• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management

    2022-08-31 09:55:56MinYue岳敏YanWang王燕HuiLiLiang梁會(huì)力andZengXiaMei梅增霞
    Chinese Physics B 2022年8期
    關(guān)鍵詞:王燕

    Min Yue(岳敏) Yan Wang(王燕) Hui-Li Liang(梁會(huì)力) and Zeng-Xia Mei(梅增霞)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Songshan Lake Materials Laboratory,Dongguan 523808,China

    3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: perovskite/Si tandem solar cells,simulation,TOPCon,CsPbI3

    1. Introduction

    Crystalline silicon (c-Si) solar cells have occupied over 90% photovoltaic market due to their low cost, high efficiency and mature industrialization. The power conversion efficiency(PCE)of current world record cell for single-junction c-Si solar cells is 26.7% which is close to the 29.4% efficiency limit of Si.[1,2]In order to break through this efficiency ceiling,one approach is to fabricate multi-junction solar cells which can effectively enhance the utilization of the solar spectrum by reducing the thermalization loss. The theoretical efficiency of Si based two-junction solar cells can exceed 45% which is quite attractive.[3]The calculation result manifests that Si (Eg=1.12 eV) based TSC requires an absorption material withEg~1.70 eV in the top cell so as to maximize the efficiency.[3]Halide perovskites with tunable bandgap(1.5 eV–2.3 eV),high absorption coefficient and good defect tolerance,[4,5]have rapidly enhanced the PCE from 3.8% to 25.7% in the last ten years.[6,7]The bandgap of perovskite can be ideally adjusted to 1.67 eV–1.75 eV by changing the composition of ABX3.[8]

    It is quite incredible that the PCE of perovskite/Si(PVK/Si)TSCs has developed extremely fast, from 13.7%in 2015[9]to 29.8% in 2021,[10]exceeding that of the c-Si solar cells. In high-efficiency PVK/Si TSCs,silicon heterojunction (SHJ) solar cell is usually chosen as the bottom cell because of its high PCE and high open-circuit voltage(Voc).[11]However, the SHJ totally distinguishes from the mainstream passivated emitter and rear cell (PERC), leading to a quite high levelized cost of electricity (LCOE). The tunnel oxide passivated contact(TOPCon)silicon solar cell is another outstanding candidate for the bottom Si solar cell which is compatible better with existing PERC production lines and has manifested a high record efficiency of 26.0%.[12]The LCOE of PVK/TOPCon TSCs has been calculated to be lower than PVK/SHJ TSCs for both utility and residential installation by Fraunhofer ISE.[13]Currently,the researches of PVK/Si TSCs mainly focus on organic-inorganic hybrid perovskite due to its relatively high efficiency. However, its thermal stability is still a huge challenge.[14]On the other hand,the all inorganic perovskite CsPbI3has been demonstrated to be more superior thermal stability and incredibly increased PCE from 2.9% to 20.37% in 6 years.[15,16]Meanwhile, the optimal bandgap of CsPbI3is 1.72 eV,[17]which is suitable for the application of PVK/Si TSCs.

    To further improve the PCE of PVK/Si TSCs,one effective way is to reduce optical loss by employing light trapping structures. Upright pyramid structure is the most common texture in silicon solar cells, and achieved by etching silicon wafer in a mixed alkali solution.[18]In the PVK/Si TSCs,the upright pyramid structure is usually employed in rear side of silicon solar cell while the front side is polished because of the difficulty in obtaining uniform perovskite film by spin coating on textured surface.[19,20]However, the front planar surface of silicon results in poor light tapping capability. In order to cope with this challenge, upright pyramidal polydimethylsiloxane (PDMS) structure has been introduced on the top of TSCs.[21]Micrometer-thick perovskite top cell was spincoated on fully upright pyramidal textured silicon solar cell to avoid shunt paths.[20]Double-side-textured silicon cell with sub-micrometer pyramids was employed in order to minimize the thickness of perovskite film by solution process.[22]Furthermore, the inverted pyramid structure was proposed as a more promising texture, which has a lower reflectivity than upright pyramid.[23,24]It was introduced into the PVK/Si TSC by adding an inverted pyramidal PDMS antireflective coating, which would complicate the fabrication process.[25]Directly texturing on Si seems a more practical approach to mass production.[26]Nevertheless,such a research is still relatively limited,and more attention should be paid to realizing the application of such an excellent texture to PVK/Si TSC.

    Herein, we design the optics of CsPbI3/TOPCon TSCs based on optical simulation that combines transfer matrix method(TMM)with ray-tracing method.The optical losses of different surface structures of silicon bottom solar cells such as rear-side upright pyramid(r-UP),bifacial upright pyramid(b-UP), and bifacial inverted pyramid (b-IP), are systematically discussed. In order to further optimize the surface structure of silicon, the dependence of optical loss on the bottom angle of rear-side b-IP is investigated particularly. Meanwhile,the photogenerated current densities of TSCs are calculated by varying the thickness of CsPbI3layer and Si bulk considering the fact that the current density matching is a key issue in two-terminal TSCs. Moreover, through comparing the optical performances of various transparent conductive oxide(TCO)layers,we find the hydrogenated indium oxide(IO:H)a more attractive front TCO candidate. Finally, the PCE of the CsPbI3/TOPCon TSC can achieve 31.78% when the best matched current density is realized.

    2. Device simulation parameters

    The sketches of CsPbI3/TOPCon TSCs with various textures are shown in Fig. 1. The material, function, and thickness of each layer are listed in Table 1 (their refractive indexes and extinction coefficients can be found in Fig. S1 in Supporting information. Both upright pyramid and inverted pyramid are 2-μm wide with an angle of 54.7?, consistent with our previous experimental data.[23]As the thickness of SiOxlayer is extremely thin (~1.5 nm), its influence can be reasonably ignored during the optical simulation. The rear and front ITO electrodes possess an identical carrier concentration of 2.0×1020cm?3in that too high carrier concentration will result in high free carrier absorption at long wavelengths. The interlayer ITO has a carrier concentration of 4.9×1020cm?3for the sake of favorable charge transfer between the subcells.[27]

    Table 1. List of simulation parameters.

    The optical properties of the CsPbI3/TOPCon TSCs were simulated by the widely used ray-tracing method and TMM for the Si thick layer and other thin layers,respectively.[35]The origin code of simulation can be acquired from website.[36]The normal incidence AM1.5G spectrum (from 300 nm to 1200 nm in steps of 10 nm) was chosen as the illuminant.In order to calculate the photogenerated current density, the internal quantum efficiency (IQE) was assumed to be 100%.Thus,the photogenerated current density could be determined by integrating the photon flux of the AM1.5G solar spectrum with the corresponding absorptance, expressed as the following equation:[32]

    2.1. Textures

    Fig.2. Optical properties of CsPbI3/TOPCon TSCs with three different textures,showing(a)absorptance of CsPbI3 layer and Si bulk,(b)reflectance of TSCs,(c)transmittance of TSCs,and(d)current densities of absorbed or lost lights(in units mA/cm2).

    2.2. Bottom angle of rear-side inverted pyramid

    Fig. 3. (a) Photogenerated current density of CsPbI3 layer and Si bulk with respect to θ; (b) current density loss of TSC triggered by reflection and transmission versus θ; (c) wavelength-dependent reflectance, and (d) transmittance of TSC for different values of θ; absorptance of (e) CsPbI3 layer and(f)Si bulk for different values of θ.

    wherenSiandαSiare the refractive index and incident angle of Si,njandαjare the refractive index and incident/refraction angle of the layer j between Si and air,n0andα0are the refractive index and refraction angle of the air, respectively. In other words, the incident angle in Si for the total internal reflection at the top or bottom interface of TSCs only depends onnSiandn0. Our previous work have illustrated that whenθ>4?,the reflection in the front interface of TSCs will generally decrease with the increase ofθbecause of the enhanced probability of total internal reflection;whenθ<24?,the transmission in the rear interface of TSC will be suppressed for the same reason.[39]Therefore,a smallθcan make a trade-off between reflection and transmission, contributing to a higherJGSi.Thus,in order to maximize the optical harvest in PVK/Si TSCs, the rear side texture should become smoother, which will be simultaneously benefciial to the passivation of the rearside surface of Si subcell.

    2.3. Thickness of CsPbI3 layer and Si bulk

    Current density matching between the top subcell and bottom subcell is one of the most critical issues in twoterminal TSCs.In order to maximize the series current density of the CsPbI3/TOPCon TSCs, the thickness value of CsPbI3layer and Si bulk should be delicately modulated to achieve a positive match. Asymmetrical b-IP with a bottom angle 10?of rear-side was chosen for the texture of Si subcell in this subsection. The thickness of CsPbI3layer varies from 400 nm to 2200 nm in steps of 20 nm, while the Si bulk’s ranges from 40μm to 210μm in steps of 10μm.

    Fig. 4. Simulated optical performances of CsPbI3/TOPCon TSCs with different values of thickness of CsPbI3 layer and Si bulk. (a) Photogenerated currentdensity of CsPbI3 layer; (b)JG CsPbI3 andJG Si,withSi bulk thickness fxiedat180μm; (c)absorption spectrum ofCsPbI3 layer andSi bulk,withthickness of Si bulk fxied at180μm butthicknessof CsPbI3 layer varied; (d)photogeneratedcurrent density ofSi bulk; (e)JGCsPbI3 and JGSi,withthickness of CsPbI3 layer fxied at 400 nm;(f)absorptionspectra of CsPbI3 layer andSibulk,with thickness of CsPbI3layer fxied at 400 nmbut thickness of Si bulk varied.

    Basically, the short-circuit current density (Jsc) of the entire two-terminal TSC reaches up to the lower one of the two subcells, bringing out the key problem of current matching. Figure 5 exhibits theJscof CsPbI3/TOPCon TSCs and thickness of both CsPbI3layer and Si bulk for current density matching. When the CsPbI3layer is thinner than 600 nm,Jscis unilaterally restricted by theJGCsPbI3, indicating that even 40-μm Si is thick enough to match with CsPbI3layer. With the increase of CsPbI3layer thickness, the Si bulk should be thickened correspondingly. At present, the thickness of industrial used Czochralski (CZ) Si wafer is~180 μm, which is absolutely thick enough to match with a 2000-nm CsPbI3layer. According to previously published experimental data,the thickness of CsPbI3layer is usually less than 1000 nm as a result of crystallization quality, implying that theJscof the CsPbI3/TOPCon TSC will be mainly determined by the thickness of CsPbI3layer. On the other hand, the bottom Si substrate has suffciient space to become thinner. The maximumJsccan reach to 19.79 mA/cm2when the thickness of Si bulk and CsPbI3layer are 180μm and 2180 nm,respectively.

    Fig. 5. (a) Short-circuit current density of CsPbI3/TOPCon TSC and (b)matched thickness of CsPbI3 layer and Si bulk.

    2.4. Front TCO

    The optimized structure of CsPbI3/TOPCon TSC is shown in Fig.6 according to the discussion above and its optical loss analysis. With the excellent bifacial texture and the matched thickness of CsPbI3layer and Si bulk,the whole optical loss can be reduced to 6.53 mA/cm2. Of these various optical losses,parasitic absorption loss from the front ITO occupies the largest proportion,which reaches to 1.80 mA/cm2.Therefore,restraining the parasitic absorption in the top TCO layer is an effective way to further enhance the optical performance of the CsPbI3/TOPCon TSC.

    Fig.6. Optical performance of optimized CsPbI3/TOPCon TSC.(a)Simulated structure with optimized texture and absorber thickness;(b)photogenerated current density and optical losses of CsPbI3/TOPCon TSC(in units mA/cm2).

    Fig.7.Optical performances of different front TCOs,showing curves of wavelength dependent(a)n and(b)k of different TCO materials,(c)absorptance of front TCO layers,and(d)absorptance of CsPbI3 layer and Si bulk.

    2.5. Device performance

    Fig.8.Simulated EQE of subcells and optical losses(parasitic absorption,reflectance,and transmittance)of optimized CsPbI3/TOPCon TSC,expressed

    Table 2. Simulated photovoltaic parameters of CsPbI3/TOPCon TSC.

    3. Conclusions

    The optical performance of CsPbI3/TOPCon twoterminal TSCs is simulated by the combination of ray-tracing and TMM. Compared with planar front surface, bifacial texture can significantly enhance the absorption of both CsPbI3layer and Si bulk due to the reduced front reflection triggered off by the front texture. Meanwhile, the b-IP textured TSC has a more superior photogenerated current density than b-UP

    Acknowledgements

    The authors would like to thank Prof. Xiaolong Du and Dr. Yaoping Liu for the inspiring discussion.

    Project supported by the National Natural Science Foundation of China(Grant Nos.61904201 and 11875088)and the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2019B1515120057).

    猜你喜歡
    王燕
    英語(yǔ)學(xué)習(xí)活動(dòng)觀在高中英語(yǔ)閱讀課堂的實(shí)踐與思考
    Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide
    Clinical observation on acupoint injection for back pain in patients w ith primary osteoporosis
    智取“私了協(xié)議”
    Stratigraphy of late Quaternary deposits in the mid-western North Yellow Sea*
    購(gòu)房款還未還清 又騙賣主26萬(wàn)
    方圓(2017年17期)2017-10-11 10:27:26
    The progress of treatment of children’s psoriasis
    淺談?dòng)⒄Z(yǔ)聽(tīng)力課堂問(wèn)題與對(duì)策
    卷宗(2016年5期)2016-08-02 02:50:18
    醫(yī)學(xué)論文英文摘要中否定的對(duì)比研究
    卷宗(2016年5期)2016-08-02 02:50:18
    走錯(cuò)門道
    故事林(2008年16期)2008-05-14 15:38:00
    亚洲精品美女久久av网站| 久久天躁狠狠躁夜夜2o2o| 在线观看人妻少妇| 欧美97在线视频| 亚洲第一av免费看| 久久精品国产亚洲av高清一级| 久久99一区二区三区| 亚洲天堂av无毛| 国产一区二区在线观看av| 老司机午夜福利在线观看视频 | 黑人操中国人逼视频| 人妻 亚洲 视频| 99热全是精品| 午夜福利视频在线观看免费| 丝袜在线中文字幕| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 久久人妻熟女aⅴ| 久久中文字幕一级| 两人在一起打扑克的视频| 丰满迷人的少妇在线观看| 色播在线永久视频| 久久人人爽人人片av| 亚洲av成人不卡在线观看播放网 | 日韩人妻精品一区2区三区| 精品人妻熟女毛片av久久网站| 日韩制服丝袜自拍偷拍| 亚洲国产精品成人久久小说| 美女国产高潮福利片在线看| 90打野战视频偷拍视频| 99九九在线精品视频| 99国产精品99久久久久| 午夜久久久在线观看| 少妇裸体淫交视频免费看高清 | 视频区欧美日本亚洲| 成年动漫av网址| 国产日韩欧美亚洲二区| 久久久久久亚洲精品国产蜜桃av| 日韩电影二区| 两个人免费观看高清视频| 搡老岳熟女国产| 国产一级毛片在线| 中文字幕精品免费在线观看视频| 久久久久国产一级毛片高清牌| 首页视频小说图片口味搜索| 国产精品国产av在线观看| 久久久国产成人免费| 日韩欧美一区视频在线观看| 中国国产av一级| 国产国语露脸激情在线看| 精品国产乱码久久久久久小说| 少妇裸体淫交视频免费看高清 | 麻豆乱淫一区二区| 伊人久久大香线蕉亚洲五| 一区福利在线观看| 中国美女看黄片| 免费av中文字幕在线| 夜夜骑夜夜射夜夜干| 午夜成年电影在线免费观看| 97人妻天天添夜夜摸| 久久狼人影院| 免费女性裸体啪啪无遮挡网站| 99香蕉大伊视频| 一个人免费在线观看的高清视频 | 久热爱精品视频在线9| 日韩欧美免费精品| 欧美黑人欧美精品刺激| 法律面前人人平等表现在哪些方面 | 精品人妻1区二区| 美女视频免费永久观看网站| 亚洲三区欧美一区| 又紧又爽又黄一区二区| 亚洲成人免费av在线播放| 精品亚洲乱码少妇综合久久| av在线老鸭窝| 成人av一区二区三区在线看 | 国产97色在线日韩免费| 亚洲av成人一区二区三| 两个人看的免费小视频| 美女扒开内裤让男人捅视频| 中文欧美无线码| 国产免费福利视频在线观看| 午夜福利在线免费观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 一本一本久久a久久精品综合妖精| 久久精品国产亚洲av香蕉五月 | 欧美在线黄色| 亚洲视频免费观看视频| 亚洲免费av在线视频| 我的亚洲天堂| av天堂在线播放| 黑丝袜美女国产一区| 国产男女超爽视频在线观看| 成年人黄色毛片网站| 婷婷丁香在线五月| 久久久久网色| av线在线观看网站| 精品少妇黑人巨大在线播放| 最黄视频免费看| 国产精品成人在线| 欧美中文综合在线视频| 午夜福利视频精品| 国产亚洲精品久久久久5区| 最近最新中文字幕大全免费视频| 99热国产这里只有精品6| 日韩一卡2卡3卡4卡2021年| 久久人人爽av亚洲精品天堂| 精品少妇一区二区三区视频日本电影| 伊人久久大香线蕉亚洲五| 欧美黄色淫秽网站| av又黄又爽大尺度在线免费看| a在线观看视频网站| 亚洲av成人一区二区三| 我的亚洲天堂| 欧美另类一区| 青草久久国产| 最新的欧美精品一区二区| 王馨瑶露胸无遮挡在线观看| 人人澡人人妻人| 精品国内亚洲2022精品成人 | 亚洲欧美日韩另类电影网站| 国产老妇伦熟女老妇高清| 欧美 日韩 精品 国产| 91麻豆精品激情在线观看国产 | xxxhd国产人妻xxx| 亚洲国产欧美日韩在线播放| h视频一区二区三区| 丝袜美腿诱惑在线| 十分钟在线观看高清视频www| 欧美日韩亚洲综合一区二区三区_| 欧美日韩成人在线一区二区| av一本久久久久| 手机成人av网站| 国产亚洲精品第一综合不卡| 女人久久www免费人成看片| 国产成人精品久久二区二区91| 永久免费av网站大全| 如日韩欧美国产精品一区二区三区| 多毛熟女@视频| 午夜福利视频精品| 老汉色∧v一级毛片| 婷婷色av中文字幕| 国产在线视频一区二区| 亚洲色图 男人天堂 中文字幕| 国产精品 国内视频| 秋霞在线观看毛片| av又黄又爽大尺度在线免费看| 中亚洲国语对白在线视频| 女人高潮潮喷娇喘18禁视频| 美女视频免费永久观看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美日韩另类电影网站| 五月天丁香电影| a级毛片黄视频| 午夜两性在线视频| 免费在线观看影片大全网站| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠躁躁| 久久国产精品大桥未久av| 少妇裸体淫交视频免费看高清 | e午夜精品久久久久久久| 国产99久久九九免费精品| 国产精品国产三级国产专区5o| 日韩电影二区| 日本黄色日本黄色录像| 日韩三级视频一区二区三区| 久久久久久久精品精品| 亚洲专区字幕在线| 韩国精品一区二区三区| 亚洲国产毛片av蜜桃av| 国产91精品成人一区二区三区 | 免费高清在线观看视频在线观看| 纵有疾风起免费观看全集完整版| bbb黄色大片| av福利片在线| 国产成人啪精品午夜网站| 9191精品国产免费久久| 免费日韩欧美在线观看| 一区二区三区四区激情视频| 老鸭窝网址在线观看| 午夜福利在线免费观看网站| 蜜桃在线观看..| 亚洲成人国产一区在线观看| 国产一卡二卡三卡精品| 久久久久久免费高清国产稀缺| 天堂8中文在线网| 国产亚洲欧美精品永久| 午夜福利免费观看在线| 人人澡人人妻人| 免费在线观看日本一区| 18在线观看网站| 丰满饥渴人妻一区二区三| 久久九九热精品免费| 亚洲精品一区蜜桃| 国产亚洲精品第一综合不卡| 久久毛片免费看一区二区三区| 在线十欧美十亚洲十日本专区| 国产在线视频一区二区| 亚洲欧美色中文字幕在线| 啦啦啦免费观看视频1| 亚洲久久久国产精品| 一本一本久久a久久精品综合妖精| 国产免费av片在线观看野外av| 国产一卡二卡三卡精品| 天天添夜夜摸| 黄片大片在线免费观看| 免费高清在线观看视频在线观看| 免费观看人在逋| 黄片大片在线免费观看| 免费人妻精品一区二区三区视频| 亚洲激情五月婷婷啪啪| 国产一区二区三区在线臀色熟女 | 看免费av毛片| 99九九在线精品视频| 日韩视频一区二区在线观看| 伊人亚洲综合成人网| 国产亚洲欧美精品永久| 国产精品久久久久成人av| 国产亚洲av高清不卡| 国产av一区二区精品久久| 日本av手机在线免费观看| 黄色视频不卡| 老熟妇仑乱视频hdxx| 久久久久久久国产电影| www.自偷自拍.com| 国产欧美日韩一区二区三 | 另类精品久久| 久久亚洲精品不卡| 久久性视频一级片| 大片免费播放器 马上看| 国产成人欧美| 最近最新中文字幕大全免费视频| 亚洲国产中文字幕在线视频| 97精品久久久久久久久久精品| 精品久久久久久久毛片微露脸 | 国产亚洲午夜精品一区二区久久| 韩国高清视频一区二区三区| 五月开心婷婷网| 亚洲免费av在线视频| 夫妻午夜视频| av一本久久久久| 免费在线观看影片大全网站| 亚洲精品美女久久av网站| 久久精品久久久久久噜噜老黄| 国产成+人综合+亚洲专区| 精品人妻在线不人妻| 嫁个100分男人电影在线观看| 欧美日韩成人在线一区二区| 亚洲情色 制服丝袜| 久久久久久久国产电影| 叶爱在线成人免费视频播放| tocl精华| 中文精品一卡2卡3卡4更新| 免费看十八禁软件| 老汉色av国产亚洲站长工具| 中文字幕人妻丝袜一区二区| 欧美久久黑人一区二区| 99久久99久久久精品蜜桃| 国产成人欧美在线观看 | 中亚洲国语对白在线视频| 美女扒开内裤让男人捅视频| 国产免费一区二区三区四区乱码| 国产视频一区二区在线看| 亚洲精品国产av蜜桃| 日本五十路高清| 亚洲全国av大片| 午夜日韩欧美国产| 欧美精品亚洲一区二区| 不卡一级毛片| 久久久精品94久久精品| 国产区一区二久久| 亚洲欧美日韩另类电影网站| av在线app专区| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 欧美日韩国产mv在线观看视频| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 国产男女内射视频| 在线 av 中文字幕| 久久亚洲精品不卡| 一区在线观看完整版| 国产精品久久久久成人av| 蜜桃在线观看..| 黄色片一级片一级黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 新久久久久国产一级毛片| 精品人妻熟女毛片av久久网站| 国产真人三级小视频在线观看| 亚洲精品久久午夜乱码| 在线永久观看黄色视频| 亚洲av电影在线进入| 一级片免费观看大全| 精品福利永久在线观看| 男女边摸边吃奶| 亚洲成人国产一区在线观看| 国产一卡二卡三卡精品| 日韩三级视频一区二区三区| 青青草视频在线视频观看| 少妇猛男粗大的猛烈进出视频| 777米奇影视久久| 国产97色在线日韩免费| 黄片大片在线免费观看| 国产激情久久老熟女| 王馨瑶露胸无遮挡在线观看| 亚洲第一青青草原| 亚洲第一青青草原| 亚洲国产日韩一区二区| 美女大奶头黄色视频| 国产av又大| 少妇的丰满在线观看| 看免费av毛片| 欧美在线黄色| av福利片在线| 91精品伊人久久大香线蕉| 日本五十路高清| 一级片免费观看大全| 亚洲中文日韩欧美视频| 一边摸一边做爽爽视频免费| 午夜福利一区二区在线看| 成年女人毛片免费观看观看9 | 国产亚洲av片在线观看秒播厂| 欧美午夜高清在线| 亚洲国产av新网站| 精品少妇一区二区三区视频日本电影| 国产精品一区二区在线观看99| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 纵有疾风起免费观看全集完整版| 91精品国产国语对白视频| 午夜精品国产一区二区电影| 精品福利永久在线观看| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 中文欧美无线码| 一本大道久久a久久精品| 午夜福利乱码中文字幕| 99国产精品一区二区蜜桃av | 亚洲 国产 在线| 日本av免费视频播放| 伊人亚洲综合成人网| 老熟妇仑乱视频hdxx| 精品人妻1区二区| 一区二区日韩欧美中文字幕| 三级毛片av免费| 亚洲自偷自拍图片 自拍| 宅男免费午夜| 精品一区二区三区四区五区乱码| 成年人午夜在线观看视频| 波多野结衣av一区二区av| 午夜福利在线观看吧| 大片免费播放器 马上看| 国产欧美日韩一区二区三 | 国产精品.久久久| a在线观看视频网站| 久久热在线av| 亚洲欧美日韩另类电影网站| 伊人久久大香线蕉亚洲五| 午夜福利在线观看吧| 久久精品国产综合久久久| 91麻豆精品激情在线观看国产 | 曰老女人黄片| 亚洲国产看品久久| 在线精品无人区一区二区三| 欧美成狂野欧美在线观看| 在线看a的网站| 国产精品国产三级国产专区5o| 亚洲久久久国产精品| 欧美成狂野欧美在线观看| tocl精华| 高清在线国产一区| 亚洲国产欧美网| 黄色视频在线播放观看不卡| 十八禁高潮呻吟视频| 十八禁网站免费在线| 精品久久蜜臀av无| 亚洲 国产 在线| 精品免费久久久久久久清纯 | av福利片在线| 久久精品亚洲熟妇少妇任你| 91成年电影在线观看| 午夜福利免费观看在线| 日韩人妻精品一区2区三区| 99国产极品粉嫩在线观看| 国产精品久久久久久精品电影小说| 国产在线观看jvid| 狠狠婷婷综合久久久久久88av| 一级片免费观看大全| 久久久精品国产亚洲av高清涩受| 操美女的视频在线观看| 大片电影免费在线观看免费| 国产精品久久久久久精品电影小说| 午夜福利,免费看| 久久久久精品人妻al黑| 日韩三级视频一区二区三区| 日韩有码中文字幕| 一二三四在线观看免费中文在| 啦啦啦免费观看视频1| av超薄肉色丝袜交足视频| www.精华液| 激情视频va一区二区三区| 两个人免费观看高清视频| 成年美女黄网站色视频大全免费| 两人在一起打扑克的视频| 久久青草综合色| 成年动漫av网址| 欧美日韩成人在线一区二区| 亚洲成人手机| 精品亚洲乱码少妇综合久久| 国产欧美日韩一区二区精品| 久久天堂一区二区三区四区| 操美女的视频在线观看| 青春草视频在线免费观看| √禁漫天堂资源中文www| 在线永久观看黄色视频| www.精华液| 久久毛片免费看一区二区三区| 久久久久国产一级毛片高清牌| www.自偷自拍.com| 少妇的丰满在线观看| 精品亚洲乱码少妇综合久久| 国产欧美日韩一区二区精品| 午夜视频精品福利| 久久久国产成人免费| 美女福利国产在线| 国产无遮挡羞羞视频在线观看| 欧美精品啪啪一区二区三区 | 手机成人av网站| 精品人妻在线不人妻| 最新的欧美精品一区二区| 丝袜美足系列| 欧美精品高潮呻吟av久久| 亚洲精品久久久久久婷婷小说| tube8黄色片| 亚洲专区字幕在线| 久久天堂一区二区三区四区| 亚洲七黄色美女视频| 中文字幕最新亚洲高清| 老司机靠b影院| 婷婷成人精品国产| 女人久久www免费人成看片| 欧美精品一区二区免费开放| 超碰成人久久| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 2018国产大陆天天弄谢| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 精品亚洲成a人片在线观看| 亚洲人成电影观看| 97精品久久久久久久久久精品| 中文字幕另类日韩欧美亚洲嫩草| 9热在线视频观看99| 国内毛片毛片毛片毛片毛片| 别揉我奶头~嗯~啊~动态视频 | 国产精品国产三级国产专区5o| 搡老岳熟女国产| 永久免费av网站大全| √禁漫天堂资源中文www| 日韩中文字幕欧美一区二区| 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| 水蜜桃什么品种好| 老司机影院毛片| 男女高潮啪啪啪动态图| 成人手机av| 自线自在国产av| 亚洲精品乱久久久久久| 欧美成人午夜精品| 在线观看免费午夜福利视频| 侵犯人妻中文字幕一二三四区| 高清黄色对白视频在线免费看| 亚洲欧美激情在线| 欧美在线一区亚洲| 又黄又粗又硬又大视频| 亚洲激情五月婷婷啪啪| 精品少妇一区二区三区视频日本电影| 免费看十八禁软件| 下体分泌物呈黄色| 最新的欧美精品一区二区| 国产亚洲av高清不卡| a级毛片在线看网站| 老司机靠b影院| 两人在一起打扑克的视频| 午夜福利乱码中文字幕| 一级毛片女人18水好多| 最近中文字幕2019免费版| 97人妻天天添夜夜摸| 波多野结衣一区麻豆| 天天躁夜夜躁狠狠躁躁| 中文精品一卡2卡3卡4更新| 久久av网站| netflix在线观看网站| 男女下面插进去视频免费观看| 久久中文看片网| 国产日韩一区二区三区精品不卡| 性高湖久久久久久久久免费观看| 我要看黄色一级片免费的| 一级,二级,三级黄色视频| 亚洲国产欧美日韩在线播放| 亚洲精品乱久久久久久| 国产91精品成人一区二区三区 | 美女脱内裤让男人舔精品视频| 91老司机精品| 日本五十路高清| 国产精品 国内视频| 99热全是精品| 亚洲精华国产精华精| 啦啦啦中文免费视频观看日本| 国产精品偷伦视频观看了| 成年女人毛片免费观看观看9 | 真人做人爱边吃奶动态| 激情视频va一区二区三区| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 国产精品免费视频内射| 国产成人影院久久av| 亚洲三区欧美一区| 后天国语完整版免费观看| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕一二三四区 | 中文字幕精品免费在线观看视频| 五月开心婷婷网| 丝袜美足系列| 最近中文字幕2019免费版| 下体分泌物呈黄色| 久久性视频一级片| 老熟妇仑乱视频hdxx| 亚洲伊人久久精品综合| 999久久久国产精品视频| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃| 欧美黄色淫秽网站| 天天影视国产精品| 91国产中文字幕| 精品高清国产在线一区| 啪啪无遮挡十八禁网站| 亚洲全国av大片| 夫妻午夜视频| 女性生殖器流出的白浆| 亚洲欧美精品综合一区二区三区| 亚洲精品日韩在线中文字幕| 日本五十路高清| 国产精品一区二区在线不卡| 亚洲第一青青草原| av电影中文网址| 久久九九热精品免费| 12—13女人毛片做爰片一| 国产成人免费观看mmmm| 久久狼人影院| 99国产精品99久久久久| 狠狠婷婷综合久久久久久88av| 日日夜夜操网爽| 老鸭窝网址在线观看| 精品国产超薄肉色丝袜足j| 这个男人来自地球电影免费观看| 亚洲精品第二区| 亚洲精品久久久久久婷婷小说| 成人国产一区最新在线观看| 国产成人欧美在线观看 | 人妻人人澡人人爽人人| 国产成人精品久久二区二区91| 老熟妇乱子伦视频在线观看 | www日本在线高清视频| 亚洲av日韩在线播放| 狂野欧美激情性bbbbbb| 后天国语完整版免费观看| 精品亚洲乱码少妇综合久久| 午夜激情久久久久久久| 亚洲第一av免费看| 免费在线观看日本一区| 精品国产乱码久久久久久男人| 不卡av一区二区三区| 超色免费av| 亚洲少妇的诱惑av| 亚洲国产欧美在线一区| 人人澡人人妻人| 五月开心婷婷网| 欧美 亚洲 国产 日韩一| 大陆偷拍与自拍| 国产成人精品久久二区二区免费| 亚洲精品久久午夜乱码| 欧美在线黄色| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 一区在线观看完整版| 国产精品国产三级国产专区5o| 伊人亚洲综合成人网| 五月天丁香电影| 99国产精品免费福利视频| 在线观看免费高清a一片| 亚洲精品美女久久久久99蜜臀| 淫妇啪啪啪对白视频 | av在线老鸭窝| 2018国产大陆天天弄谢| 久久国产精品大桥未久av| 欧美日韩av久久| 欧美精品人与动牲交sv欧美| av在线app专区| 欧美精品av麻豆av| 久久精品国产亚洲av高清一级| 国产精品一二三区在线看| 一区二区av电影网| 欧美老熟妇乱子伦牲交| 午夜日韩欧美国产| 纵有疾风起免费观看全集完整版| 日本五十路高清| 一级毛片电影观看| 免费观看人在逋| 亚洲三区欧美一区| 久久久精品国产亚洲av高清涩受| 亚洲国产毛片av蜜桃av|