• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-matched second-harmonic generation in hybrid polymer-LN waveguides

    2022-10-26 09:54:30ZijieWang王梓杰BodongLiu劉伯東ChunhuaWang王春華andHuakangYu虞華康
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王梓

    Zijie Wang(王梓杰) Bodong Liu(劉伯東) Chunhua Wang(王春華) and Huakang Yu(虞華康)

    1School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510641,China

    2School of Electrical Engineering and Intelligentization,Dongguan University of Technology,Dongguan 523808,China

    3China–Singapore International Joint Research Institute,Guangzhou Knowledge City,Guangzhou 510663,China

    Keywords: nonlinear waveguides,super-mode theory,phase matching,second harmonic generation

    1. Introduction

    Nonlinear optical conversion is crucial for modern photonics.[1,2]Along with advance in high-profile fabrication techniques,various platforms of integrated photonics are rapidly developed in the past decades, giving rise to diverse on-chip applications, including data communication, optical sensors, and optical interconnection.[3–6]Generally, on-chip devices could tightly confine the light field within a small volume, leading to dramatically enhanced light–matter interactions with superior performance.[7]In particular,efficient nonlinear frequency conversions can be achieved in photonic integration platforms composed of materials with strong secondorder nonlinearity,such as LN and AlN.[8–11]

    It is known that the realization of phase-matching condition is vital for nonlinear optical conversions, such as second-harmonic generation.[1,2]For nonlinear optical processes inside photonic waveguides, several strategies for realizing phase-matching condition have been proposed and demonstrated, including quasi-phase matching (QPM),[12–14]birefringence phase matching (BPM),[15]and modal phase matching (MPM).[16]QPM is realized by domain patterning of the nonlinear susceptibility of waveguide, but limited by the domain size for further integration into photonic circuits. Meanwhile, BPM is only available for phase matching at specific wavelength.[15]For the traditional MPM method,phase-matching condition is usually achieved between zeroorder mode of fundamental wavelength and high-order mode of second harmonics, the distinct spatial distributions between which would correspond to poor overlap and prevent high conversion efficiency. Various nanostructures have been demonstrated to improve the spatial overlap integral, such as ring resonators, high-quality photonic cavities, and optical waveguides.[17–28]Notably, high-quality thin-film lithium niobate on insulator (LNOI) is now commercially available,which would significantly extend associated applications in on-chip nonlinear optics.[11]To be noted, a novel special waveguide structure, namely reversed-polarization doublelayer LN waveguide, was proposed with large modal overlap integral and high efficient nonlinear frequency conversion.[29]

    Based on LNOI, hybrid nanophotonic waveguide has been proposed by introducing a fabrication-friendly material (such as polymer, TiO2, silicon) on the top of LN substrate.[30–34]And new phase-matching condition can be achieved between a fundamental mode at the fundamental wavelength and a high-order mode at the second harmonics. It is noted that such hybrid waveguiding structure can be treated as an asymmetric coupled waveguide,composed of the top polymer waveguide (χ(2)=0) and the bottom thinfilm LN waveguide (χ(2)/=0). Inside such coupled waveguides,guided waves would split into even and odd modes for the fundamental waveguiding mode, and the superposition of these supermodes would lead to energy exchanging between the two waveguides.[35–37]Notably, the rise of supermodes enables new schemes for the phase-matched nonlinear optical process, since extra momentum can be obtained during the coupling processes both for the fundamental and secondharmonic waves.According to super-mode theory,this mechanism of phase matching has been implemented inside symmetric coupled nonlinear optical waveguides with identical material,while enabling large spatial modal overlap factors.[38–40]However, restricted by the fabrication technique of LN material, it is difficult to construct coupled waveguides with the same LN materials. Therefore, it is natural to bring in mind that one could construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon,on top of high-quality LN thin film.[33,34]Such waveguide structure could be readily fabricated and promising for excellent optical performance. Considering the low optical loss of polymer in the visible range, we prefer to construct polymer-LN semi-nonlinear waveguide in this paper.

    According to super-mode theory, we investigate phasematched second-harmonic generation inside a hybrid polymer-LN semi-nonlinear waveguide, composed of the top polymer waveguide and the bottom thin-film LN waveguide. Geometric parameters of the hybrid waveguide were carefully engineered and optimized parameters were obtained numerically.Phase-matching conditions were closely investigated with corresponding modal overlap integrals calculated.

    First, we look back at the phase-matching condition of SHG in a symmetric coupled waveguide structure. Here, we take SHG,i.e.,ω2= 2ω1, as an illustration. According to super-mode theory,[35–37]fundamental waveguiding mode of each single waveguide would split into a pair of modes,i.e.,even (symmetric) or odd (antisymmetric) modes, as a result of perturbation-induced coupling interaction between the two waveguides. The combination of even and odd modes in the coupled waveguide structure would lead to power exchange between the two waveguides. Additional possibilities in realizing phase matching become available by employing the emerging even and odd fundamental modes in nonlinear optical interactions processes. We have listed all the six possible phase-matching conditions as given in Table 1.[38]

    2. Theory

    Table 1. Phase-matching condition of SHG in coupled waveguides(from Ref.[38]).

    whereε0andcare the permittivity and light speed in vacuum;n1andn2represent the effective modal refractive indices of the pump and SHG;λis the pump wavelength;deffis the effective nonlinear susceptibility;Srepresents effective modal overlap integral between the pump and SHG modes over the effective nonlinear optical region,[23,42]

    The overlap integralSbecomes considerably large due to the identical spatial distributions between the fundamental pump modes and SHG fundamental modes inside the nonlinear optical waveguide. However,it is noted that phase-matching conditions 4–6(as listed in Table 1)are not applicable in the symmetric coupled waveguides, which can be easily deduced as one checks the mathematical symmetry properties of modal overlap integrals[see Eq.(2)].

    For asymmetric coupled waveguides, the prohibition of phase-matching conditions 4–6 could be removed so as to provide additional possibility in realizing phase matching beyond conventional methods. As mentioned before, it is easy to construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon, on top of high-quality LN thin-film.[31–34]Such waveguide structure could be readily fabricated and promising for excellent optical performance.

    Here we investigate the semi-nonlinear waveguide composed of a polymer waveguide (rectangular cross section) on the top and thin-film LN on the bottom. The reason to choose polymer is listed as follows. First,due to the relentless desire for high-performance integrated optical devices, some excellent polymers have been available with a high refractive index closed to LN,which is promising for tight optical confinement and modal splitting inside the composite waveguide structure.Second, nanofabrication techniques for polymer have been well-developed with high precision in the photonic industry nowadays, including laser direct writing, ultra-violet (UV)lithography, and nanoimprint lithography. Third, another advantage is the low absorption loss of polymer at visible wavelength,compared with silicon.[34]To be pointed out,the polymer is generally amorphous with its corresponding secondorder susceptibilityχ(2)to be zero. To reflect such asymmetric profile ofχ(2), the integral regions of numerator and denominator,labeled as subscripts in Eq.(2),are thus different.And nonlinear overlap integral becomes significant inside such asymmetric coupled waveguide,making phase-matching conditions 4–6 applicable inside such asymmetric coupled waveguide. The schematic of a polymer-LN semi-nonlinear waveguide is shown in Fig.1. The high-quality LNOI platform consists of anX-cut LN thin film and SiO2buried layer. A rectangular polymer waveguide is located directly based on the top of LNOI.Figure 1 shows the geometric parameters of the hybrid waveguide,including polymer waveguide heighth1,polymer waveguide widthw, and LN heighth2. HereX-cut configuration of LNOI with waveguide direction alongYcrystal axis of LN was chosen in order to make use of second-order susceptibilities,d31(~4.3 pm/V)andd33(~27 pm/V)of LN.Phase-matching condition is numerically investigated in the following context by carefully tuning the structure parameters of this hybrid polymer-LN waveguide.

    Fig.1. Schematic structure of the hybrid polymer-LN waveguide. The bottom is a thick layer of silica(gray),the middle is an X-cut LN thin film(light blue),and the top is a thin polymer waveguide(dark blue).

    3. Simulation results and discussion

    In order to implement phase-matching conditions 4–6 as listed in Table 1, one should carefully engineer the waveguide structural parameters so as to obtain bound modes for both pump and SHG wavelengths.[33]As indicated in our previous paper,[38]it is invalid to use conventional coupled mode theory since slowly varying envelope approximation is no more applicable for such hybrid waveguides. Instead, a finite-element method is adopted here in order to investigate the optical modes of hybrid coupled waveguides in a straightforward manner.[38]Refractive indices of lithium niobate were extracted from the open database, while the refractive index of the polymer was set as 2.15 so as to have considerable intra-coupling effects between polymer and LN thin film. And waveguide structure parameters were set asw=4 μm,h1=0.401 μm, andh2=0.4 μm, considering the facility of mature fabrication condition and acquiring the phase-matching condition. We firstly examine the possibility of phase matching between the TM01-like,TE00-like,and TE01-like modes at the pump wavelengthsλpranging from 800 nm to 1400 nm.According to the super-mode theory, TE00-like modes could be identified as fundamental even modes, while TM01-like and TE01-like modes could be identified as fundamental odd modes. As shown in Fig.2,the effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes)were calculated as a function of wavelength.

    Fig. 2. Simulated effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes) as a function of wavelength. Effective refractive indices of the low-order waveguide modes at both pump wavelengths(TM01-like and TE00-like modes)and SHG wavelengths(TE01-like modes),and the inset(i)and inset(ii)show two enlarged phase-matching cases. The unit a.u. is short for arbitrary units.

    Apparently,the intersecting points of the curves indicate phase matching of interacting modes. The inset (i) of Fig. 2 shows a detailed phase matching occurring between TM01-like mode at 911 nm and TE01-like mode at 455.5 nm. The modal profile of its largest electric field component (Ey) of TM01-like mode at 911 nm is plotted at the top of Fig. 3(a).It is easily seen that electric fieldEyis distributed in polymersection and LN-section with inversed polarity, which can be regarded as an odd mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component (Ez) of TE01-like mode at 455.5 nm is plotted at the bottom of Fig. 3(a). Similarly, TE01-like mode at 455.5 nm can be regarded as an odd mode. This case corresponds to phase-matching conditions 5 as listed in Table 1. Though theEycomponent of the TM01-like mode at 911 nm and theEzcomponent of the TE01-like mode at 455.5 nm are both with the inverse polarity between polymer area and LN area, the net modal overlap integral can be significant,due to the asymmetric profile ofχ(2)in the hybrid waveguide. The distribution curves of main electric field components alongxdirection are illustrated in Fig. 3(b), where dark blue area represents polymer waveguide and light blue area represents LN.And one may easily find that the spatial distributions of the two main electric fields are identical in the LN layer, which would lead to a considerably large modal overlap integral as predicted by the theory. From this point,phase-matching condition 5 is now achieved. The calculated modal overlap integralSis 0.365 and the effective modal areaAeffis 9.92 μm2.In this case,for a lossless waveguide without pumping depletion, the normalized conversion efficiencyηis estimated to be~9.11%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 0.09% W-1for 1-mm-long waveguide. To be mentioned here,the nonlinearity coefficientd31,rather thand33,is used here because the main electric field component of the 911-nm TM01-like isEyinstead ofEz. However,it is difficult to utilize the largest nonlinearity coefficient during the nonlinear process due to the largest electric field component of TM01-like mode at 911 nm isEyinstead ofEz.

    Fig.3. Simulated modal profiles: (a)the modal profiles of the largest electric field components of 911-nm TM01-like(top)and 455.5-nm TE01-like(bottom), and(b)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line) and SHG (blue line) wavelengths. (c) The mode profiles of the largest electric field components of 1320-nm quasi-TE00 (top) and 660-nm quasi-TE01 (bottom),and(d)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line)and SHG(blue line)wavelengths.

    Another phase-matching point is found between TE00-like mode at 1320 nm and TE01-like mode at 660 nm,as shown in the inset (ii) of Fig. 2. The modal profile of its largest electric field component (Ez) of TE00-like mode at 1320 nm is plotted at the top of Fig.3(c). It is easily seen that the polarity of electric fieldEzis the same in both the polymer-section and LN-section,corresponding to an even mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component(Ez)of TE01-like mode at 660 nm is plotted at the bottom of Fig. 3(c). Similarly, TE01-like mode at 660 nm can be regarded as an odd mode. The distribution curves of main electric field components along the vertical direction (i.e., alongxaxis) of the waveguide are illustrated in Fig. 3(d). Again, the net modal overlap integral between the modes is calculated to be 0.299 with effective modal area of 8.77 μm2. To be pointed out, here the largest nonlinear coefficient,namelyd33is utilized,contributing to more efficient nonlinear optical conversion. Indeed, we obtain the normalized conversion efficiencyηas high as 148%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 1.48%W-1for a 1-mm-long waveguide.This value is much higher(~300 times) than reported SHG efficiency in hybrid polymer-LN waveguide,[33]showing the advantage of our design presented in this paper. Recalling Eq.(1),it is reasonable for the larger conversion efficiency, since we have a largerχ(2)nonlinear coefficient (27 pm/Vversus-4.3 pm/V), larger modal overlap integralS(0.299versus0.14),and smaller effective modal areaAeff(8.77 μm2versus20.3 μm2).

    Besides, we have fulfilled the phase-matching condition around 1550 nm by sweeping the height of hybrid waveguide.The phase-matching condition was realized between TM01-like mode at 1550 nm and TE01-like mode at 775 nm, withh1=425 nm,w=4 μm, andh2=0.4 μm. To be noted, the largest electric field component of TM01-like mode at 1550 nm isEy, and the largest electric field component of TE01-like mode at 775 nm isEz. Therefore, an effective nonlinear susceptibilityd31is utilized. And the corresponding modal overlap integralSis calculated to be 0.294 with effective modal area of 8.9 μm2. For a lossless waveguide without pumping depletion,the normalized conversion efficiencyηis estimated to be 2.75%W-1·cm-2.

    Fig. 4. The sensitivity of phase-matching condition 6 on geometric parameters. Effective refractive indices of the modes (inset (ii) of Fig. 2) at both wavelengths varying with(a)polymer waveguide height,h1 (with fixed w=4 μm and h2 =400 nm)and(b)width,w(with fixed h1 =401 nm and h2=400 nm).

    We also investigated the structural sensitivity of above phase-matching condition on geometric parameters(i.e.,polymer waveguide heighth1and widthw) of the hybrid waveguide. For TE00-like mode at 1320 nm and TE01-like mode at 660 nm,dispersion relationships as functions of the waveguide heighth1and the waveguide widthware shown in Figs.4(a)and 4(b). As shown in Fig. 4(a), the effective modal refractive indices of TE00-like mode at 1320 nm increase by~0.001 when the waveguide heighth1changes from 400 nm to 405 nm. However,the effective modal refractive indices of TE00-like mode at 1320 nm increase only by~0.0001 when the waveguide widthwchanges from 4000 nm to 4050 nm,as shown in Fig. 4(b). Apparently, the modal refractive indices vary more slowly with the change of waveguide width. This is benefited from the larger waveguide dimension inzdirection (~4 μm) thanxdirection (~0.4 μm). Therefore, it indicates that one is more convenient to engineer the width than the height of the polymer waveguide for detuning the phasematching condition. And the relatively large value (micrometer scale)of polymer waveguide width significantly releases the difficulty of polymer fabrication. The proposed waveguide holds the fabrication feasibility and is promising for future onchip efficient nonlinear conversion devices.

    4. Conclusion

    In conclusion, we have presented a simple hybrid polymer-LN semi-nonlinear waveguide to realize efficient onchip SHG by directly constructing polymer waveguide on theX-cut LNOI.Both symmetric(even)and antisymmetric(odd)modes of the pump and SHG waves in the hybrid waveguide were employed to achieve phase matching with large modal overlap. The largest nonlinear coefficient, namelyd33, could be utilized for phase matching between a fundamental even(TE00-like) mode at 1320 nm and a fundamental odd (TE01-like)mode at 660 nm,with an efficient calculated normalized conversion efficiency of 148% W-1·cm-2. Considering the fabrication feasibility of such a hybrid waveguide with features including etchless, large dimension, and low structural sensitivity, we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91850107 and 12174116),the National Key Research and Development Program of China (Grant No. 2018YFA0306200), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201904020013),the Science and Technology Project of Guangdong Province,China (Grant No. 2020B010190001), and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    王梓
    我和恐龍捉迷藏
    哪里最舒服
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《花月夜》
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《精靈瀑布》
    中國寶玉石(2020年4期)2020-09-23 07:45:54
    任家萱?楊子騰?王梓丞
    哄娃神器
    挑食的小怪物
    那山,那花,那水
    童話世界(2019年17期)2019-07-04 15:15:44
    雪后的校園
    久久香蕉国产精品| 精品久久久精品久久久| 精品人妻在线不人妻| 久99久视频精品免费| 亚洲专区中文字幕在线| 欧美乱妇无乱码| 麻豆成人av在线观看| 亚洲一区二区三区欧美精品| 国产真人三级小视频在线观看| 精品国产一区二区三区四区第35| 人妻久久中文字幕网| 国产真人三级小视频在线观看| 成熟少妇高潮喷水视频| 国产不卡一卡二| 国产精品欧美亚洲77777| 国产高清激情床上av| 国产精品久久电影中文字幕 | 精品电影一区二区在线| 国产精品偷伦视频观看了| 建设人人有责人人尽责人人享有的| av超薄肉色丝袜交足视频| 变态另类成人亚洲欧美熟女 | 黄色a级毛片大全视频| 亚洲av成人av| 日日摸夜夜添夜夜添小说| 老司机影院毛片| 国产精品久久久久成人av| а√天堂www在线а√下载 | 国产精品九九99| 一区二区三区国产精品乱码| 色94色欧美一区二区| 99国产精品99久久久久| 伊人久久大香线蕉亚洲五| 久久午夜亚洲精品久久| 不卡一级毛片| 操出白浆在线播放| 国产精品久久久久久精品古装| 免费观看a级毛片全部| 丝袜在线中文字幕| 波多野结衣一区麻豆| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 国产高清视频在线播放一区| 久久这里只有精品19| 精品久久久久久,| 亚洲精品国产一区二区精华液| 亚洲成人国产一区在线观看| 久久久久久久久免费视频了| 欧美精品人与动牲交sv欧美| 搡老熟女国产l中国老女人| а√天堂www在线а√下载 | 成人亚洲精品一区在线观看| 老司机深夜福利视频在线观看| 色播在线永久视频| 777米奇影视久久| 91国产中文字幕| 亚洲性夜色夜夜综合| 一进一出好大好爽视频| 99久久99久久久精品蜜桃| av超薄肉色丝袜交足视频| 成人国产一区最新在线观看| 久久精品国产99精品国产亚洲性色 | 国产精品电影一区二区三区 | av一本久久久久| 久久久久久久午夜电影 | av中文乱码字幕在线| av不卡在线播放| 多毛熟女@视频| 69精品国产乱码久久久| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 高清毛片免费观看视频网站 | 久久草成人影院| 国产精品二区激情视频| 欧美乱色亚洲激情| 久久精品亚洲av国产电影网| 精品亚洲成a人片在线观看| 高清在线国产一区| 五月开心婷婷网| 国产乱人伦免费视频| bbb黄色大片| 午夜福利一区二区在线看| 人妻丰满熟妇av一区二区三区 | 午夜福利在线观看吧| 伊人久久大香线蕉亚洲五| 免费av中文字幕在线| 女性生殖器流出的白浆| 精品福利观看| 69精品国产乱码久久久| 99re在线观看精品视频| 免费观看精品视频网站| 免费女性裸体啪啪无遮挡网站| 亚洲成人免费电影在线观看| 十分钟在线观看高清视频www| 深夜精品福利| 99国产精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久国产乱子伦精品免费另类| 久久久久久久久免费视频了| 狠狠狠狠99中文字幕| 91麻豆av在线| 人人妻人人爽人人添夜夜欢视频| 老司机深夜福利视频在线观看| 91国产中文字幕| 久久狼人影院| 看黄色毛片网站| 日韩大码丰满熟妇| 国产xxxxx性猛交| 看黄色毛片网站| 在线av久久热| 国产不卡av网站在线观看| 亚洲中文日韩欧美视频| 国产成人影院久久av| 亚洲国产看品久久| 日日摸夜夜添夜夜添小说| 欧美亚洲 丝袜 人妻 在线| 日本欧美视频一区| 国精品久久久久久国模美| 69av精品久久久久久| 国产深夜福利视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲aⅴ乱码一区二区在线播放 | 国产主播在线观看一区二区| 黑人操中国人逼视频| 视频在线观看一区二区三区| 99久久人妻综合| 黑人欧美特级aaaaaa片| 日韩欧美免费精品| 成人av一区二区三区在线看| 国产精品久久电影中文字幕 | 中文字幕人妻丝袜制服| 三上悠亚av全集在线观看| 久久精品国产99精品国产亚洲性色 | 热99国产精品久久久久久7| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕| 99国产精品一区二区三区| 十分钟在线观看高清视频www| 人人妻人人澡人人爽人人夜夜| 超碰97精品在线观看| 亚洲精品国产色婷婷电影| 亚洲黑人精品在线| 成人国产一区最新在线观看| 一区二区三区国产精品乱码| 狂野欧美激情性xxxx| 一区在线观看完整版| 久久性视频一级片| 高清毛片免费观看视频网站 | 亚洲av片天天在线观看| 国产欧美日韩综合在线一区二区| 亚洲成人国产一区在线观看| 一级黄色大片毛片| 午夜91福利影院| 欧美成狂野欧美在线观看| 欧美黄色片欧美黄色片| 黄网站色视频无遮挡免费观看| 国产高清videossex| 黑人猛操日本美女一级片| 黄色怎么调成土黄色| xxxhd国产人妻xxx| 黄色怎么调成土黄色| 黑人欧美特级aaaaaa片| 国产aⅴ精品一区二区三区波| av一本久久久久| 欧美成狂野欧美在线观看| 国产一区二区激情短视频| 乱人伦中国视频| 日韩免费高清中文字幕av| 国产单亲对白刺激| 满18在线观看网站| 国产淫语在线视频| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看| 大片电影免费在线观看免费| 久久中文字幕一级| av中文乱码字幕在线| 一本综合久久免费| 亚洲一区高清亚洲精品| 国产精品av久久久久免费| 精品亚洲成国产av| av电影中文网址| 亚洲人成伊人成综合网2020| 99国产综合亚洲精品| 婷婷精品国产亚洲av在线 | 国产91精品成人一区二区三区| 日韩中文字幕欧美一区二区| 黄片播放在线免费| 日韩有码中文字幕| 亚洲av日韩精品久久久久久密| 丝瓜视频免费看黄片| 亚洲一区二区三区不卡视频| 大码成人一级视频| 亚洲精华国产精华精| 少妇被粗大的猛进出69影院| 超碰97精品在线观看| 一级毛片高清免费大全| 欧美黄色淫秽网站| 高清黄色对白视频在线免费看| 国产又爽黄色视频| av免费在线观看网站| 9色porny在线观看| 视频在线观看一区二区三区| 一本一本久久a久久精品综合妖精| 女人被躁到高潮嗷嗷叫费观| 91精品国产国语对白视频| 久久久精品国产亚洲av高清涩受| 少妇裸体淫交视频免费看高清 | 免费在线观看视频国产中文字幕亚洲| 婷婷丁香在线五月| 男人的好看免费观看在线视频 | 欧美激情高清一区二区三区| 色在线成人网| 9热在线视频观看99| 精品第一国产精品| 一进一出抽搐动态| 黄频高清免费视频| av视频免费观看在线观看| 一区二区三区激情视频| 脱女人内裤的视频| 亚洲免费av在线视频| 久久天躁狠狠躁夜夜2o2o| 亚洲成人国产一区在线观看| 婷婷成人精品国产| 色播在线永久视频| 在线av久久热| 18在线观看网站| 女性生殖器流出的白浆| 免费少妇av软件| 国产亚洲av高清不卡| 免费一级毛片在线播放高清视频 | 国产高清国产精品国产三级| 国产精品偷伦视频观看了| 午夜福利在线免费观看网站| 精品一品国产午夜福利视频| 国产成人欧美| 成人永久免费在线观看视频| 精品久久蜜臀av无| 一边摸一边抽搐一进一小说 | 99热国产这里只有精品6| 国产精品av久久久久免费| 1024香蕉在线观看| 精品人妻1区二区| 久久国产精品影院| 男男h啪啪无遮挡| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| a级毛片在线看网站| 成人国语在线视频| 欧美精品一区二区免费开放| 国产男女超爽视频在线观看| 亚洲三区欧美一区| 欧美亚洲日本最大视频资源| 成人国产一区最新在线观看| 乱人伦中国视频| 国产淫语在线视频| 老汉色av国产亚洲站长工具| 天堂动漫精品| 亚洲精品久久成人aⅴ小说| 日韩制服丝袜自拍偷拍| 建设人人有责人人尽责人人享有的| 国产精品久久久久成人av| 黄色怎么调成土黄色| 法律面前人人平等表现在哪些方面| 三级毛片av免费| 桃红色精品国产亚洲av| 狠狠狠狠99中文字幕| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一出视频| 亚洲综合色网址| 欧美久久黑人一区二区| 色播在线永久视频| 手机成人av网站| 国产精品一区二区精品视频观看| 激情视频va一区二区三区| videos熟女内射| 精品国产美女av久久久久小说| 国产成人系列免费观看| www.自偷自拍.com| 在线观看www视频免费| 女性被躁到高潮视频| 窝窝影院91人妻| 国产精品一区二区在线不卡| 婷婷丁香在线五月| 精品国产一区二区久久| 在线观看免费日韩欧美大片| 男女免费视频国产| 亚洲中文av在线| 午夜福利,免费看| 男女免费视频国产| 高清在线国产一区| 一级黄色大片毛片| 人妻 亚洲 视频| 精品一区二区三区视频在线观看免费 | 在线观看一区二区三区激情| 少妇裸体淫交视频免费看高清 | 另类亚洲欧美激情| 91成人精品电影| 久久久久久免费高清国产稀缺| 免费日韩欧美在线观看| 久久国产精品人妻蜜桃| 三级毛片av免费| 欧美精品人与动牲交sv欧美| 色94色欧美一区二区| www.999成人在线观看| 亚洲视频免费观看视频| 久久狼人影院| 国产免费现黄频在线看| 99久久精品国产亚洲精品| 操出白浆在线播放| 成年人黄色毛片网站| 国产精品 国内视频| 狠狠狠狠99中文字幕| 久久人妻福利社区极品人妻图片| 90打野战视频偷拍视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产在视频线精品| 在线国产一区二区在线| 在线观看免费高清a一片| 丰满迷人的少妇在线观看| 久久久久精品国产欧美久久久| 国产精品免费大片| 亚洲综合色网址| 国产成人欧美在线观看 | 欧美激情久久久久久爽电影 | 十八禁高潮呻吟视频| 精品人妻1区二区| 99久久人妻综合| 欧美+亚洲+日韩+国产| 亚洲av成人不卡在线观看播放网| 久久久久久人人人人人| 久久婷婷成人综合色麻豆| 999久久久精品免费观看国产| 国产一区二区三区视频了| 亚洲精品国产区一区二| 久久久精品区二区三区| 在线观看www视频免费| 亚洲国产欧美日韩在线播放| 久久久久久人人人人人| 18禁观看日本| 国产精品二区激情视频| 最新的欧美精品一区二区| 大陆偷拍与自拍| 亚洲精品久久成人aⅴ小说| 亚洲国产看品久久| 人妻 亚洲 视频| 国产一卡二卡三卡精品| 久久中文看片网| 精品人妻熟女毛片av久久网站| 亚洲久久久国产精品| 女人久久www免费人成看片| 在线观看免费午夜福利视频| 久久精品国产99精品国产亚洲性色 | 久久国产精品大桥未久av| 少妇裸体淫交视频免费看高清 | 丝袜美腿诱惑在线| 亚洲一码二码三码区别大吗| 国产精品 国内视频| 黄片大片在线免费观看| 香蕉国产在线看| 成人黄色视频免费在线看| 一级作爱视频免费观看| 女人精品久久久久毛片| 老司机午夜福利在线观看视频| 亚洲国产中文字幕在线视频| 国产精品免费大片| 亚洲情色 制服丝袜| 美女福利国产在线| 亚洲自偷自拍图片 自拍| 国产精品98久久久久久宅男小说| 激情视频va一区二区三区| 久久人人97超碰香蕉20202| 极品少妇高潮喷水抽搐| 精品视频人人做人人爽| 国产精品免费一区二区三区在线 | 中亚洲国语对白在线视频| 久久国产精品人妻蜜桃| 丰满饥渴人妻一区二区三| 精品视频人人做人人爽| cao死你这个sao货| 亚洲综合色网址| 亚洲午夜精品一区,二区,三区| 亚洲国产看品久久| 亚洲熟妇熟女久久| 久久久久精品人妻al黑| 亚洲av第一区精品v没综合| 久久九九热精品免费| 99久久精品国产亚洲精品| 在线播放国产精品三级| 美女福利国产在线| 国产乱人伦免费视频| 国产一区二区三区视频了| 精品久久久久久,| 日韩成人在线观看一区二区三区| 精品人妻1区二区| 91字幕亚洲| 婷婷精品国产亚洲av在线 | 国产精品 欧美亚洲| 999久久久国产精品视频| 国产精品一区二区在线观看99| 国产成人免费观看mmmm| 精品久久久精品久久久| 欧美av亚洲av综合av国产av| 在线看a的网站| 久久精品国产99精品国产亚洲性色 | 久久久精品国产亚洲av高清涩受| 成人三级做爰电影| 脱女人内裤的视频| 国产精品久久久久成人av| 不卡一级毛片| avwww免费| 黑丝袜美女国产一区| 久久久久国内视频| 欧美丝袜亚洲另类 | 啦啦啦在线免费观看视频4| 手机成人av网站| 99久久人妻综合| 国产精品免费一区二区三区在线 | 男人的好看免费观看在线视频 | 国产成+人综合+亚洲专区| 999久久久精品免费观看国产| 免费少妇av软件| 久久久久久久午夜电影 | 美女高潮到喷水免费观看| 最近最新免费中文字幕在线| 日本撒尿小便嘘嘘汇集6| 黄片播放在线免费| 成年人午夜在线观看视频| 国产成人欧美| 国产蜜桃级精品一区二区三区 | 制服人妻中文乱码| 国产亚洲精品一区二区www | 日韩视频一区二区在线观看| 18在线观看网站| 亚洲综合色网址| 王馨瑶露胸无遮挡在线观看| 日韩中文字幕欧美一区二区| 亚洲欧美一区二区三区久久| 亚洲欧美日韩另类电影网站| 男女午夜视频在线观看| 国产欧美日韩精品亚洲av| 日韩欧美免费精品| 18禁黄网站禁片午夜丰满| 国产精品一区二区免费欧美| 色婷婷久久久亚洲欧美| 老熟妇仑乱视频hdxx| 精品乱码久久久久久99久播| 免费人成视频x8x8入口观看| 国产麻豆69| 我的亚洲天堂| 国产精品亚洲一级av第二区| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女 | 极品教师在线免费播放| 一进一出抽搐动态| 人人妻人人添人人爽欧美一区卜| 亚洲专区国产一区二区| 午夜福利欧美成人| 99国产综合亚洲精品| 一级作爱视频免费观看| 国产精品一区二区免费欧美| 少妇 在线观看| 在线观看免费视频网站a站| 免费观看人在逋| 精品国产一区二区久久| 国产激情欧美一区二区| 每晚都被弄得嗷嗷叫到高潮| 欧美激情 高清一区二区三区| 亚洲一区二区三区欧美精品| 亚洲精品国产一区二区精华液| av不卡在线播放| 亚洲少妇的诱惑av| 人人妻人人澡人人爽人人夜夜| 国产精品美女特级片免费视频播放器 | 99久久人妻综合| 成人免费观看视频高清| 国产欧美日韩一区二区精品| 久久人人爽av亚洲精品天堂| 亚洲成人免费电影在线观看| 91麻豆精品激情在线观看国产 | 欧美日本中文国产一区发布| 国产精华一区二区三区| 久久热在线av| 日韩中文字幕欧美一区二区| a级片在线免费高清观看视频| 日韩人妻精品一区2区三区| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 99热国产这里只有精品6| 99精品在免费线老司机午夜| 欧美 日韩 精品 国产| 一二三四社区在线视频社区8| 成人黄色视频免费在线看| 一级毛片女人18水好多| 成人av一区二区三区在线看| 黄色视频不卡| 精品国产一区二区久久| 亚洲一区二区三区不卡视频| 天天影视国产精品| а√天堂www在线а√下载 | 中文字幕制服av| 一级片免费观看大全| 成年人午夜在线观看视频| 国产精品.久久久| 丰满人妻熟妇乱又伦精品不卡| 伊人久久大香线蕉亚洲五| 在线观看午夜福利视频| 免费一级毛片在线播放高清视频 | x7x7x7水蜜桃| 女性被躁到高潮视频| 丰满的人妻完整版| 久久性视频一级片| 男男h啪啪无遮挡| 国产在线观看jvid| 亚洲五月天丁香| 午夜免费鲁丝| 婷婷精品国产亚洲av在线 | 一级毛片女人18水好多| 日韩制服丝袜自拍偷拍| 国产伦人伦偷精品视频| 老司机福利观看| 侵犯人妻中文字幕一二三四区| 亚洲久久久国产精品| 极品人妻少妇av视频| 色老头精品视频在线观看| 精品国产美女av久久久久小说| 久久久久久亚洲精品国产蜜桃av| 亚洲伊人色综图| 欧美人与性动交α欧美精品济南到| 国产精品免费视频内射| 亚洲精品中文字幕一二三四区| 日日摸夜夜添夜夜添小说| 国产精品国产av在线观看| 两人在一起打扑克的视频| 亚洲国产欧美日韩在线播放| 色精品久久人妻99蜜桃| www日本在线高清视频| 天堂√8在线中文| 欧美国产精品一级二级三级| 欧美乱色亚洲激情| 午夜福利视频在线观看免费| a级毛片在线看网站| 亚洲精品av麻豆狂野| 啦啦啦免费观看视频1| 在线观看免费日韩欧美大片| 美女福利国产在线| 欧美在线黄色| 欧美乱妇无乱码| av电影中文网址| 国产91精品成人一区二区三区| 99热国产这里只有精品6| 757午夜福利合集在线观看| 深夜精品福利| 首页视频小说图片口味搜索| 曰老女人黄片| 老汉色av国产亚洲站长工具| 大码成人一级视频| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 黑人欧美特级aaaaaa片| 在线视频色国产色| 丝袜人妻中文字幕| 香蕉久久夜色| 欧美黑人欧美精品刺激| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 18禁美女被吸乳视频| 亚洲在线自拍视频| 欧美精品高潮呻吟av久久| 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频| 欧美黑人欧美精品刺激| 成人三级做爰电影| 91字幕亚洲| 最新的欧美精品一区二区| 欧美乱色亚洲激情| 久久久久精品人妻al黑| 国产精品久久电影中文字幕 | 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| ponron亚洲| 久久精品成人免费网站| 9191精品国产免费久久| 亚洲av美国av| 欧洲精品卡2卡3卡4卡5卡区| 国产精品影院久久| 国产色视频综合| 欧美日韩精品网址| 黑丝袜美女国产一区| 黄色a级毛片大全视频| av欧美777| 十分钟在线观看高清视频www| 悠悠久久av| 最近最新免费中文字幕在线| 久久精品亚洲精品国产色婷小说| 岛国毛片在线播放| 久久国产精品人妻蜜桃| 成年动漫av网址| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| 国产黄色免费在线视频| 亚洲va日本ⅴa欧美va伊人久久| 五月开心婷婷网| 91老司机精品| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| 飞空精品影院首页| 桃红色精品国产亚洲av| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 国产欧美日韩精品亚洲av| 久久ye,这里只有精品| avwww免费|