• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator

    2022-10-26 09:49:24TongXing邢彤EnboXing邢恩博TaoJia賈濤JianglongLi李江龍JiaminRong戎佳敏YanruZhou周彥汝WenyaoLiu劉文耀JunTang唐軍andJunLiu劉俊
    Chinese Physics B 2022年10期
    關(guān)鍵詞:劉俊江龍唐軍

    Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(賈濤), Jianglong Li(李江龍), Jiamin Rong(戎佳敏),Yanru Zhou(周彥汝), Wenyao Liu(劉文耀), Jun Tang(唐軍), and Jun Liu(劉俊)

    Key Laboratory of Electronic Testing Technology,School of Instrument and Electronics,North University of China,Taiyuan 030051,China

    Keywords: whispering gallery mode, crystalline resonator, Raman lasing, nonlinear effects, thermo-optical oscillation,optical frequency combs

    1. Introduction

    Achieving efficient nonlinear optical interactions at low optical power has always been one of the main goals of nonlinear optics.[1–5]Various nonlinear optical effects,such as frequency doubling,[6]frequency mixing,[7]Raman scattering,[8,9]Brillouin scattering,[10]and other effects[11]have broad prospects in optical computing, quantum information processing, precision spectroscopy, optical communication, biological imaging, and many other fields.[12,13]The whispering gallery mode (WGM) resonators are fabricated with a variety of materials including silicon, sapphire, fused silica,fluoride crystalline, lithium ninobate, and other optical glasses. Owing to their ultrahigh quality(Q)factor and small mode volume, optical resonators significantly enhance lightmatter interactions and establish extremely high circulating intracavity intensities, thereby reducing the pump threshold for nonlinear processes. The frequency conversion of the pump light can also be achieved at low power, so the optical resonator becomes an ideal platform to study various nonlinear effects.[14–16]

    Recently, fluoride crystals, such as calcium fluoride(CaF2), magnesium fluoride (MgF2),[17]barium fluoride(BaF2),[18]and strontium fluoride(SrF2)[19]have been equally demonstrated to have ultrahighQin the near-IR, such an ultrahighQattracts extremely great attention in various research fields.[20–22]Another advantage of crystalline materials for the fabrication of the resonators is that they can be stable against humidity, and do not degradeQwhen exposed to atmospheric water vapor. A CaF2resonator withQ >1011at 1550 nm has been fabricated and reported.[23]Such an ultrahighQgreatly reduces the excitation threshold of nonlinear effects in the resonator,and it is easy to obtain laser emission based on nonlinear effects even in materials without significant nonlinearity.[24–26]Therefore, the CaF2resonator with ultrahighQ,small mode volume,high stability,and low noise interference has become the best choice for nonlinear optical applications.[27,28]

    Here, we theoretically analyze the Raman threshold of the CaF2resonator, and obtain the relationship betweenQ,mode volume (Vm) of the resonator, and the Raman threshold. Meanwhile, we experimentally demonstrate Raman lasing, first-order Raman comb, and the second-order Raman lasing in a millimeter size CaF2WGM disk resonator with ultrahigh-Qfactor of 8.43×108at 1550 nm. We also report the observation and characterization of thermal effects due to the negative thermo-optic coefficient and the positive thermo-expansion coefficient. At the same time, the threshold for thermo-optical oscillation is approximately coincident with Raman lasing.With a further increase in pump power,the optical frequency combs range is from 1520 nm to 1650 nm,with a wavelength interval of 4×FSR. And the adjustment of the optical frequency combs can be realized by using the frequency tuning of the pump light,which have great applications in optical communication,biological environment monitoring,spectral analysis,and microwave signal sources.

    2. Theoretical analysis and discussion

    For the first-order Raman lasing output in the optical resonator,the coupled mode equation is established,which is expressed as

    whereEpandERare the pump light energy and stimulated Raman laser energy, respectively,cis the speed of light,neffis the effective refractive index of the resonator,ωpandωRare the pump light frequency and the stimulated Raman laser frequency, respectively, andgR=2.4×10-13m/W[22]is the Raman gain coefficient of the CaF2resonator.

    The mode volume (Vm) of the CaF2resonator is defined as the ratio of the full-space integral of the mode field energy density to the maximum energy density,and is expressed as

    whereE(r) is the electric field vector,n2(r)|E(r)|2is the energy density at a point in the resonator. TheVmaffects the energy density of the WGM in the resonator. A smaller mode volume corresponds to a larger energy density, which enhances the interaction between light and matter and is beneficial to lowering the threshold of nonlinear effects.

    The basis of Raman laser is stimulated Raman scattering which is a process of obtaining Raman gain in materials through nonlinear effects. In the process of stimulated Raman scattering, photons with red-shifted and blue-shifted frequencies are generated. The lasing threshold occurs when cavity round-trip gain equals round-trip loss. For an intensitydependent gain coefficient,the minimum Raman threshold can be simplified as[21]

    whereλpandλRare the pump light wavelength and the stimulated Raman laser wavelength,respectively,n=1.426 is the refractive index of the CaF2resonator,QPandQRare quality factors for the pump and Raman wavelengths,respectively,andVmis the mode volume. If theQfactor is the same for pump and Raman wavelengths, the Raman threshold is proportional to the ratioVm/Q2. Thus, the low Raman lasing threshold and efficient cascaded operation is made possible by the ultrahigh-Qof the WGM crystalline resonator.

    According to Eq. (4), the relationship between the Raman threshold and theQand theVmcan be obtained. It can be seen from Fig.1 thatQis inversely proportional to the Raman threshold,that is,asQincreases,the Raman threshold gradually decreases;theVmis proportional to the Raman threshold,that is, as the mode volume decreases, the Raman threshold decreases.Therefore,choosing a ultrahigh-Q,small mode volume CaF2resonator can further reduce the Raman threshold.

    Fig. 1. Relationship between mode volume and Q of CaF2 resonator and power threshold for Raman laser generation.

    3. Experimental results and discussion

    3.1. Experimental setup and characterization

    The experimental setup shown in Fig.2(a)is used to characterize the Raman lasing and other nonlinear effects based on the CaF2resonator system. A continuous-wave tunable laser(DLC pro)around 1550 nm with a linewidth of 10 kHz passes through the isolator and enters the CaF2resonator via the fibertaper. The wavelength of the laser is scanned by signal generator (SG) to obtain the transmission spectrum for characterization of the resonator. The fiber-baser polarization controller(PC)is used to optimize the coupling strength.The light out of the fiber taper is connected with the beam splitter to the lownoise photodetector(PD)and wavelength division multiplexer(WDM) respectively. PD convert optical signals into electrical signals and then connect to oscilloscopes (OSC) for data acquisition and analysis processing. The WDM separates the pump laser and the Raman laser,and then connects them to the optical spectrum analyzer(OSA)for display. The CaF2crystalline WGM resonator is fabricated by single point diamond cutting and mechanical polishing method. The radius of the CaF2resonator is 2.48 mm, the thickness is 0.5 mm and the shape of cylinder blanks. The tapered fiber with the diameter of about 2 μm serves as the input and output ports, and the coupling to the CaF2resonator is accomplished by evanescent field coupling using a nano-positioning system. Figure 2(b)is the schematic diagram of fiber coupling in CaF2resonator.Figure 2(c) is the calculatedQfactor for CaF2resonator of 8.43×108and remains stable under normal atmospheric conditions. Once inside the clean room environment or vacuum,theQcan be preserved on a very high level for indefinite amount of time, for which our experiments are conducted in the clean room.

    Fig.2. (a)Diagram of the measurement setup for characterizing the nonlinear optical processes based on high-Q CaF2 optical resonator. (b)Schematic diagram of fiber coupling in CaF2 resonator. (c) The calculated Q for CaF2 resonator of 8.43×108. DLC: pro continuous-wave tunable laser, PC: polarization controller, EDFA: erbium-doped fiber amplifier, PD: photodetector, OSC: oscilloscope, SG: signal generator,OSA:optical spectrum analyzer,WDM:wavelength division multiplexer.

    3.2. Raman lasing measurement

    For Raman lasing measurement,the pump wavelength is 1550.58 nm, and the pump power gradually increases from 100 μW. When the pump power is increased to 33 mW, the first-order Raman laser with the signal to noise ratio(SNR)of 46 dB is observed on the optical spectrum analyzer,as shown in Fig. 3(a). Similarly, when the pump power is gradually increased to 36 mW, the first-order Raman comb appears in Fig.3(b)and the second-order Raman lasing appears when the pump power is increased to 45 mW in Fig.3(c).Raman combs result from the delayed molecular response of the host medium to the laser excitation. Thanks to the low lasing threshold,the first Stokes radiation to longer wavelengths is feasible,resulting in Raman combs. By further enhancing the pump power,the intracavity first Stokes power will be sufficiently high to act as a secondary pump source to enable the second Stokes lasing at 1722.19 nm, as shown in Fig. 3(c). The transition from Fig.3(b)to Fig.3(c)is because the energy coupling from the side modes to the second Stokes,when the second Stokes existed. Since the side modes has lower gain than that of the central mode,so only the central mode survived.[29]

    Fig.3. Observation of cascaded Raman lasing and threshold measurement. (a)First-order Raman lasing at 1631.59 nm. (b)First-order Raman comb generation. (c)Second-order Raman lasing generation. (d)Raman output power as a function of the pump power based on a diameter of 4.96-mm resonator.

    In order to measure the Raman threshold,we plot the Raman output power as a function of pump power in Fig. 3(d).The measurement shows a linear dependency and indicates the pump power threshold is 30 mW for a diameter of 4.96-mm CaF2resonator. We also plot the relationship between the pump power and the cavity absorbed power, as shown in the inset of Fig. 3(d). The actual power entering the resonator is only 9.68%of the pump power, the calculated conversion efficiency is about 5.27%. The power of the Raman lasing peak seems very low is because the attenuator is connected before connecting to the OSA during the experiment. The first-order Raman comb threshold pump power is 36 mW,and the secondorder Raman lasing is 45 mW.The reasons for the low conversion efficiency mainly include the following aspects: (i) the detuning loss caused by the frequency scanning of the pump laser;(ii)the loss at the connection of various devices;(iii)in our experiment, we use the ‘zero-gap’ coupling state, that is,the tapered fiber is attached to the surface of the resonator,the influence of environmental fluctuation noise is suppressed,but reduces theQ.

    Since Raman lasing threshold is proportional toVm/Q2,mode volume to quality factor squared ratio,it is natural to expect improvements in efficiency and threshold for a cavity with higherQfactor. The higher theQ(theoreticalQ ≈1014)and the smaller the mode volume(V-shaped),the lower the Raman threshold(a few μW),so that the crystalline WGM resonators can become efficient and compact Raman converters. Next,we will prepare V-shaped resonator to further reduce the mode volume and thus lower the Raman threshold.

    3.3. Thermal effect and Raman laser

    When the input power increases above 30 mW, a strong heat accumulation occurs inside the resonator, resulting in thermal effect. The heat generated by the absorbed optical power in the mode volume elevates the temperature very rapidly. As the cavity temperature varies,neffandRchange due to the thermo-optic (TO) effect (dn/dT=-1.14×10-5K-1) and thermal expansion (TE) effect (dR/RdT=1.87×10-5K-1), respectively, giving rise to the resonance shift. While taking the direction of the wavelength shift into consideration,we scan the pump laser wavelength in the long to short wavelength direction. The scanning voltage of the laser is 1.5 V,and the scanning frequency is 10 Hz,as shown in the upper picture of Fig.4(a). When the pump light scans into the resonant peak in the long wavelength direction, the thermal effect will push the resonant peak to move in the opposite direction due to the negative TO effect, and the compressed resonant peak will be obtained on the transmission spectrum.On the contrary,when the pump light scans to the short wavelength and enters the resonant peak, the pump light will stay in the resonant peak for a long time,and a broadened resonant peak will be obtained in the transmission spectrum,as shown in the lower picture of Fig.4(a).

    Fig.4. (a)Thermal nonlinear effects in CaF2 resonator. (b)The pump laser and Raman laser from the WDM on the OSC.

    Figure 4(b) uses the wavelength division multiplexer(WDM) to separate the pump laser and the Raman laser, and then connect them to the oscilloscope for simultaneous observation. CaF2resonator has a negative TO coefficient and a positive TE coefficient,these two parameters will cause completely opposite changes in the resonance wavelength, resulting in the fluctuation of the intracavity power, so the output light field exhibits periodic oscillation,that is,thermo-optical oscillation can be generated,as shown in the lower picture of Fig.4(b). When the power reaches the threshold,the intracavity power increases rapidly, the Raman emission power turns into laser oscillation. A higher input pump power results in a longer thermal drift and a higher Raman emission power while the threshold coupled power is maintained. However,different modes have differentQand require different pump power to generate thermal effects. When the pump power is greater than 30 mW, the mode with higherQwill first generate thermo-optic oscillation, while the mode with lowerQdoes not observe the phenomenon,that is,the relatively lowerQdoes not generate Raman laser accordingly. Furthermore,thermal broadening and thermal compression occur in pairs,located on the left and right sides of the triangular wave, respectively. In order to see the paired phenomenon more intuitively, we added triangular waves in Fig. 4(b). And in the experiment,the threshold for generating thermo-optical oscillation is also 30 mW, that is, Raman lasing is always accompanied by thermo-optical oscillations. It was found that the threshold for the oscillations is approximately coincident with Raman lasing threshold.

    3.4. Other nonlinear effects

    As the pump power increases,the energy will be concentrated in the ultrahigh-Qresonator, the resonant frequency of the resonator and the detuning of the pump light will reach a balance point, and then the degenerate four-wave mixing(FWM)effect will appear.Further broadening of the FWM results in an optical frequency combs. When the power reaches the threshold,the intracavity power increases rapidly because the Kerr effect causes a rapid redshift of the resonance wavelength. The wavelength of the pump light power is set to 1550 nm, when the input power is set to 80 mW, after the energy is accumulated in the resonator,the primary comb are generated due to the FWM effect. Since the pump power energy is high enough,the energy in the resonator is further accumulated, and the secondary combs appears due to the cascaded FWM effect.The wavelength range of optical frequency comb extends from 1520 nm to 1650 nm and exceeds 120 nm,as shown in Fig.5(a).

    The pump wavelength is swept from short to long wavelengths while gradually increasing the power from 100 μW to 80 mW. When a sideband appears near the pump wavelength, stop increasing the pump power, detuning the pump wavelength from blue to the resonance peak, and observe the change of the comb teeth. At this time, several symmetrical spectrum lines appear around the pump wavelength,which are mainly composed of multiple FSRs. When the pump wavelength gradually approaches the resonance peak from blue detuning, the main combs have strong sideband effects and excite regular and gradually denser secondary combs. With the further reduction of the detuning amount of the pump wavelength, the sideband effect continues to strengthen, and more spectrum can be generated. The secondary combs next to the main comb continue to expand,the spectrum becomes denser,and finally an optical frequency comb is formed. The modulation of the optical frequency combs can be achieved by using the frequency tuning of the pump light.

    The power and mode spacing of the optical frequency comb are not uniform, which is caused by the changed temperature of the resonator absorbed optical power and the existence of abundant resonance modes in the CaF2resonator,and the interaction between different modes. This temperature change leads to a modification of the refractive index of calcium fluoride which affects the optical path length of the resonator modes. In order to reduce the influence on the optical frequency comb,it is necessary to improve the fabrication process and continuously modify the shape to prepare a V-type crystal resonator. In addition, the mutual coupling of other nonlinear effects and the optical frequency comb effect will also produce some burrs,thus affecting the comb mode spacing. Therefore, it is necessary to precisely control the power to reduce the influence of other nonlinear effects in the experiment.

    Fig.5.(a)Optical frequency combs with wavelength range from 1520 nm to 1650 nm in CaF2 resonator.(b)The influence of frequency tuning on optical frequency combs.

    4. Conclusion

    In conclusion, we theoretically analyzed the Raman threshold of the CaF2resonator, and obtained theQis inversely proportional to the Raman threshold,the mode volume(Vm) of the resonator is proportional to the Raman threshold,therefore,choosing an ultrahighQ,small mode volume CaF2resonator can further reduce the Raman threshold.Meanwhile,we experimentally demonstrated Raman lasing,first-order Raman comb,and the second-order Raman lasing in a CaF2disk resonator with a diameter of 4.96 mm and an ultrahighQof 8.43×108at 1550-nm wavelength. At the same time,we also observed thermal effects in CaF2disk resonators,and obtained the threshold for thermo-optical oscillations is approximately coincident with Raman lasing. With a further increase in pump power,we observed optical frequency combs with wavelengths from 1520 nm to 1650 nm,with the range greater than 120 nm and a wavelength interval of 4×FSR. This work provides a comprehensive understanding of the Raman lasing and other nonlinear effects,which has great applications in optical communication, biological environment monitoring, spectral analysis,and microwave signal sources.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.51727808,51922009,52005457,and 62004179) and the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province,China(Grant No.201905D121001).

    猜你喜歡
    劉俊江龍唐軍
    創(chuàng)新企業(yè)民主管理途徑的探索
    劉俊
    唐軍治療圍絕經(jīng)期失眠經(jīng)驗(yàn)總結(jié)
    Unpinning the spiral waves by using parameter waves*
    美食鑒定師
    In fluence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48?x Co2Mn38+x Sn12(x=0,1.0,1.5,2.0, and 2.5)ferromagnetic shape memory alloys?
    我和你打個(gè)賭
    唐軍 留守少年的逆襲
    江龍出口斯里蘭卡19.5米鋼鋁引航船順利下水
    廣東造船(2014年3期)2014-04-29 10:32:09
    江龍為廣東省水利廳建造的43.2m鋼鋁執(zhí)法船成功交付
    廣東造船(2014年3期)2014-04-29 10:32:09
    亚洲精品国产av成人精品| 长腿黑丝高跟| 日本五十路高清| ponron亚洲| 亚洲欧美日韩无卡精品| 欧美日本亚洲视频在线播放| 日韩欧美精品v在线| 汤姆久久久久久久影院中文字幕 | 欧美xxxx黑人xx丫x性爽| 免费搜索国产男女视频| 一个人观看的视频www高清免费观看| 一二三四中文在线观看免费高清| 最近中文字幕高清免费大全6| av又黄又爽大尺度在线免费看 | 91久久精品国产一区二区三区| 久久精品综合一区二区三区| 久久99热这里只有精品18| 久久婷婷人人爽人人干人人爱| 亚洲成人精品中文字幕电影| 日本色播在线视频| 亚洲精品乱码久久久久久按摩| 国产极品精品免费视频能看的| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx在线观看| 亚洲国产精品成人久久小说| 欧美极品一区二区三区四区| 极品教师在线视频| 免费观看的影片在线观看| 丝袜美腿在线中文| 久久久精品欧美日韩精品| av在线播放精品| 毛片女人毛片| 国产高清有码在线观看视频| 嫩草影院入口| 国产精品嫩草影院av在线观看| 久久99热6这里只有精品| 久热久热在线精品观看| 亚洲丝袜综合中文字幕| 99久久精品一区二区三区| 麻豆一二三区av精品| 熟妇人妻久久中文字幕3abv| 欧美激情国产日韩精品一区| 欧美+日韩+精品| 国产午夜精品一二区理论片| 成人欧美大片| 日韩一区二区视频免费看| 波多野结衣巨乳人妻| av.在线天堂| 99久久中文字幕三级久久日本| 亚洲五月天丁香| 亚洲欧美一区二区三区国产| 在线免费十八禁| 精品一区二区三区视频在线| 岛国在线免费视频观看| 69人妻影院| 国产成人精品久久久久久| 啦啦啦啦在线视频资源| 亚洲精品456在线播放app| 啦啦啦啦在线视频资源| 久久精品国产亚洲av天美| 欧美潮喷喷水| 国产成人一区二区在线| 国产伦一二天堂av在线观看| 色综合色国产| 国产精品福利在线免费观看| 日韩中字成人| 成人午夜高清在线视频| av在线老鸭窝| 亚洲精品亚洲一区二区| 女人十人毛片免费观看3o分钟| 中文字幕免费在线视频6| www.av在线官网国产| 日韩中字成人| 2021少妇久久久久久久久久久| 老女人水多毛片| 99视频精品全部免费 在线| 美女大奶头视频| 日本爱情动作片www.在线观看| 亚洲精品456在线播放app| 看免费成人av毛片| 七月丁香在线播放| 简卡轻食公司| 特级一级黄色大片| 国产精品久久久久久精品电影| 好男人视频免费观看在线| 别揉我奶头 嗯啊视频| 国产精品一区二区在线观看99 | 婷婷色麻豆天堂久久 | .国产精品久久| 七月丁香在线播放| 亚洲欧美日韩高清专用| 少妇的逼水好多| 三级国产精品欧美在线观看| 亚洲国产欧美人成| 成人二区视频| 三级男女做爰猛烈吃奶摸视频| 免费av毛片视频| 午夜老司机福利剧场| 国产在线一区二区三区精 | 日韩强制内射视频| 国产精品久久久久久久久免| 精品不卡国产一区二区三区| 国产一区二区亚洲精品在线观看| 免费在线观看成人毛片| 国产探花极品一区二区| 久久亚洲精品不卡| 在现免费观看毛片| 在线播放无遮挡| 深夜a级毛片| 男女视频在线观看网站免费| 国产免费又黄又爽又色| 国产亚洲5aaaaa淫片| 久久99热这里只频精品6学生 | 亚洲真实伦在线观看| av又黄又爽大尺度在线免费看 | 人妻制服诱惑在线中文字幕| 亚州av有码| 亚洲欧美日韩高清专用| 内射极品少妇av片p| 精华霜和精华液先用哪个| 一区二区三区免费毛片| 国产免费又黄又爽又色| 国产精品无大码| 欧美成人a在线观看| 亚洲天堂国产精品一区在线| 久久久亚洲精品成人影院| 免费av毛片视频| 国产黄色小视频在线观看| 亚洲国产精品成人综合色| 国产精品久久视频播放| 国产精品美女特级片免费视频播放器| 久久99热6这里只有精品| 十八禁国产超污无遮挡网站| 可以在线观看毛片的网站| 久久久久国产网址| 欧美又色又爽又黄视频| 亚洲精品色激情综合| 免费观看性生交大片5| av国产久精品久网站免费入址| 麻豆av噜噜一区二区三区| 日韩视频在线欧美| 亚洲在久久综合| 又粗又爽又猛毛片免费看| 亚洲伊人久久精品综合 | a级毛片免费高清观看在线播放| 深爱激情五月婷婷| 国产亚洲精品久久久com| 少妇人妻精品综合一区二区| 国产91av在线免费观看| 成人午夜精彩视频在线观看| 精品酒店卫生间| 只有这里有精品99| 亚洲精品国产成人久久av| 久久精品久久久久久久性| 亚洲av二区三区四区| 国产亚洲91精品色在线| 中文字幕制服av| 日本黄色视频三级网站网址| 激情 狠狠 欧美| 久热久热在线精品观看| ponron亚洲| 国产黄片视频在线免费观看| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 免费黄色在线免费观看| 国产黄片美女视频| 精品久久国产蜜桃| 国产精品久久久久久久久免| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 爱豆传媒免费全集在线观看| 国产一区二区在线av高清观看| 国产成人精品婷婷| 六月丁香七月| 在线免费十八禁| 成人亚洲精品av一区二区| 少妇的逼水好多| 欧美一区二区精品小视频在线| 日日撸夜夜添| 少妇猛男粗大的猛烈进出视频 | 国产高清视频在线观看网站| 久久国内精品自在自线图片| 免费看日本二区| 两性午夜刺激爽爽歪歪视频在线观看| 国产白丝娇喘喷水9色精品| 免费看a级黄色片| 身体一侧抽搐| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 久久久久九九精品影院| 99热这里只有精品一区| 人人妻人人看人人澡| 黄色一级大片看看| 国内少妇人妻偷人精品xxx网站| 成人三级黄色视频| 国产精品一区二区三区四区久久| 国产精品精品国产色婷婷| 秋霞在线观看毛片| 亚洲国产日韩欧美精品在线观看| 亚洲精品aⅴ在线观看| 国产一区二区在线av高清观看| 久久久久网色| 网址你懂的国产日韩在线| 亚洲熟妇中文字幕五十中出| 午夜精品国产一区二区电影 | 最近2019中文字幕mv第一页| 亚洲国产高清在线一区二区三| 日韩三级伦理在线观看| 人妻系列 视频| 国产亚洲精品av在线| 婷婷六月久久综合丁香| 麻豆av噜噜一区二区三区| 日本黄色视频三级网站网址| 校园人妻丝袜中文字幕| 国产高清三级在线| 国产一区二区在线观看日韩| 成人av在线播放网站| 国产精品乱码一区二三区的特点| 国产精品日韩av在线免费观看| 三级毛片av免费| 亚洲精华国产精华液的使用体验| 中文字幕av成人在线电影| 美女黄网站色视频| 国产成人a∨麻豆精品| 麻豆av噜噜一区二区三区| 18+在线观看网站| 老司机影院毛片| 2021天堂中文幕一二区在线观| 噜噜噜噜噜久久久久久91| 精品人妻熟女av久视频| 欧美日韩一区二区视频在线观看视频在线 | 能在线免费观看的黄片| 老司机影院毛片| 中国国产av一级| 久久99热6这里只有精品| 天堂中文最新版在线下载 | 哪个播放器可以免费观看大片| 久久久久九九精品影院| h日本视频在线播放| 日韩三级伦理在线观看| 国产在线一区二区三区精 | 亚洲va在线va天堂va国产| 又爽又黄a免费视频| av在线蜜桃| 淫秽高清视频在线观看| www.色视频.com| 春色校园在线视频观看| 亚洲av免费高清在线观看| 国产日韩欧美在线精品| 寂寞人妻少妇视频99o| 亚洲精品乱久久久久久| 91在线精品国自产拍蜜月| 国产美女午夜福利| 又黄又爽又刺激的免费视频.| 国产三级在线视频| 99热6这里只有精品| 国产老妇女一区| 一级毛片久久久久久久久女| 麻豆一二三区av精品| 我的女老师完整版在线观看| 内地一区二区视频在线| eeuss影院久久| 国产成人aa在线观看| 熟女电影av网| 岛国在线免费视频观看| 内射极品少妇av片p| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 免费不卡的大黄色大毛片视频在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 久久热精品热| 亚洲国产最新在线播放| 少妇高潮的动态图| 校园人妻丝袜中文字幕| 国产伦一二天堂av在线观看| 最近视频中文字幕2019在线8| 黄色欧美视频在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久精品欧美日韩精品| 亚洲在线观看片| 男女下面进入的视频免费午夜| 人妻系列 视频| 国产女主播在线喷水免费视频网站 | 亚洲va在线va天堂va国产| 少妇熟女aⅴ在线视频| 日日撸夜夜添| 尤物成人国产欧美一区二区三区| 日本色播在线视频| 国产精品伦人一区二区| 国产女主播在线喷水免费视频网站 | 国产片特级美女逼逼视频| 国产精品乱码一区二三区的特点| or卡值多少钱| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 精品一区二区三区人妻视频| 午夜免费激情av| 久久鲁丝午夜福利片| 久久国产乱子免费精品| 好男人视频免费观看在线| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 亚洲av成人精品一二三区| 午夜免费激情av| 国产一区有黄有色的免费视频 | 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 一区二区三区四区激情视频| 欧美+日韩+精品| 日韩强制内射视频| kizo精华| 欧美性猛交╳xxx乱大交人| 看片在线看免费视频| 97超视频在线观看视频| 观看免费一级毛片| 久久亚洲精品不卡| 亚洲图色成人| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 少妇丰满av| 久久精品久久久久久久性| 男人舔奶头视频| 国产精品久久久久久精品电影小说 | 综合色av麻豆| 亚洲精华国产精华液的使用体验| 久久久精品欧美日韩精品| 日韩一区二区视频免费看| 国产男人的电影天堂91| 亚洲av成人精品一区久久| 亚洲怡红院男人天堂| 国产91av在线免费观看| 久久这里只有精品中国| 国产乱人偷精品视频| 精品久久久久久久久亚洲| 麻豆乱淫一区二区| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 在线天堂最新版资源| 国产成人a∨麻豆精品| 国产毛片a区久久久久| 在线观看美女被高潮喷水网站| 欧美变态另类bdsm刘玥| 综合色av麻豆| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区 | 麻豆成人午夜福利视频| ponron亚洲| 在线免费十八禁| 1000部很黄的大片| 欧美色视频一区免费| 日本免费在线观看一区| 老司机影院成人| 天堂中文最新版在线下载 | 长腿黑丝高跟| a级一级毛片免费在线观看| 亚洲内射少妇av| 国产色婷婷99| 国产一区二区在线av高清观看| 国产乱人偷精品视频| 中文欧美无线码| 又粗又硬又长又爽又黄的视频| 日本爱情动作片www.在线观看| 成人美女网站在线观看视频| 国产av在哪里看| 久久午夜福利片| 免费人成在线观看视频色| 亚洲欧美精品专区久久| 天天躁日日操中文字幕| 久久久a久久爽久久v久久| 2021天堂中文幕一二区在线观| 国产成人a∨麻豆精品| 国产伦精品一区二区三区四那| 欧美bdsm另类| 久热久热在线精品观看| 热99在线观看视频| 亚洲国产精品国产精品| 日韩大片免费观看网站 | 久久精品91蜜桃| 国产在视频线精品| 夜夜看夜夜爽夜夜摸| 91久久精品国产一区二区成人| 91精品一卡2卡3卡4卡| 国产色婷婷99| 高清午夜精品一区二区三区| 中国国产av一级| 一个人观看的视频www高清免费观看| 国产精品麻豆人妻色哟哟久久 | 搡女人真爽免费视频火全软件| 色视频www国产| 大话2 男鬼变身卡| 丝袜美腿在线中文| 中文资源天堂在线| 亚洲18禁久久av| 干丝袜人妻中文字幕| 国产免费一级a男人的天堂| 日本一二三区视频观看| 免费无遮挡裸体视频| 狂野欧美激情性xxxx在线观看| 亚洲天堂国产精品一区在线| 国产一区二区三区av在线| 在线免费十八禁| 日日摸夜夜添夜夜添av毛片| 久久久久精品久久久久真实原创| 国产中年淑女户外野战色| 岛国毛片在线播放| 久久久久久大精品| 国产av一区在线观看免费| 亚洲精品亚洲一区二区| 国产精品久久久久久av不卡| a级一级毛片免费在线观看| 热99在线观看视频| 国产69精品久久久久777片| 成年女人看的毛片在线观看| av视频在线观看入口| 中文字幕av在线有码专区| 日本wwww免费看| 久久99热6这里只有精品| 国产高潮美女av| 搡老妇女老女人老熟妇| 久久精品国产亚洲av天美| 成人毛片a级毛片在线播放| 国产精品久久久久久av不卡| kizo精华| 欧美精品国产亚洲| 中文字幕制服av| 日日啪夜夜撸| 精品久久久久久久末码| 亚洲av中文字字幕乱码综合| 国产精品久久久久久精品电影| 久久精品久久久久久久性| 欧美三级亚洲精品| 视频中文字幕在线观看| 欧美潮喷喷水| 七月丁香在线播放| 蜜桃亚洲精品一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 免费人成在线观看视频色| 日本与韩国留学比较| 汤姆久久久久久久影院中文字幕 | 国产三级在线视频| 性色avwww在线观看| 国产欧美日韩精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产视频内射| 日本黄色视频三级网站网址| 99久久无色码亚洲精品果冻| 亚洲精华国产精华液的使用体验| 天堂√8在线中文| 国产精品爽爽va在线观看网站| 亚洲精品久久久久久婷婷小说 | 草草在线视频免费看| 成人鲁丝片一二三区免费| 男的添女的下面高潮视频| 性色avwww在线观看| 色综合色国产| 在线观看美女被高潮喷水网站| 天堂av国产一区二区熟女人妻| 久久人人爽人人爽人人片va| 欧美潮喷喷水| 国产黄片视频在线免费观看| 夜夜看夜夜爽夜夜摸| 国产麻豆成人av免费视频| 成人三级黄色视频| videos熟女内射| 久久久久久国产a免费观看| 特级一级黄色大片| 亚洲综合精品二区| 日日啪夜夜撸| 别揉我奶头 嗯啊视频| АⅤ资源中文在线天堂| 国产伦在线观看视频一区| 久久午夜福利片| 国产高潮美女av| 又爽又黄无遮挡网站| 色综合亚洲欧美另类图片| 亚洲av成人精品一区久久| 亚洲最大成人av| 看免费成人av毛片| 久久久色成人| 精品人妻视频免费看| 尤物成人国产欧美一区二区三区| 久久精品综合一区二区三区| 大香蕉久久网| 在线免费十八禁| 美女大奶头视频| 久久人妻av系列| 中文字幕熟女人妻在线| 色综合色国产| 成人av在线播放网站| 久久国产乱子免费精品| 国产精品麻豆人妻色哟哟久久 | 国产精品一二三区在线看| 国产精品av视频在线免费观看| 联通29元200g的流量卡| 午夜亚洲福利在线播放| 精品熟女少妇av免费看| 欧美3d第一页| 久久久久久久久大av| 成人一区二区视频在线观看| av视频在线观看入口| 大话2 男鬼变身卡| 亚洲精品456在线播放app| 丰满人妻一区二区三区视频av| 欧美高清成人免费视频www| 毛片一级片免费看久久久久| 久久热精品热| 亚洲美女搞黄在线观看| 欧美日韩精品成人综合77777| 91精品国产九色| 在线观看一区二区三区| 中文字幕亚洲精品专区| 91av网一区二区| 欧美3d第一页| 日韩欧美精品v在线| 一级av片app| 成人三级黄色视频| 如何舔出高潮| 午夜a级毛片| 欧美高清性xxxxhd video| 热99在线观看视频| 精品99又大又爽又粗少妇毛片| 男人舔女人下体高潮全视频| 在线免费观看不下载黄p国产| 久久精品国产亚洲av天美| 成人三级黄色视频| 秋霞在线观看毛片| 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 三级国产精品欧美在线观看| av女优亚洲男人天堂| 国产高潮美女av| 国产成人aa在线观看| 亚洲激情五月婷婷啪啪| 麻豆乱淫一区二区| 亚洲欧美精品专区久久| 国产v大片淫在线免费观看| 看非洲黑人一级黄片| 午夜老司机福利剧场| 又爽又黄a免费视频| 国产高清视频在线观看网站| 精品国内亚洲2022精品成人| 高清av免费在线| 久久亚洲国产成人精品v| 日韩av在线大香蕉| 免费观看在线日韩| 99热6这里只有精品| 国产不卡一卡二| 99久久人妻综合| 免费不卡的大黄色大毛片视频在线观看 | 国产视频首页在线观看| 国产精品99久久久久久久久| 丰满少妇做爰视频| 午夜福利高清视频| 国产精品久久久久久久久免| 国产成人91sexporn| 亚洲av不卡在线观看| 七月丁香在线播放| 国产色婷婷99| 深爱激情五月婷婷| 免费无遮挡裸体视频| 国产老妇伦熟女老妇高清| 亚洲精品亚洲一区二区| 国产一级毛片在线| 成人国产麻豆网| 国产一区有黄有色的免费视频 | 国产亚洲5aaaaa淫片| 麻豆乱淫一区二区| 亚洲国产精品sss在线观看| 中文字幕亚洲精品专区| 亚洲av男天堂| 国产一区有黄有色的免费视频 | 国产精品一及| 99热精品在线国产| 亚洲精品影视一区二区三区av| 精品人妻偷拍中文字幕| 日本三级黄在线观看| av在线天堂中文字幕| 国内精品美女久久久久久| 如何舔出高潮| 久久久精品94久久精品| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲网站| 国产精品久久久久久精品电影| 久久久久免费精品人妻一区二区| 免费观看的影片在线观看| eeuss影院久久| 免费一级毛片在线播放高清视频| 美女xxoo啪啪120秒动态图| 国产精品乱码一区二三区的特点| 亚洲精品影视一区二区三区av| 亚洲av日韩在线播放| 亚洲欧美中文字幕日韩二区| 2021天堂中文幕一二区在线观| 亚洲久久久久久中文字幕| 亚洲精品色激情综合| 国产精品人妻久久久久久| 久久6这里有精品| 免费观看在线日韩| 国产麻豆成人av免费视频| 国产 一区精品| 直男gayav资源| 中文精品一卡2卡3卡4更新| 国产精品野战在线观看| 中国国产av一级| 色网站视频免费| 久久久国产成人免费| 2022亚洲国产成人精品| 欧美高清性xxxxhd video| 国产黄a三级三级三级人| 久久久久国产网址| 国产乱来视频区| 少妇的逼好多水| av天堂中文字幕网| 啦啦啦啦在线视频资源|