文字幕人妻熟人妻熟丝袜美| 欧美激情极品国产一区二区三区 | av国产免费在线观看| 日韩强制内射视频| 在线 av 中文字幕| av在线老鸭窝| 你懂的网址亚洲精品在线观看| 精品久久久久久电影网| 久久97久久精品| 中文字幕制服av| 色综合色国产| 纵有疾风起免费观看全集完整版| 日韩视频在线欧美| 欧美xxⅹ黑人| 日韩av免费高清视频| 青春草国产在线视频| 日韩,欧美,国产一区二区三区| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 亚洲三级黄色毛片| 欧美精品一区二区大全| 精品午夜福利在线看| 美女cb高潮喷水在线观看| 青春草视频在线免费观看| 日本与韩国留学比较| 久久国产亚洲av麻豆专区| 老女人水多毛片| 深爱激情五月婷婷| 青春草国产在线视频| 国产成人精品福利久久| 97超视频在线观看视频| 最近的中文字幕免费完整| 黄色配什么色好看| 99热网站在线观看| 国产淫片久久久久久久久| 欧美+日韩+精品| 在线观看一区二区三区| 男男h啪啪无遮挡| 精品一品国产午夜福利视频| 高清黄色对白视频在线免费看 | 男女下面进入的视频免费午夜| 一本久久精品| 日韩欧美一区视频在线观看 | 午夜福利在线在线| 亚洲,一卡二卡三卡| 高清毛片免费看| 国产日韩欧美亚洲二区| 尾随美女入室| 女性生殖器流出的白浆| 男女边摸边吃奶| 午夜激情久久久久久久| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| 久久国产精品大桥未久av | 2018国产大陆天天弄谢| 国产精品嫩草影院av在线观看| 大又大粗又爽又黄少妇毛片口| 1000部很黄的大片| 一边亲一边摸免费视频| 中文乱码字字幕精品一区二区三区| av专区在线播放| 国产伦理片在线播放av一区| a级毛色黄片| 美女中出高潮动态图| 你懂的网址亚洲精品在线观看| 高清日韩中文字幕在线| 亚洲婷婷狠狠爱综合网| 亚洲国产毛片av蜜桃av| 高清午夜精品一区二区三区| 大片电影免费在线观看免费| 国产人妻一区二区三区在| 亚洲精华国产精华液的使用体验| 国产爱豆传媒在线观看| 国产精品欧美亚洲77777| 青春草国产在线视频| 亚洲在久久综合| 少妇被粗大猛烈的视频| 久久韩国三级中文字幕| 精品亚洲成a人片在线观看 | 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 午夜福利网站1000一区二区三区| 免费av中文字幕在线| 校园人妻丝袜中文字幕| 少妇人妻一区二区三区视频| 深爱激情五月婷婷| 久热久热在线精品观看| 伦理电影大哥的女人| 亚洲av欧美aⅴ国产| 五月伊人婷婷丁香| av一本久久久久| 高清欧美精品videossex| 精品亚洲成a人片在线观看 | 久久99精品国语久久久| 在线观看美女被高潮喷水网站| 亚洲四区av| 午夜精品国产一区二区电影| 免费人成在线观看视频色| 天堂中文最新版在线下载| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 日韩视频在线欧美| 中文天堂在线官网| 色哟哟·www| 亚洲国产成人一精品久久久| 在线天堂最新版资源| 中文精品一卡2卡3卡4更新| 国产视频内射| 国产精品.久久久| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 欧美日韩精品成人综合77777| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 国产老妇伦熟女老妇高清| 肉色欧美久久久久久久蜜桃| 欧美日韩国产mv在线观看视频 | 我要看黄色一级片免费的| 国产伦在线观看视频一区| 亚洲精品乱久久久久久| 午夜免费鲁丝| 日本色播在线视频| 日韩成人av中文字幕在线观看| 欧美高清性xxxxhd video| 三级国产精品欧美在线观看| 超碰av人人做人人爽久久| 夜夜爽夜夜爽视频| 黄片wwwwww| 国产精品久久久久久精品电影小说 | 亚洲人与动物交配视频| 国产伦精品一区二区三区四那| 日韩一本色道免费dvd| 91精品国产国语对白视频| 老师上课跳d突然被开到最大视频| 亚洲欧美一区二区三区黑人 | 性色avwww在线观看| 成人亚洲精品一区在线观看 | 国产精品人妻久久久久久| 多毛熟女@视频| 国产色婷婷99| 国产亚洲午夜精品一区二区久久| 免费人成在线观看视频色| 啦啦啦在线观看免费高清www| 老师上课跳d突然被开到最大视频| 亚洲怡红院男人天堂| 亚洲精品乱码久久久v下载方式| av免费观看日本| 国产69精品久久久久777片| 只有这里有精品99| 男人狂女人下面高潮的视频| 久久精品国产自在天天线| 亚洲av不卡在线观看| 黄片无遮挡物在线观看| 啦啦啦啦在线视频资源| 最黄视频免费看| 成人二区视频| 日韩精品有码人妻一区| av在线app专区| 国产一级毛片在线| 欧美精品一区二区免费开放| 18禁动态无遮挡网站| 国产午夜精品久久久久久一区二区三区| 国产视频内射| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 亚洲av.av天堂| 欧美 日韩 精品 国产| av国产免费在线观看| 晚上一个人看的免费电影| 国产一区二区三区av在线| 久久99热6这里只有精品| 日本与韩国留学比较| 国产69精品久久久久777片| 国产精品无大码| 啦啦啦啦在线视频资源| 成人黄色视频免费在线看| 久热久热在线精品观看| 日韩不卡一区二区三区视频在线| 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| 新久久久久国产一级毛片| 亚洲伊人久久精品综合| 久久久a久久爽久久v久久| 精品午夜福利在线看| 男女无遮挡免费网站观看| 有码 亚洲区| 亚洲人成网站在线观看播放| 日韩av免费高清视频| 成人午夜精彩视频在线观看| 日韩强制内射视频| 免费看光身美女| 日日摸夜夜添夜夜爱| 国产成人精品福利久久| 一级毛片我不卡| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 成人毛片60女人毛片免费| 亚洲国产色片| 亚洲av中文av极速乱| 久久人人爽人人片av| 汤姆久久久久久久影院中文字幕| 亚洲国产最新在线播放| 91精品一卡2卡3卡4卡| 欧美区成人在线视频| 欧美+日韩+精品| 久久久久久伊人网av| 天堂俺去俺来也www色官网| 熟女电影av网| 黑人猛操日本美女一级片| 亚洲国产成人一精品久久久| 国产乱人视频| 亚洲国产最新在线播放| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 99热国产这里只有精品6| 欧美精品亚洲一区二区| 国产精品福利在线免费观看| 久久久久久久大尺度免费视频| 搡女人真爽免费视频火全软件| 老熟女久久久| 午夜激情久久久久久久| 尾随美女入室| av卡一久久| 夫妻性生交免费视频一级片| 中文乱码字字幕精品一区二区三区| 91午夜精品亚洲一区二区三区| 国产乱来视频区| 日韩欧美 国产精品| 午夜福利视频精品| 国产视频内射| 色婷婷久久久亚洲欧美| 欧美日本视频| 十分钟在线观看高清视频www | 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 精品久久国产蜜桃| 精品一区二区三卡| 爱豆传媒免费全集在线观看| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区黑人 | 一本—道久久a久久精品蜜桃钙片| 久久精品国产a三级三级三级| 成人国产麻豆网| 亚洲精品乱码久久久v下载方式| 男女下面进入的视频免费午夜| 色视频www国产| 亚洲一区二区三区欧美精品| 两个人的视频大全免费| 国产极品天堂在线| 韩国av在线不卡| 亚洲熟女精品中文字幕| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| 青春草国产在线视频| 国内少妇人妻偷人精品xxx网站| 欧美日韩视频高清一区二区三区二| 久久影院123| 如何舔出高潮| 午夜福利在线观看免费完整高清在| 国产亚洲最大av| 涩涩av久久男人的天堂| 国产 一区精品| 久久久色成人| h日本视频在线播放| 99九九线精品视频在线观看视频| 最近最新中文字幕大全电影3| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 最近最新中文字幕免费大全7| 又黄又爽又刺激的免费视频.| 中文精品一卡2卡3卡4更新| 另类亚洲欧美激情| 人人妻人人添人人爽欧美一区卜 | 黄片无遮挡物在线观看| 久久久久久久久久久丰满| 精品午夜福利在线看| 国产成人午夜福利电影在线观看| 久久久久久久精品精品| 九九在线视频观看精品| 亚洲国产色片| 国产真实伦视频高清在线观看| 中文字幕免费在线视频6| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看| 免费av不卡在线播放| 春色校园在线视频观看| 在线观看av片永久免费下载| 亚洲精品456在线播放app| 国产精品一及| 日韩一区二区视频免费看| 精品少妇久久久久久888优播| 久久女婷五月综合色啪小说| 亚洲精品日本国产第一区| 国产精品国产三级专区第一集| 欧美成人精品欧美一级黄| 十分钟在线观看高清视频www | av专区在线播放| 丰满迷人的少妇在线观看| 国产白丝娇喘喷水9色精品| 在线 av 中文字幕| 国产真实伦视频高清在线观看| videos熟女内射| 多毛熟女@视频| 亚洲最大成人中文| 夜夜骑夜夜射夜夜干| 蜜臀久久99精品久久宅男| 亚洲av不卡在线观看| 黑人高潮一二区| 国产精品不卡视频一区二区| 91精品国产国语对白视频| 亚洲av日韩在线播放| 美女高潮的动态| 又大又黄又爽视频免费| 在线观看免费视频网站a站| 综合色丁香网| 国产男女超爽视频在线观看| 精品人妻熟女av久视频| 久久精品国产自在天天线| 国产精品麻豆人妻色哟哟久久| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| 国产精品久久久久久精品电影小说 | 成人国产av品久久久| 在线观看一区二区三区| 日韩电影二区| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区黑人 | 老熟女久久久| 国产精品欧美亚洲77777| 国产在线免费精品| 国产精品嫩草影院av在线观看| 永久免费av网站大全| 亚洲国产精品成人久久小说| 免费看日本二区| 成年美女黄网站色视频大全免费 | av线在线观看网站| 日本av免费视频播放| 如何舔出高潮| 亚洲欧美成人综合另类久久久| 97在线人人人人妻| 日韩三级伦理在线观看| 亚洲不卡免费看| 精品一区二区免费观看| 新久久久久国产一级毛片| 五月玫瑰六月丁香| 精品视频人人做人人爽| 日本猛色少妇xxxxx猛交久久| 精品酒店卫生间| 51国产日韩欧美| 日本vs欧美在线观看视频 | 看免费成人av毛片| 国产精品一区二区在线不卡| 性色avwww在线观看| 精品一品国产午夜福利视频| 多毛熟女@视频| 国产成人午夜福利电影在线观看| 舔av片在线| 免费大片黄手机在线观看| 久久6这里有精品| 日韩国内少妇激情av| 亚洲,一卡二卡三卡| 国产av精品麻豆| 精品一区二区三区视频在线| 婷婷色麻豆天堂久久| 欧美3d第一页| 精品国产三级普通话版| tube8黄色片| 九色成人免费人妻av| 久久亚洲国产成人精品v| 黄色怎么调成土黄色| 国产熟女欧美一区二区| 国产精品久久久久久久久免| 亚洲国产欧美人成| 亚洲经典国产精华液单| 成年免费大片在线观看| 大片电影免费在线观看免费| 亚洲成色77777| 性色av一级| 国产欧美另类精品又又久久亚洲欧美| 九草在线视频观看| 99热全是精品| 精品午夜福利在线看| 国产精品.久久久| 青春草国产在线视频| xxx大片免费视频| 黄色一级大片看看| a 毛片基地| 我的女老师完整版在线观看| 久久久久久久久久成人| 黄色视频在线播放观看不卡| 久久久久久久久大av| 国产成人一区二区在线| 五月天丁香电影| 九九久久精品国产亚洲av麻豆| h视频一区二区三区| 久久青草综合色| 天堂中文最新版在线下载| 成人漫画全彩无遮挡| 久久99热6这里只有精品| 国产真实伦视频高清在线观看| 成年av动漫网址| 久久久久视频综合| 国产精品国产av在线观看| 国产精品三级大全| 成人午夜精彩视频在线观看| 啦啦啦视频在线资源免费观看| 身体一侧抽搐| 一级av片app| 777米奇影视久久|