• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-matched second-harmonic generation in hybrid polymer-LN waveguides

    2022-10-26 09:54:30ZijieWang王梓杰BodongLiu劉伯東ChunhuaWang王春華andHuakangYu虞華康
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王梓

    Zijie Wang(王梓杰) Bodong Liu(劉伯東) Chunhua Wang(王春華) and Huakang Yu(虞華康)

    1School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510641,China

    2School of Electrical Engineering and Intelligentization,Dongguan University of Technology,Dongguan 523808,China

    3China–Singapore International Joint Research Institute,Guangzhou Knowledge City,Guangzhou 510663,China

    Keywords: nonlinear waveguides,super-mode theory,phase matching,second harmonic generation

    1. Introduction

    Nonlinear optical conversion is crucial for modern photonics.[1,2]Along with advance in high-profile fabrication techniques,various platforms of integrated photonics are rapidly developed in the past decades, giving rise to diverse on-chip applications, including data communication, optical sensors, and optical interconnection.[3–6]Generally, on-chip devices could tightly confine the light field within a small volume, leading to dramatically enhanced light–matter interactions with superior performance.[7]In particular,efficient nonlinear frequency conversions can be achieved in photonic integration platforms composed of materials with strong secondorder nonlinearity,such as LN and AlN.[8–11]

    It is known that the realization of phase-matching condition is vital for nonlinear optical conversions, such as second-harmonic generation.[1,2]For nonlinear optical processes inside photonic waveguides, several strategies for realizing phase-matching condition have been proposed and demonstrated, including quasi-phase matching (QPM),[12–14]birefringence phase matching (BPM),[15]and modal phase matching (MPM).[16]QPM is realized by domain patterning of the nonlinear susceptibility of waveguide, but limited by the domain size for further integration into photonic circuits. Meanwhile, BPM is only available for phase matching at specific wavelength.[15]For the traditional MPM method,phase-matching condition is usually achieved between zeroorder mode of fundamental wavelength and high-order mode of second harmonics, the distinct spatial distributions between which would correspond to poor overlap and prevent high conversion efficiency. Various nanostructures have been demonstrated to improve the spatial overlap integral, such as ring resonators, high-quality photonic cavities, and optical waveguides.[17–28]Notably, high-quality thin-film lithium niobate on insulator (LNOI) is now commercially available,which would significantly extend associated applications in on-chip nonlinear optics.[11]To be noted, a novel special waveguide structure, namely reversed-polarization doublelayer LN waveguide, was proposed with large modal overlap integral and high efficient nonlinear frequency conversion.[29]

    Based on LNOI, hybrid nanophotonic waveguide has been proposed by introducing a fabrication-friendly material (such as polymer, TiO2, silicon) on the top of LN substrate.[30–34]And new phase-matching condition can be achieved between a fundamental mode at the fundamental wavelength and a high-order mode at the second harmonics. It is noted that such hybrid waveguiding structure can be treated as an asymmetric coupled waveguide,composed of the top polymer waveguide (χ(2)=0) and the bottom thinfilm LN waveguide (χ(2)/=0). Inside such coupled waveguides,guided waves would split into even and odd modes for the fundamental waveguiding mode, and the superposition of these supermodes would lead to energy exchanging between the two waveguides.[35–37]Notably, the rise of supermodes enables new schemes for the phase-matched nonlinear optical process, since extra momentum can be obtained during the coupling processes both for the fundamental and secondharmonic waves.According to super-mode theory,this mechanism of phase matching has been implemented inside symmetric coupled nonlinear optical waveguides with identical material,while enabling large spatial modal overlap factors.[38–40]However, restricted by the fabrication technique of LN material, it is difficult to construct coupled waveguides with the same LN materials. Therefore, it is natural to bring in mind that one could construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon,on top of high-quality LN thin film.[33,34]Such waveguide structure could be readily fabricated and promising for excellent optical performance. Considering the low optical loss of polymer in the visible range, we prefer to construct polymer-LN semi-nonlinear waveguide in this paper.

    According to super-mode theory, we investigate phasematched second-harmonic generation inside a hybrid polymer-LN semi-nonlinear waveguide, composed of the top polymer waveguide and the bottom thin-film LN waveguide. Geometric parameters of the hybrid waveguide were carefully engineered and optimized parameters were obtained numerically.Phase-matching conditions were closely investigated with corresponding modal overlap integrals calculated.

    First, we look back at the phase-matching condition of SHG in a symmetric coupled waveguide structure. Here, we take SHG,i.e.,ω2= 2ω1, as an illustration. According to super-mode theory,[35–37]fundamental waveguiding mode of each single waveguide would split into a pair of modes,i.e.,even (symmetric) or odd (antisymmetric) modes, as a result of perturbation-induced coupling interaction between the two waveguides. The combination of even and odd modes in the coupled waveguide structure would lead to power exchange between the two waveguides. Additional possibilities in realizing phase matching become available by employing the emerging even and odd fundamental modes in nonlinear optical interactions processes. We have listed all the six possible phase-matching conditions as given in Table 1.[38]

    2. Theory

    Table 1. Phase-matching condition of SHG in coupled waveguides(from Ref.[38]).

    whereε0andcare the permittivity and light speed in vacuum;n1andn2represent the effective modal refractive indices of the pump and SHG;λis the pump wavelength;deffis the effective nonlinear susceptibility;Srepresents effective modal overlap integral between the pump and SHG modes over the effective nonlinear optical region,[23,42]

    The overlap integralSbecomes considerably large due to the identical spatial distributions between the fundamental pump modes and SHG fundamental modes inside the nonlinear optical waveguide. However,it is noted that phase-matching conditions 4–6(as listed in Table 1)are not applicable in the symmetric coupled waveguides, which can be easily deduced as one checks the mathematical symmetry properties of modal overlap integrals[see Eq.(2)].

    For asymmetric coupled waveguides, the prohibition of phase-matching conditions 4–6 could be removed so as to provide additional possibility in realizing phase matching beyond conventional methods. As mentioned before, it is easy to construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon, on top of high-quality LN thin-film.[31–34]Such waveguide structure could be readily fabricated and promising for excellent optical performance.

    Here we investigate the semi-nonlinear waveguide composed of a polymer waveguide (rectangular cross section) on the top and thin-film LN on the bottom. The reason to choose polymer is listed as follows. First,due to the relentless desire for high-performance integrated optical devices, some excellent polymers have been available with a high refractive index closed to LN,which is promising for tight optical confinement and modal splitting inside the composite waveguide structure.Second, nanofabrication techniques for polymer have been well-developed with high precision in the photonic industry nowadays, including laser direct writing, ultra-violet (UV)lithography, and nanoimprint lithography. Third, another advantage is the low absorption loss of polymer at visible wavelength,compared with silicon.[34]To be pointed out,the polymer is generally amorphous with its corresponding secondorder susceptibilityχ(2)to be zero. To reflect such asymmetric profile ofχ(2), the integral regions of numerator and denominator,labeled as subscripts in Eq.(2),are thus different.And nonlinear overlap integral becomes significant inside such asymmetric coupled waveguide,making phase-matching conditions 4–6 applicable inside such asymmetric coupled waveguide. The schematic of a polymer-LN semi-nonlinear waveguide is shown in Fig.1. The high-quality LNOI platform consists of anX-cut LN thin film and SiO2buried layer. A rectangular polymer waveguide is located directly based on the top of LNOI.Figure 1 shows the geometric parameters of the hybrid waveguide,including polymer waveguide heighth1,polymer waveguide widthw, and LN heighth2. HereX-cut configuration of LNOI with waveguide direction alongYcrystal axis of LN was chosen in order to make use of second-order susceptibilities,d31(~4.3 pm/V)andd33(~27 pm/V)of LN.Phase-matching condition is numerically investigated in the following context by carefully tuning the structure parameters of this hybrid polymer-LN waveguide.

    Fig.1. Schematic structure of the hybrid polymer-LN waveguide. The bottom is a thick layer of silica(gray),the middle is an X-cut LN thin film(light blue),and the top is a thin polymer waveguide(dark blue).

    3. Simulation results and discussion

    In order to implement phase-matching conditions 4–6 as listed in Table 1, one should carefully engineer the waveguide structural parameters so as to obtain bound modes for both pump and SHG wavelengths.[33]As indicated in our previous paper,[38]it is invalid to use conventional coupled mode theory since slowly varying envelope approximation is no more applicable for such hybrid waveguides. Instead, a finite-element method is adopted here in order to investigate the optical modes of hybrid coupled waveguides in a straightforward manner.[38]Refractive indices of lithium niobate were extracted from the open database, while the refractive index of the polymer was set as 2.15 so as to have considerable intra-coupling effects between polymer and LN thin film. And waveguide structure parameters were set asw=4 μm,h1=0.401 μm, andh2=0.4 μm, considering the facility of mature fabrication condition and acquiring the phase-matching condition. We firstly examine the possibility of phase matching between the TM01-like,TE00-like,and TE01-like modes at the pump wavelengthsλpranging from 800 nm to 1400 nm.According to the super-mode theory, TE00-like modes could be identified as fundamental even modes, while TM01-like and TE01-like modes could be identified as fundamental odd modes. As shown in Fig.2,the effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes)were calculated as a function of wavelength.

    Fig. 2. Simulated effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes) as a function of wavelength. Effective refractive indices of the low-order waveguide modes at both pump wavelengths(TM01-like and TE00-like modes)and SHG wavelengths(TE01-like modes),and the inset(i)and inset(ii)show two enlarged phase-matching cases. The unit a.u. is short for arbitrary units.

    Apparently,the intersecting points of the curves indicate phase matching of interacting modes. The inset (i) of Fig. 2 shows a detailed phase matching occurring between TM01-like mode at 911 nm and TE01-like mode at 455.5 nm. The modal profile of its largest electric field component (Ey) of TM01-like mode at 911 nm is plotted at the top of Fig. 3(a).It is easily seen that electric fieldEyis distributed in polymersection and LN-section with inversed polarity, which can be regarded as an odd mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component (Ez) of TE01-like mode at 455.5 nm is plotted at the bottom of Fig. 3(a). Similarly, TE01-like mode at 455.5 nm can be regarded as an odd mode. This case corresponds to phase-matching conditions 5 as listed in Table 1. Though theEycomponent of the TM01-like mode at 911 nm and theEzcomponent of the TE01-like mode at 455.5 nm are both with the inverse polarity between polymer area and LN area, the net modal overlap integral can be significant,due to the asymmetric profile ofχ(2)in the hybrid waveguide. The distribution curves of main electric field components alongxdirection are illustrated in Fig. 3(b), where dark blue area represents polymer waveguide and light blue area represents LN.And one may easily find that the spatial distributions of the two main electric fields are identical in the LN layer, which would lead to a considerably large modal overlap integral as predicted by the theory. From this point,phase-matching condition 5 is now achieved. The calculated modal overlap integralSis 0.365 and the effective modal areaAeffis 9.92 μm2.In this case,for a lossless waveguide without pumping depletion, the normalized conversion efficiencyηis estimated to be~9.11%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 0.09% W-1for 1-mm-long waveguide. To be mentioned here,the nonlinearity coefficientd31,rather thand33,is used here because the main electric field component of the 911-nm TM01-like isEyinstead ofEz. However,it is difficult to utilize the largest nonlinearity coefficient during the nonlinear process due to the largest electric field component of TM01-like mode at 911 nm isEyinstead ofEz.

    Fig.3. Simulated modal profiles: (a)the modal profiles of the largest electric field components of 911-nm TM01-like(top)and 455.5-nm TE01-like(bottom), and(b)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line) and SHG (blue line) wavelengths. (c) The mode profiles of the largest electric field components of 1320-nm quasi-TE00 (top) and 660-nm quasi-TE01 (bottom),and(d)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line)and SHG(blue line)wavelengths.

    Another phase-matching point is found between TE00-like mode at 1320 nm and TE01-like mode at 660 nm,as shown in the inset (ii) of Fig. 2. The modal profile of its largest electric field component (Ez) of TE00-like mode at 1320 nm is plotted at the top of Fig.3(c). It is easily seen that the polarity of electric fieldEzis the same in both the polymer-section and LN-section,corresponding to an even mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component(Ez)of TE01-like mode at 660 nm is plotted at the bottom of Fig. 3(c). Similarly, TE01-like mode at 660 nm can be regarded as an odd mode. The distribution curves of main electric field components along the vertical direction (i.e., alongxaxis) of the waveguide are illustrated in Fig. 3(d). Again, the net modal overlap integral between the modes is calculated to be 0.299 with effective modal area of 8.77 μm2. To be pointed out, here the largest nonlinear coefficient,namelyd33is utilized,contributing to more efficient nonlinear optical conversion. Indeed, we obtain the normalized conversion efficiencyηas high as 148%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 1.48%W-1for a 1-mm-long waveguide.This value is much higher(~300 times) than reported SHG efficiency in hybrid polymer-LN waveguide,[33]showing the advantage of our design presented in this paper. Recalling Eq.(1),it is reasonable for the larger conversion efficiency, since we have a largerχ(2)nonlinear coefficient (27 pm/Vversus-4.3 pm/V), larger modal overlap integralS(0.299versus0.14),and smaller effective modal areaAeff(8.77 μm2versus20.3 μm2).

    Besides, we have fulfilled the phase-matching condition around 1550 nm by sweeping the height of hybrid waveguide.The phase-matching condition was realized between TM01-like mode at 1550 nm and TE01-like mode at 775 nm, withh1=425 nm,w=4 μm, andh2=0.4 μm. To be noted, the largest electric field component of TM01-like mode at 1550 nm isEy, and the largest electric field component of TE01-like mode at 775 nm isEz. Therefore, an effective nonlinear susceptibilityd31is utilized. And the corresponding modal overlap integralSis calculated to be 0.294 with effective modal area of 8.9 μm2. For a lossless waveguide without pumping depletion,the normalized conversion efficiencyηis estimated to be 2.75%W-1·cm-2.

    Fig. 4. The sensitivity of phase-matching condition 6 on geometric parameters. Effective refractive indices of the modes (inset (ii) of Fig. 2) at both wavelengths varying with(a)polymer waveguide height,h1 (with fixed w=4 μm and h2 =400 nm)and(b)width,w(with fixed h1 =401 nm and h2=400 nm).

    We also investigated the structural sensitivity of above phase-matching condition on geometric parameters(i.e.,polymer waveguide heighth1and widthw) of the hybrid waveguide. For TE00-like mode at 1320 nm and TE01-like mode at 660 nm,dispersion relationships as functions of the waveguide heighth1and the waveguide widthware shown in Figs.4(a)and 4(b). As shown in Fig. 4(a), the effective modal refractive indices of TE00-like mode at 1320 nm increase by~0.001 when the waveguide heighth1changes from 400 nm to 405 nm. However,the effective modal refractive indices of TE00-like mode at 1320 nm increase only by~0.0001 when the waveguide widthwchanges from 4000 nm to 4050 nm,as shown in Fig. 4(b). Apparently, the modal refractive indices vary more slowly with the change of waveguide width. This is benefited from the larger waveguide dimension inzdirection (~4 μm) thanxdirection (~0.4 μm). Therefore, it indicates that one is more convenient to engineer the width than the height of the polymer waveguide for detuning the phasematching condition. And the relatively large value (micrometer scale)of polymer waveguide width significantly releases the difficulty of polymer fabrication. The proposed waveguide holds the fabrication feasibility and is promising for future onchip efficient nonlinear conversion devices.

    4. Conclusion

    In conclusion, we have presented a simple hybrid polymer-LN semi-nonlinear waveguide to realize efficient onchip SHG by directly constructing polymer waveguide on theX-cut LNOI.Both symmetric(even)and antisymmetric(odd)modes of the pump and SHG waves in the hybrid waveguide were employed to achieve phase matching with large modal overlap. The largest nonlinear coefficient, namelyd33, could be utilized for phase matching between a fundamental even(TE00-like) mode at 1320 nm and a fundamental odd (TE01-like)mode at 660 nm,with an efficient calculated normalized conversion efficiency of 148% W-1·cm-2. Considering the fabrication feasibility of such a hybrid waveguide with features including etchless, large dimension, and low structural sensitivity, we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91850107 and 12174116),the National Key Research and Development Program of China (Grant No. 2018YFA0306200), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201904020013),the Science and Technology Project of Guangdong Province,China (Grant No. 2020B010190001), and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    王梓
    我和恐龍捉迷藏
    哪里最舒服
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《花月夜》
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《精靈瀑布》
    中國寶玉石(2020年4期)2020-09-23 07:45:54
    任家萱?楊子騰?王梓丞
    哄娃神器
    挑食的小怪物
    那山,那花,那水
    童話世界(2019年17期)2019-07-04 15:15:44
    雪后的校園
    亚洲成a人片在线一区二区| 无人区码免费观看不卡| 亚洲黑人精品在线| 国产伦人伦偷精品视频| 国产精品秋霞免费鲁丝片| 99riav亚洲国产免费| 69精品国产乱码久久久| 可以在线观看毛片的网站| 国语自产精品视频在线第100页| 999久久久国产精品视频| av视频免费观看在线观看| 淫秽高清视频在线观看| 美女 人体艺术 gogo| 高潮久久久久久久久久久不卡| 久热爱精品视频在线9| 搡老岳熟女国产| 久久久久久大精品| 18禁黄网站禁片午夜丰满| xxx96com| 国产一区二区三区视频了| 两个人免费观看高清视频| 俄罗斯特黄特色一大片| 亚洲精品久久国产高清桃花| 国内毛片毛片毛片毛片毛片| 精品久久久久久久毛片微露脸| 岛国视频午夜一区免费看| 国产精品久久久人人做人人爽| 自线自在国产av| 国产一区二区三区视频了| 精品久久久精品久久久| 日韩欧美国产在线观看| √禁漫天堂资源中文www| 日本三级黄在线观看| 欧美国产日韩亚洲一区| 日本三级黄在线观看| 伦理电影免费视频| 欧美大码av| 人妻丰满熟妇av一区二区三区| 国产精品一区二区免费欧美| 久久国产亚洲av麻豆专区| 欧美精品啪啪一区二区三区| 999精品在线视频| 久久久久亚洲av毛片大全| 欧美日本中文国产一区发布| 国产精华一区二区三区| 九色国产91popny在线| 一二三四在线观看免费中文在| 巨乳人妻的诱惑在线观看| 日韩欧美免费精品| 性欧美人与动物交配| 亚洲中文日韩欧美视频| 亚洲美女黄片视频| 大型av网站在线播放| 少妇的丰满在线观看| netflix在线观看网站| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女| 夜夜夜夜夜久久久久| 9191精品国产免费久久| 国产精品影院久久| 91av网站免费观看| 国产精品久久电影中文字幕| 亚洲熟女毛片儿| 日韩欧美一区二区三区在线观看| 亚洲人成电影观看| 日本在线视频免费播放| 国产片内射在线| 宅男免费午夜| 亚洲无线在线观看| 日韩欧美免费精品| 给我免费播放毛片高清在线观看| 亚洲精品粉嫩美女一区| 黄色 视频免费看| 午夜福利欧美成人| 91精品三级在线观看| 色播亚洲综合网| 在线观看免费日韩欧美大片| 夜夜夜夜夜久久久久| 日日夜夜操网爽| 欧美绝顶高潮抽搐喷水| 我的亚洲天堂| 成年版毛片免费区| 黑人巨大精品欧美一区二区蜜桃| 国产精品一区二区三区四区久久 | 波多野结衣巨乳人妻| 久久久久国产精品人妻aⅴ院| 12—13女人毛片做爰片一| 悠悠久久av| 韩国精品一区二区三区| 国产xxxxx性猛交| 99在线人妻在线中文字幕| 国产在线观看jvid| 国产又色又爽无遮挡免费看| 纯流量卡能插随身wifi吗| 男人舔女人的私密视频| 午夜福利18| 国产不卡一卡二| 国产主播在线观看一区二区| 国产精品二区激情视频| 亚洲中文av在线| 天天添夜夜摸| 亚洲欧美一区二区三区黑人| 国产av精品麻豆| 久久精品人人爽人人爽视色| 国产一区二区三区在线臀色熟女| 亚洲七黄色美女视频| 天堂√8在线中文| 亚洲七黄色美女视频| 日韩av在线大香蕉| 亚洲五月天丁香| 精品熟女少妇八av免费久了| 操美女的视频在线观看| 在线播放国产精品三级| 成人18禁在线播放| 国产av一区在线观看免费| 69av精品久久久久久| 狠狠狠狠99中文字幕| 国产精品 国内视频| 一区在线观看完整版| 法律面前人人平等表现在哪些方面| 日本撒尿小便嘘嘘汇集6| svipshipincom国产片| 高清在线国产一区| 成人亚洲精品av一区二区| 精品久久蜜臀av无| 亚洲av电影不卡..在线观看| 亚洲欧美精品综合久久99| 少妇的丰满在线观看| 人妻久久中文字幕网| 亚洲精品国产色婷婷电影| 非洲黑人性xxxx精品又粗又长| 日韩一卡2卡3卡4卡2021年| 日本三级黄在线观看| 精品高清国产在线一区| 国产成人av激情在线播放| 免费观看精品视频网站| 久久国产亚洲av麻豆专区| 亚洲av片天天在线观看| 日韩大尺度精品在线看网址 | 国产成人欧美| 亚洲精品在线美女| 欧美亚洲日本最大视频资源| 日本免费一区二区三区高清不卡 | 日韩有码中文字幕| 国产成人一区二区三区免费视频网站| 亚洲av电影不卡..在线观看| 9191精品国产免费久久| 少妇粗大呻吟视频| 国产91精品成人一区二区三区| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区免费欧美| 国产97色在线日韩免费| 精品一区二区三区四区五区乱码| 校园春色视频在线观看| 欧美最黄视频在线播放免费| 亚洲av成人一区二区三| 国产一区二区三区视频了| 欧美在线黄色| 十八禁网站免费在线| 中亚洲国语对白在线视频| 久久草成人影院| 看片在线看免费视频| 国产午夜福利久久久久久| 久久久久久人人人人人| 999久久久国产精品视频| 在线视频色国产色| 久久久久久国产a免费观看| 欧美在线一区亚洲| 在线av久久热| 无限看片的www在线观看| 日韩中文字幕欧美一区二区| 亚洲自拍偷在线| 日韩三级视频一区二区三区| 午夜亚洲福利在线播放| 久久午夜亚洲精品久久| 亚洲avbb在线观看| 亚洲av成人一区二区三| 天天躁夜夜躁狠狠躁躁| 亚洲性夜色夜夜综合| 国产亚洲欧美精品永久| 999久久久国产精品视频| 搡老妇女老女人老熟妇| av天堂久久9| 国产欧美日韩一区二区三区在线| 1024视频免费在线观看| 国产亚洲精品av在线| 国产精品香港三级国产av潘金莲| 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 男女床上黄色一级片免费看| 欧美成人免费av一区二区三区| 亚洲专区国产一区二区| 午夜福利免费观看在线| 亚洲国产精品久久男人天堂| 搡老熟女国产l中国老女人| 久久久国产欧美日韩av| 一夜夜www| 精品无人区乱码1区二区| 超碰成人久久| 女性生殖器流出的白浆| 正在播放国产对白刺激| 免费看a级黄色片| a级毛片在线看网站| 免费在线观看日本一区| 少妇被粗大的猛进出69影院| 十分钟在线观看高清视频www| 一二三四在线观看免费中文在| 国产一区二区在线av高清观看| 久久草成人影院| 在线观看www视频免费| 极品教师在线免费播放| 成人18禁高潮啪啪吃奶动态图| 波多野结衣高清无吗| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 亚洲第一av免费看| 三级毛片av免费| 免费无遮挡裸体视频| 国产精品九九99| 熟女少妇亚洲综合色aaa.| 久久婷婷成人综合色麻豆| 91av网站免费观看| 9色porny在线观看| 亚洲国产精品999在线| 桃红色精品国产亚洲av| 欧美日本视频| 老汉色av国产亚洲站长工具| 多毛熟女@视频| 波多野结衣高清无吗| 久久天躁狠狠躁夜夜2o2o| 久久国产亚洲av麻豆专区| av欧美777| av福利片在线| 亚洲熟女毛片儿| 色尼玛亚洲综合影院| 久久人人97超碰香蕉20202| 免费人成视频x8x8入口观看| 99久久99久久久精品蜜桃| 精品国产美女av久久久久小说| 国产精品秋霞免费鲁丝片| 精品少妇一区二区三区视频日本电影| 久久人妻福利社区极品人妻图片| 看免费av毛片| 他把我摸到了高潮在线观看| 精品午夜福利视频在线观看一区| ponron亚洲| 日韩av在线大香蕉| 欧美乱码精品一区二区三区| 久久久久久国产a免费观看| 国产精品 欧美亚洲| 此物有八面人人有两片| 国产成人影院久久av| 国产伦一二天堂av在线观看| 19禁男女啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 好男人电影高清在线观看| 久久天躁狠狠躁夜夜2o2o| 黑人操中国人逼视频| 亚洲,欧美精品.| 精品欧美一区二区三区在线| 人人妻人人澡欧美一区二区 | 欧美精品亚洲一区二区| 国产亚洲精品久久久久5区| 午夜免费鲁丝| 国产私拍福利视频在线观看| 亚洲av电影不卡..在线观看| 久久国产乱子伦精品免费另类| 国产精华一区二区三区| 一边摸一边抽搐一进一出视频| 啦啦啦 在线观看视频| 午夜久久久在线观看| 此物有八面人人有两片| 99精品久久久久人妻精品| 九色亚洲精品在线播放| 国产成人精品无人区| 久久国产亚洲av麻豆专区| 宅男免费午夜| 亚洲第一电影网av| 成人三级黄色视频| 免费在线观看亚洲国产| 男人舔女人的私密视频| 69精品国产乱码久久久| 一区二区三区激情视频| 亚洲国产精品成人综合色| 久久精品国产综合久久久| 十八禁网站免费在线| 国产精品 欧美亚洲| 午夜福利18| 亚洲人成电影免费在线| 国产午夜福利久久久久久| 69av精品久久久久久| 成人精品一区二区免费| 亚洲精品美女久久久久99蜜臀| svipshipincom国产片| 日韩成人在线观看一区二区三区| 免费不卡黄色视频| 久久久久久人人人人人| 国产熟女午夜一区二区三区| 动漫黄色视频在线观看| 亚洲五月婷婷丁香| 久热爱精品视频在线9| 精品国产乱码久久久久久男人| 日韩大尺度精品在线看网址 | 一级毛片高清免费大全| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 狂野欧美激情性xxxx| 精品电影一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人午夜精品| 久久天躁狠狠躁夜夜2o2o| 天天一区二区日本电影三级 | 亚洲精品一卡2卡三卡4卡5卡| 大陆偷拍与自拍| 免费一级毛片在线播放高清视频 | 欧美日本视频| 嫩草影院精品99| 怎么达到女性高潮| 十八禁网站免费在线| 级片在线观看| 男女做爰动态图高潮gif福利片 | 91成人精品电影| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 欧美日本视频| 亚洲九九香蕉| 成人永久免费在线观看视频| 国产精品精品国产色婷婷| 91精品国产国语对白视频| 亚洲成av片中文字幕在线观看| 久久久久精品国产欧美久久久| 国产又爽黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 最好的美女福利视频网| 黄色片一级片一级黄色片| 欧美日韩黄片免| 视频在线观看一区二区三区| 9热在线视频观看99| 亚洲av第一区精品v没综合| 欧美乱码精品一区二区三区| 亚洲性夜色夜夜综合| 99国产精品99久久久久| 亚洲成av片中文字幕在线观看| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| 最新美女视频免费是黄的| 日韩欧美一区二区三区在线观看| 在线播放国产精品三级| 国产私拍福利视频在线观看| 久久人妻av系列| 日韩欧美一区视频在线观看| www国产在线视频色| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 国产亚洲精品第一综合不卡| 亚洲成a人片在线一区二区| 波多野结衣高清无吗| bbb黄色大片| 日韩免费av在线播放| 真人一进一出gif抽搐免费| 精品国产亚洲在线| 一区在线观看完整版| 亚洲精品国产区一区二| 午夜精品久久久久久毛片777| 夜夜看夜夜爽夜夜摸| 久久久久国内视频| 亚洲中文字幕日韩| 亚洲成av人片免费观看| 女人被躁到高潮嗷嗷叫费观| 免费在线观看黄色视频的| 老熟妇仑乱视频hdxx| 男人操女人黄网站| 国产高清视频在线播放一区| 在线观看日韩欧美| 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 神马国产精品三级电影在线观看 | 久久性视频一级片| 妹子高潮喷水视频| 午夜精品久久久久久毛片777| 免费在线观看影片大全网站| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久性| 香蕉国产在线看| 欧美日韩黄片免| 好男人在线观看高清免费视频 | 免费高清视频大片| 一级毛片精品| 国产成人精品在线电影| 咕卡用的链子| 亚洲精品中文字幕一二三四区| 久久精品亚洲熟妇少妇任你| 一级片免费观看大全| 欧美精品亚洲一区二区| 久久久久九九精品影院| 不卡一级毛片| 无人区码免费观看不卡| 色在线成人网| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 午夜免费鲁丝| 90打野战视频偷拍视频| 搞女人的毛片| 欧美在线一区亚洲| 久久香蕉精品热| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 一本久久中文字幕| 老汉色∧v一级毛片| 两性夫妻黄色片| 亚洲成人久久性| 国产极品粉嫩免费观看在线| 窝窝影院91人妻| 精品国产美女av久久久久小说| 制服人妻中文乱码| 啦啦啦 在线观看视频| 麻豆一二三区av精品| videosex国产| 老司机深夜福利视频在线观看| 最近最新中文字幕大全免费视频| 在线观看66精品国产| 老鸭窝网址在线观看| 一级a爱视频在线免费观看| 午夜福利在线观看吧| 国产精品亚洲一级av第二区| 香蕉国产在线看| 国产精品综合久久久久久久免费 | 亚洲中文字幕一区二区三区有码在线看 | www国产在线视频色| 日韩 欧美 亚洲 中文字幕| √禁漫天堂资源中文www| 一进一出好大好爽视频| 国产精品一区二区在线不卡| www.999成人在线观看| 国产1区2区3区精品| 国产一区二区三区在线臀色熟女| 少妇熟女aⅴ在线视频| av网站免费在线观看视频| 亚洲专区国产一区二区| 男人操女人黄网站| 精品人妻1区二区| 首页视频小说图片口味搜索| 男女做爰动态图高潮gif福利片 | 久久婷婷人人爽人人干人人爱 | 国产精品自产拍在线观看55亚洲| 不卡av一区二区三区| 99国产精品一区二区蜜桃av| 十八禁网站免费在线| 91老司机精品| 国产成人精品在线电影| 搡老熟女国产l中国老女人| 狠狠狠狠99中文字幕| 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 日韩精品青青久久久久久| aaaaa片日本免费| ponron亚洲| 制服诱惑二区| 国语自产精品视频在线第100页| 制服丝袜大香蕉在线| 亚洲av电影不卡..在线观看| 亚洲伊人色综图| 两性夫妻黄色片| 国产乱人伦免费视频| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻丝袜一区二区| 人妻久久中文字幕网| 涩涩av久久男人的天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女毛片儿| 性色av乱码一区二区三区2| 亚洲精品国产色婷婷电影| 国产一区在线观看成人免费| 国产成人一区二区三区免费视频网站| 亚洲国产高清在线一区二区三 | 亚洲 国产 在线| 成年人黄色毛片网站| 亚洲专区国产一区二区| 日韩欧美免费精品| 一区二区三区国产精品乱码| 91精品三级在线观看| 国产精品一区二区在线不卡| 黄色女人牲交| 成人亚洲精品av一区二区| 成人三级黄色视频| 国产单亲对白刺激| 亚洲精品一区av在线观看| 国产精品美女特级片免费视频播放器 | 成人国产综合亚洲| 亚洲一码二码三码区别大吗| 天天一区二区日本电影三级 | 色婷婷久久久亚洲欧美| 国产av精品麻豆| 国产熟女xx| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲熟妇少妇任你| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 亚洲黑人精品在线| 久久久久国产精品人妻aⅴ院| 国产成人精品久久二区二区91| 亚洲一区中文字幕在线| 亚洲七黄色美女视频| 成年版毛片免费区| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| a级毛片在线看网站| 一边摸一边做爽爽视频免费| 一本久久中文字幕| 国产一区二区三区视频了| 久久香蕉激情| 精品电影一区二区在线| 国产成人一区二区三区免费视频网站| 丝袜在线中文字幕| 国产色视频综合| 欧美日韩黄片免| 欧美人与性动交α欧美精品济南到| 精品一区二区三区视频在线观看免费| 十八禁人妻一区二区| 侵犯人妻中文字幕一二三四区| 丝袜人妻中文字幕| 久热爱精品视频在线9| 这个男人来自地球电影免费观看| 国产亚洲精品久久久久久毛片| 91国产中文字幕| 一级毛片女人18水好多| 国产精品久久久久久亚洲av鲁大| 亚洲欧美激情综合另类| 欧美日韩黄片免| 久久精品91无色码中文字幕| 熟妇人妻久久中文字幕3abv| 免费av毛片视频| 后天国语完整版免费观看| 18禁观看日本| 久久久久九九精品影院| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 国产99久久九九免费精品| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av高清一级| 亚洲一区中文字幕在线| 母亲3免费完整高清在线观看| 在线观看66精品国产| 丝袜人妻中文字幕| 亚洲国产高清在线一区二区三 | 日韩欧美一区视频在线观看| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| 淫妇啪啪啪对白视频| 亚洲av成人av| 看片在线看免费视频| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 看黄色毛片网站| 叶爱在线成人免费视频播放| 两性午夜刺激爽爽歪歪视频在线观看 | 精品第一国产精品| 91精品三级在线观看| 黄色毛片三级朝国网站| 色综合站精品国产| 搞女人的毛片| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| 午夜精品久久久久久毛片777| 国产野战对白在线观看| svipshipincom国产片| 亚洲熟妇熟女久久| 成人永久免费在线观看视频| 一级,二级,三级黄色视频| 999精品在线视频| 非洲黑人性xxxx精品又粗又长| 亚洲自拍偷在线| 热99re8久久精品国产| 国产精品亚洲一级av第二区| 亚洲一区高清亚洲精品| 欧美黑人欧美精品刺激| 国产免费男女视频| 亚洲成av人片免费观看| 精品国产一区二区三区四区第35| 国产精品电影一区二区三区| 电影成人av| 亚洲精品在线观看二区| 久久人妻av系列| 一夜夜www| 国产欧美日韩一区二区三区在线| 日本在线视频免费播放| 俄罗斯特黄特色一大片| 亚洲一区二区三区色噜噜| 欧美另类亚洲清纯唯美| 国产精品爽爽va在线观看网站 | 亚洲精品国产区一区二| 亚洲精品国产一区二区精华液| 90打野战视频偷拍视频| 亚洲熟女毛片儿| 久久久精品国产亚洲av高清涩受| 久久精品国产清高在天天线| 免费在线观看视频国产中文字幕亚洲| www.www免费av| 国产成人系列免费观看| 黄色毛片三级朝国网站| 又大又爽又粗| 亚洲第一av免费看| 国产1区2区3区精品| 十八禁人妻一区二区| 丁香欧美五月| 麻豆一二三区av精品| 午夜免费激情av| 成人三级黄色视频| 99国产精品99久久久久| 亚洲五月婷婷丁香| 一a级毛片在线观看|