• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple modes of perpendicular magnetization switching scheme in single spin–orbit torque device

    2022-10-26 09:54:42TongXiLiu劉桐汐ZhaoHaoWang王昭昊MinWang王旻ChaoWang王朝BiWu吳比WeiQiangLiu劉偉強(qiáng)andWeiShengZhao趙巍勝
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王朝

    Tong-Xi Liu(劉桐汐) Zhao-Hao Wang(王昭昊) Min Wang(王旻) Chao Wang(王朝)Bi Wu(吳比) Wei-Qiang Liu(劉偉強(qiáng)) and Wei-Sheng Zhao(趙巍勝)

    1Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China

    2College of Integrated Circuits,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    Keywords: spin–orbit torque(SOT),field-like torque,magnetization switching,perpendicular magnetization

    1. Introduction

    Magnetic random access memory (MRAM) has become a promising candidate for both embedded and standalone applications[1]due to its non-volatility, low power, high speed, and nearly unlimited endurance. The write technology of the MRAM, which is reflected by the mechanism of magnetization switching, has long been attracting numerous research interests as it significantly determines the performance of the MRAM. To date, MRAM written by spintransfer torque (STT) has made great progress of both academic research and industrial applications.Nevertheless,newgeneration MRAM has been explored by researchers to outperform the STT-MRAM.Typically, spin–orbit torque(SOT)MRAM shows great potential in non-volatile memory and inmemory computing.[2–5]Comparing with the STT-MRAM,the read and write paths are separated in the SOT-MRAM,resulting in higher reliability. Furthermore, the SOT-driven magnetization switching is as fast as several hundreds of picoseconds,[6,7]which qualifies the SOT-MRAM to be used in high-level caches.

    Actually, the SOT-driven magnetization switching is achieved under the joint effects of multiple factors, such as magnetic anisotropy field, Gilbert damping torque, dampinglike torque, field-like torque,etc. Most notably, by changing the relative proportions of these factors,the behavior of magnetization switching varies dramatically. Overall,both unipolar and bipolar switching have been proposed with different SOT mechanisms.[8–14]As shown in Table 1, for the unipolar switching,the magnetization is switched into the opposite state once an SOT current larger than the threshold is applied,regardless of the current polarity. For the bipolar switching,the final magnetization state is dependent on the polarity of the applied SOT current. The combination of unipolar and bipolar switching could benefit the function extension of the SOT-based memories or circuits. However, up to now these two modes of magnetization switching are implemented with different devices separately, which degrades the design flexibility of the related memories or circuits.

    Table 1. Unipolar and bipolar switching behaviors. In this table,J is the applied SOT current density with a magnitude larger than the threshold. mz=-1 and mz=+1 represent the two states for storing binary data.

    In this work,we propose a novel scheme that implements both unipolar and bipolar switching of the perpendicular magnetization within a single SOT device. The mode of switching is only dependent on the amplitude of the applied current. The change of switching mode is mainly attributed to the modulation of the field-like torque. Our proposal makes it possible to design the SOT-based memories or circuits with good reconfigurability.

    2. Device model

    In this study, the magnetization switching occurs in a common SOT magnetic tunnel junction (MTJ) with perpendicular anisotropy as illustrated in Fig.1. No special structure is required in this device. A charge current passing through the heavy metal induces the SOT which switches the perpendicular magnetization of the free layer(FL).Generally,an additional bias field is used to break the symmetry so that the switching process becomes deterministic.This bias field could be generated inside the device by using antiferromagnet[15–18]or magnetic hard mask.[19]The magnetization dynamics of the FL can be described by a modified Landau–Lifshitz–Gilbert(LLG)equation as follows:

    Here,mandσare the unit vectors of the FL magnetization and SOT-induced spin polarization,respectively.Jis the SOT current density. The effective field includes the contribution of the magnetic anisotropy field,the demagnetization field and the external field.ξ=γˉh/(2etFMs)is a device-dependent parameter, withγbeing the gyromagnetic ratio, ˉhthe reduced Planck constant,ethe electron charge,tFthe free layer thickness,Msthe saturation magnetization. The default values of some magnetic parameters are configured as follows, unless otherwise stated. The damping constant (α) is 0.05. The effective anisotropy constant is 1.5×105J/m3.tF= 1 nm,Ms=1×106A/m,λDLandλFLrepresent the strength of the damping-like and field-like torques,respectively,λDLis equivalent to the spin Hall angle whose default value is 0.3. More details are described elsewhere.[11]

    Fig.1. Device structure and coordinate system in this study.

    3. Results and discussion

    In our proposal, the field-like torque must be strong enough to implement multiple modes of switching within the above magnetic device. Strong field-like torque has been reported in previous researches.[20–22]Moreover, a number of researches have demonstrated that both the strength and sign ofλFL/λDLcan be adjusted by tuning the material types or fabrication processes.[20,23,24]The strength of field-like torque is related to multiple factors such as layer thickness, material system, interfacial intermixing,etc. This is a complicated issue and still under exploration. Recent researches have reported several methods of enhancing the field-like torque.[22,24]In this workλFL/λDL=4 is chosen for a preliminary study. Accordingly,macrospin simulation results under the various current densities are shown in Fig. 2. For all the cases, the device is subjected to a bias field of 20 mT,and the pulse width of SOT current is set to be 0.5 ns. Both unipolar and bipolar switchings can be clearly observed from the simulation results. First, no switching occurs when the current density is insufficient, since the torque is too weak to overcome the energy barrier. Second, unipolar switching is achieved if the current density is set to be an intermediate value(see Figs.2(b)and 2(e)). Finally,the switching process becomes bipolar while the current density is further increased(see Figs. 2(c) and 2(f)). Therefore, the mode of switching can be easily changed by adjusting the current density. The detailed mechanisms are analyzed below.

    The large field-like torque plays a dominant role in the unipolar switching process. According to Eq. (1), the fieldlike torque is equivalently induced by an in-plane magnetic field (HFL). ForλFL/λDL=4 andJ=6×1011A/m2, this equivalent magnetic field is aroundλFLξJ/γ ≈237 mT,which is much higher than the bias field (20 mT). In this case, the magnetization vector almost precesses around theHFLwith a speed ofγμ0|HFL|,[13]as shown in Figs.3(a)and 3(b). Thus,the magnetization vector will turn to the in-plane direction(i.e.mz=0) after a delay of aboutπ/(2γμ0|HFL|), which is in agreement with the results of Figs.2(b)and 2(e). Finally,the magnetization vector is stabilized at an equilibrium position under the action of various torques.

    The bipolar switching occurs if a larger current density is applied. In this case, the field-like torque is enhanced so that the magnetization vector is driven closer to the axis ofσ.Then the torque induced by the bias field (Hbias) is nearly aligned to±σ×Hbias. Note thatσandHbiasare parallel toxaxis andyaxis,respectively(see Fig.1),thus this torque is almost oriented towards?zaxes. Depending on the direction of the applied current,the magnetization vector is switched to the+zaxis or-zaxis,as shown in Fig.3(c)or Fig.3(d). Overall,the joint effects of the bias field and huge field-like torque lead to the bipolar switching.

    Fig. 2. Macrospin simulation results of z-component magnetization (mz), indicating that ((a), (d)) no switching occurs while J=2×1011 A/m2,((b),(e))unipolar switching occurs while J=6×1011 A/m2,((c),(f))bipolar switching occurs while J=7×1011 A/m2,((a)–(c))current is applied along+y axis,and((d)–(f))current is applied along-y axis. The SOT pulse is withdrawn at 0.5 ns(as marked by the vertical dotted line).

    Fig. 3. Trajectories of magnetization vector and key torques in switching process: ((a), (b))unipolar switching for J=6×1011 A/m2 and((c), (d))bipolar switching for J = 7.5×1011 A/m2. Here other torques are not shown for the clarity. It is seen from panels(c)and(d)that the Heff torque has+z component and-z component,respectively,which are mainly contributed by the bias field(Hbias). Here we only show the trajectories for the case of starting point mz =1, which are highly symmetric with respect to those for the case of starting point mz=-1.

    It is important to mention that the role of the bias field becomes significant only when the current density is sufficiently large. This conclusion can be explained by Fig. 4(a), where a non-zero bias field induces an effective torque to pull the magnetization vector back, leading to bipolar switching. In contrast,the effect of the bias field is negligible in the case of unipolar switching as shown in Fig. 4(b). The difference between Fig.4(a)and Fig.4(b)is attributed to the various values ofxcomponent magnetization(mx). Specifically,sinceHbiasis aligned to the +yaxis, thezcomponent effective torque is contributed by±γμ0mx×Hbias. Stronger current density leads to largermx(see Fig.4(a)),and hence more easily drives the magnetization vector towards thezaxis.

    Fig. 4. Influence of the bias field on the magnetization switching for (a)bipolar switching and(b)unipolar switching.

    The influence of key parameters on the switching mode is further discussed. Figure 5 shows the phase diagram of the final-statemzas a function ofλFL/λDLandJ. Overall, the bipolar switching occurs when both the current density and the field-like torque are large enough. In this case, the combination of stronger field-like torque and larger current density causes magnetization vector to approach in-plane direction, favoring the bias-field-induced torque, as illustrated by Figs. 3(c) and 3(d). On the other hand, the unipolar switching is obtained in a relatively narrow range of parameters,where the field-like torque suppresses the other factors and leads to the precession of the magnetization vector as shown in Figs.3(a)and 3(b).

    The proposed mechanism of the magnetization switching is also validated through micromagnetic simulation. Here the Dzyaloshinskii–Moriya interaction (DMI) is further considered, since it is widely reported to exist in SOT devices.Micromagnetic simulations are performed by the OOMMF package. The MTJ diameter is changed to 100 nm for constructing the multi-domain scenario as distinguished from the macrospin model. Other magnetic parameters are in consistence with those used in macrospin simulation. Both the unipolar and bipolar switching are implemented with the appropriate parameter settings, no matter whether the DMI strength is zero or non-zero. Typical results for non-zero DMI(with a DMI magnitude of 0.3 mJ/m2and an exchange stiffness of 5×10-11J/m) are shown in Fig. 6, where the magnetization switching is completed through magnetic domain dynamics. However,the DMI has a dramatic influence on the characteristic of the magnetization switching. The unipolar switching disappears in the case of strong DMI (not shown here). Nevertheless, we find that the unipolar switching can be recovered by increasing the exchange stiffness(e.g.it is increased to 5×10-11J/m in Fig.6)or reducing the bias field.The reason may be that the uniformity of the magnetization is enhanced.

    Fig.5. Phase diagram of mz as a function of λFL/λDL and J. Regions I,II,and III indicate,respectively,no switching,unipolar switching,and bipolar switching.

    Fig. 6. Typical simulation results of micromagnetic configuration for the proposed switching mechanism, with the applied SOT current densities for unipolar switching and bipolar switching being J=4.5×1011 A/m2 and J=5.8×1011 A/m2,respectively,and SOT current withdrawn at 0.5 ns.

    Fig. 7. Reconfigurable logic circuit using the proposed mechanism of magnetization switching. Here inputs are transistor gate voltage level(AN)and MTJ state in current cycle(Bi),and output is MTJ state in the next cycle(Bi+1).

    Benefiting from the proposed switching scheme, the reconfigurable logic circuits can be flexibly designed. A typical example is shown in Fig. 7. Three transistors with different sizes are used as the selection switches for various logic functions. One of three transistors is activated by MUX for generating a write current whose amplitude is in the range of unipolar or bipolar switching.As a result,the specific logic function can be implemented and reconfigured as indicated in the truth table of Fig.7.

    4. Conclusions

    In summary,we have proposed a novel switching scheme for the perpendicular-anisotropy SOT device. The switching mode of the device can be transformed between the unipolar type and bipolar type,only by tuning the amplitude of the current density. For the unipolar switching, the strong field-like torque mainly governs the magnetization dynamics. For the bipolar switching, the bias field and field-like torque jointly determine the polarity of the magnetization switching. Our proposal can breed a multifunction SOT device, especially is suitable for the design of the reconfigurable memories and circuits.Furthermore,the presented theoretical work can provide guidance and reference for the future experiments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62171013 and 61704005),the National Key Research and Development Program of China(Grant Nos.2021YFB3601303,2021YFB3601304,and 2021YFB3601300),the Beijing Municipal Science and Technology Project, China (Grant No. Z201100004220002), and the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-21-BJ-J-1043).

    猜你喜歡
    王朝
    正確看待輸和贏
    為了班級的榮譽(yù)
    進(jìn)球了
    THE EXTENSION OPERATORS ON Bn+1 AND BOUNDED COMPLETE REINHARDT DOMAINS*
    一個(gè)愛打人屁股的王朝
    公民與法治(2020年3期)2020-05-30 12:30:00
    養(yǎng)心殿,帶你走進(jìn)大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    奇波利尼的王朝Saeco
    中國自行車(2018年8期)2018-09-26 06:53:08
    PROPERTIES OF THE MODIFIED ROPER-SUFFRIDGE EXTENSION OPERATORS ON REINHARDT DOMAINS?
    楊貴妃 王朝的女人
    電影(2015年7期)2015-12-24 01:36:04
    THE INVARIANCE OF STRONG AND ALMOSTSPIRALLIKE MAPPINGS OF TYPE β AND ORDER α?
    色av中文字幕| 国产一区二区在线av高清观看| 中文字幕熟女人妻在线| 午夜激情福利司机影院| 夜夜躁狠狠躁天天躁| 国产精品国产高清国产av| 欧美日本亚洲视频在线播放| 天美传媒精品一区二区| 久久精品国产99精品国产亚洲性色| 亚洲在线观看片| 亚洲色图av天堂| 一进一出抽搐gif免费好疼| 18禁国产床啪视频网站| 免费观看的影片在线观看| 日本在线视频免费播放| 麻豆成人av在线观看| 少妇丰满av| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 人人妻人人看人人澡| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av香蕉五月| 男女之事视频高清在线观看| 色av中文字幕| 国产视频一区二区在线看| 热99在线观看视频| www.www免费av| 校园春色视频在线观看| 日韩精品中文字幕看吧| 精品国产美女av久久久久小说| 欧美激情在线99| 亚洲欧美激情综合另类| 无限看片的www在线观看| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 成年女人永久免费观看视频| bbb黄色大片| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 国产成年人精品一区二区| 性色avwww在线观看| 国产成人啪精品午夜网站| 在线十欧美十亚洲十日本专区| 午夜免费成人在线视频| 91在线精品国自产拍蜜月 | 欧美日本亚洲视频在线播放| av视频在线观看入口| 欧美一级毛片孕妇| 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 中亚洲国语对白在线视频| 内地一区二区视频在线| 午夜两性在线视频| 哪里可以看免费的av片| 午夜激情福利司机影院| 欧美高清成人免费视频www| 免费在线观看影片大全网站| 露出奶头的视频| 非洲黑人性xxxx精品又粗又长| 中文字幕av在线有码专区| 久久久久久九九精品二区国产| 天堂√8在线中文| 成人av在线播放网站| 99久久精品一区二区三区| 老熟妇仑乱视频hdxx| 国产国拍精品亚洲av在线观看 | 网址你懂的国产日韩在线| 久久精品国产自在天天线| 亚洲七黄色美女视频| 免费看日本二区| 天天一区二区日本电影三级| 国产精品久久久久久精品电影| 中亚洲国语对白在线视频| 高清在线国产一区| 日本黄大片高清| 中文字幕人妻丝袜一区二区| 免费在线观看成人毛片| 又黄又爽又免费观看的视频| 久久精品国产自在天天线| 日本 欧美在线| 精品久久久久久久久久久久久| 又紧又爽又黄一区二区| 久久精品影院6| 精品熟女少妇八av免费久了| 内射极品少妇av片p| 亚洲精品成人久久久久久| 51午夜福利影视在线观看| 老司机午夜福利在线观看视频| 亚洲欧美日韩东京热| 国产精品香港三级国产av潘金莲| 欧美成人一区二区免费高清观看| 天堂网av新在线| 99久久久亚洲精品蜜臀av| 成年女人永久免费观看视频| 婷婷丁香在线五月| 全区人妻精品视频| 九九热线精品视视频播放| 一进一出抽搐动态| 成人高潮视频无遮挡免费网站| 此物有八面人人有两片| 天美传媒精品一区二区| 观看免费一级毛片| 成人av一区二区三区在线看| 在线观看美女被高潮喷水网站 | 久久人妻av系列| 动漫黄色视频在线观看| 欧美性猛交黑人性爽| 国产日本99.免费观看| 亚洲va日本ⅴa欧美va伊人久久| 一a级毛片在线观看| 老鸭窝网址在线观看| 尤物成人国产欧美一区二区三区| 1000部很黄的大片| 制服丝袜大香蕉在线| 特大巨黑吊av在线直播| 夜夜看夜夜爽夜夜摸| 老汉色av国产亚洲站长工具| 成人鲁丝片一二三区免费| www日本在线高清视频| 日本 av在线| 俺也久久电影网| 看免费av毛片| 日韩欧美精品v在线| 岛国在线免费视频观看| 久久久精品大字幕| 免费看a级黄色片| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 亚洲欧美一区二区三区黑人| 九色国产91popny在线| 99国产精品一区二区三区| 精品不卡国产一区二区三区| 成人一区二区视频在线观看| 久久久久久久亚洲中文字幕 | 免费av观看视频| 国产精品98久久久久久宅男小说| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 国产熟女xx| 老司机深夜福利视频在线观看| 又紧又爽又黄一区二区| 久久这里只有精品中国| 在线观看免费午夜福利视频| 国产精品一区二区三区四区免费观看 | 偷拍熟女少妇极品色| 久久久国产成人精品二区| 欧美不卡视频在线免费观看| 床上黄色一级片| 亚洲欧美激情综合另类| 国产精品久久久久久久电影 | 亚洲一区二区三区不卡视频| 深夜精品福利| 在线观看免费午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 免费av毛片视频| 成人av在线播放网站| 99国产精品一区二区三区| 国产欧美日韩一区二区三| 一级作爱视频免费观看| 婷婷亚洲欧美| 亚洲国产欧美人成| 亚洲精品乱码久久久v下载方式 | 一个人免费在线观看电影| 亚洲人成伊人成综合网2020| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇熟女久久| 亚洲avbb在线观看| 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 美女被艹到高潮喷水动态| 亚洲欧美日韩无卡精品| 成人av在线播放网站| 免费看光身美女| 亚洲av美国av| 精品日产1卡2卡| 亚洲国产高清在线一区二区三| 九九热线精品视视频播放| 校园春色视频在线观看| 午夜福利在线在线| 午夜免费激情av| 看黄色毛片网站| 久久精品国产自在天天线| 亚洲av免费高清在线观看| 久久精品国产综合久久久| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜亚洲精品久久| 激情在线观看视频在线高清| 天堂√8在线中文| 国产v大片淫在线免费观看| 日本黄色视频三级网站网址| а√天堂www在线а√下载| 午夜久久久久精精品| 欧美+亚洲+日韩+国产| 久久久久久久精品吃奶| 亚洲国产欧美网| 日本 av在线| 国产成人aa在线观看| 国产精品国产高清国产av| 国产国拍精品亚洲av在线观看 | 97碰自拍视频| 午夜免费激情av| 国产午夜精品论理片| 国产精品,欧美在线| 精品无人区乱码1区二区| 黄色成人免费大全| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美 | 久久伊人香网站| 国产爱豆传媒在线观看| 久久久久国内视频| 老司机深夜福利视频在线观看| 亚洲18禁久久av| 欧美一级毛片孕妇| av天堂在线播放| 日韩高清综合在线| 少妇熟女aⅴ在线视频| 欧美黑人欧美精品刺激| 法律面前人人平等表现在哪些方面| 国产高清视频在线播放一区| 免费人成视频x8x8入口观看| 国产精品亚洲美女久久久| 欧美黑人欧美精品刺激| www.熟女人妻精品国产| 欧美av亚洲av综合av国产av| 一进一出抽搐动态| 不卡一级毛片| 日韩高清综合在线| 精品福利观看| 超碰av人人做人人爽久久 | 搡女人真爽免费视频火全软件 | 老熟妇仑乱视频hdxx| 免费搜索国产男女视频| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 国产在视频线在精品| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 亚洲色图av天堂| 淫秽高清视频在线观看| 国产激情欧美一区二区| 亚洲,欧美精品.| 久久精品国产99精品国产亚洲性色| av在线蜜桃| 免费搜索国产男女视频| 亚洲va日本ⅴa欧美va伊人久久| 国内揄拍国产精品人妻在线| 国产高清有码在线观看视频| 欧美黄色淫秽网站| 99久国产av精品| www日本在线高清视频| av欧美777| 欧美zozozo另类| 精品99又大又爽又粗少妇毛片 | 男人和女人高潮做爰伦理| 中文字幕人妻熟人妻熟丝袜美 | 欧美乱妇无乱码| 中文字幕久久专区| 老熟妇仑乱视频hdxx| 亚洲av电影在线进入| 久久精品国产99精品国产亚洲性色| 国产精品乱码一区二三区的特点| 男人舔女人下体高潮全视频| 日本 欧美在线| xxx96com| 日韩人妻高清精品专区| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 色吧在线观看| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 成年人黄色毛片网站| 老司机在亚洲福利影院| 亚洲欧美日韩卡通动漫| 免费看光身美女| 午夜福利免费观看在线| 国产欧美日韩精品一区二区| 天堂动漫精品| 中文在线观看免费www的网站| 在线视频色国产色| 亚洲欧美激情综合另类| 国产乱人视频| 午夜免费激情av| 亚洲av五月六月丁香网| 69av精品久久久久久| 好看av亚洲va欧美ⅴa在| 国产欧美日韩精品亚洲av| av黄色大香蕉| 一进一出好大好爽视频| 国产av一区在线观看免费| 亚洲精品成人久久久久久| 老司机午夜十八禁免费视频| 波多野结衣高清无吗| 嫁个100分男人电影在线观看| 岛国在线观看网站| 亚洲欧美一区二区三区黑人| 国产精品99久久久久久久久| 极品教师在线免费播放| 在线观看舔阴道视频| 国产欧美日韩精品亚洲av| 日韩欧美国产在线观看| 日韩欧美一区二区三区在线观看| 成熟少妇高潮喷水视频| 久久精品国产自在天天线| 美女高潮的动态| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| 999久久久精品免费观看国产| 老鸭窝网址在线观看| 欧美绝顶高潮抽搐喷水| 香蕉丝袜av| 少妇的逼水好多| 床上黄色一级片| 久久久久久久亚洲中文字幕 | 18禁裸乳无遮挡免费网站照片| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 欧美高清成人免费视频www| 国产黄a三级三级三级人| 两个人看的免费小视频| 亚洲成人中文字幕在线播放| 色综合欧美亚洲国产小说| 亚洲自拍偷在线| 很黄的视频免费| 欧美一区二区精品小视频在线| 青草久久国产| 精品一区二区三区人妻视频| 国产亚洲av嫩草精品影院| 欧美最新免费一区二区三区 | 男人和女人高潮做爰伦理| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 色老头精品视频在线观看| 偷拍熟女少妇极品色| 日韩欧美在线乱码| 亚洲av电影在线进入| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 日韩大尺度精品在线看网址| 亚洲av成人av| 怎么达到女性高潮| 亚洲精品国产精品久久久不卡| 看免费av毛片| 国产亚洲欧美在线一区二区| 成人欧美大片| 亚洲av电影在线进入| 国产激情偷乱视频一区二区| 一个人免费在线观看的高清视频| 国产亚洲精品综合一区在线观看| 欧美黄色片欧美黄色片| 国产高清三级在线| 国产国拍精品亚洲av在线观看 | 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片 | 亚洲成人精品中文字幕电影| www国产在线视频色| 国产真实伦视频高清在线观看 | 国产成人av教育| 久久久久久九九精品二区国产| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 精品电影一区二区在线| 午夜激情欧美在线| 久久人人精品亚洲av| 亚洲国产日韩欧美精品在线观看 | 99久久精品一区二区三区| 亚洲精品粉嫩美女一区| 中文字幕高清在线视频| 欧美一区二区亚洲| 国产色爽女视频免费观看| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 日韩欧美精品v在线| 欧美中文日本在线观看视频| 91av网一区二区| 久久草成人影院| 91av网一区二区| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 黄色女人牲交| 精品一区二区三区av网在线观看| 亚洲内射少妇av| 看片在线看免费视频| 久久精品综合一区二区三区| 人人妻人人看人人澡| 亚洲av电影在线进入| 国产亚洲精品av在线| 噜噜噜噜噜久久久久久91| 国产熟女xx| 一个人免费在线观看电影| 伊人久久精品亚洲午夜| 一个人观看的视频www高清免费观看| 少妇高潮的动态图| 久久久久九九精品影院| 1000部很黄的大片| 免费在线观看成人毛片| www日本黄色视频网| 精品午夜福利视频在线观看一区| 国产精品久久久人人做人人爽| 丰满人妻熟妇乱又伦精品不卡| 国产私拍福利视频在线观看| 天堂网av新在线| 国产三级黄色录像| 成人永久免费在线观看视频| 99久久无色码亚洲精品果冻| 日本黄色视频三级网站网址| 女警被强在线播放| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| 欧美黄色片欧美黄色片| 一级毛片高清免费大全| 一个人免费在线观看电影| 岛国在线观看网站| 久久久久九九精品影院| 国内少妇人妻偷人精品xxx网站| 一级黄片播放器| 国产野战对白在线观看| 欧洲精品卡2卡3卡4卡5卡区| 丰满人妻一区二区三区视频av | 国产主播在线观看一区二区| 制服人妻中文乱码| 国产亚洲欧美在线一区二区| 老司机深夜福利视频在线观看| 岛国在线免费视频观看| 久久香蕉精品热| 国产欧美日韩一区二区精品| 午夜福利在线在线| 欧美另类亚洲清纯唯美| 岛国视频午夜一区免费看| 国产探花在线观看一区二区| 亚洲av电影在线进入| 99国产精品一区二区三区| 国产精品免费一区二区三区在线| 久久久久久久亚洲中文字幕 | 在线免费观看不下载黄p国产 | 久久欧美精品欧美久久欧美| 国产成人欧美在线观看| 国产精品久久久久久精品电影| 日本一本二区三区精品| 国产精品爽爽va在线观看网站| 国产精品亚洲美女久久久| 亚洲黑人精品在线| 成年女人看的毛片在线观看| bbb黄色大片| 亚洲国产精品sss在线观看| 国产久久久一区二区三区| 久久中文看片网| 日日摸夜夜添夜夜添小说| 日韩欧美免费精品| 免费av不卡在线播放| 亚洲av免费高清在线观看| 国产三级中文精品| 老司机午夜福利在线观看视频| 久久精品国产亚洲av香蕉五月| 淫妇啪啪啪对白视频| 一个人免费在线观看的高清视频| 成人高潮视频无遮挡免费网站| 一边摸一边抽搐一进一小说| 精品人妻偷拍中文字幕| 婷婷丁香在线五月| 美女高潮喷水抽搐中文字幕| 免费av观看视频| 欧美zozozo另类| 亚洲 欧美 日韩 在线 免费| 51国产日韩欧美| 五月伊人婷婷丁香| 国产aⅴ精品一区二区三区波| www.999成人在线观看| 亚洲国产日韩欧美精品在线观看 | 12—13女人毛片做爰片一| 欧美色欧美亚洲另类二区| 亚洲片人在线观看| 中文字幕久久专区| 国产伦人伦偷精品视频| 日韩中文字幕欧美一区二区| 中文字幕精品亚洲无线码一区| 亚洲美女黄片视频| 国产aⅴ精品一区二区三区波| 琪琪午夜伦伦电影理论片6080| 亚洲最大成人中文| 给我免费播放毛片高清在线观看| 又粗又爽又猛毛片免费看| 老司机福利观看| 国产成年人精品一区二区| 亚洲国产日韩欧美精品在线观看 | 日本免费一区二区三区高清不卡| 女人被狂操c到高潮| 男女做爰动态图高潮gif福利片| 中文字幕久久专区| 日本a在线网址| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美98| www.色视频.com| 窝窝影院91人妻| 午夜亚洲福利在线播放| 欧美三级亚洲精品| 性欧美人与动物交配| 丰满的人妻完整版| 真人做人爱边吃奶动态| 久久亚洲真实| 欧美一区二区精品小视频在线| 国产精品久久久久久久久免 | 国产成年人精品一区二区| 法律面前人人平等表现在哪些方面| av国产免费在线观看| 日本精品一区二区三区蜜桃| 国产精华一区二区三区| 国产亚洲精品综合一区在线观看| 听说在线观看完整版免费高清| 9191精品国产免费久久| 制服丝袜大香蕉在线| 老司机深夜福利视频在线观看| av视频在线观看入口| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人性av电影在线观看| 欧美日韩瑟瑟在线播放| 欧美黑人巨大hd| 欧美三级亚洲精品| 国产真实乱freesex| 久久久久亚洲av毛片大全| 美女高潮的动态| av欧美777| 黄色丝袜av网址大全| www.色视频.com| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 久久人妻av系列| 久久久久久久久久黄片| 亚洲欧美日韩高清在线视频| 老汉色av国产亚洲站长工具| 国产伦精品一区二区三区四那| 深夜精品福利| 日日夜夜操网爽| 噜噜噜噜噜久久久久久91| 国产精品亚洲美女久久久| 成人午夜高清在线视频| 欧美日韩精品网址| 国产精华一区二区三区| 国产高潮美女av| 午夜激情欧美在线| 亚洲美女黄片视频| 成人亚洲精品av一区二区| 国产亚洲精品久久久久久毛片| 黄片小视频在线播放| 亚洲在线观看片| 少妇的逼好多水| 亚洲无线观看免费| 嫩草影院入口| 91久久精品电影网| 夜夜夜夜夜久久久久| 热99在线观看视频| 国产色婷婷99| 午夜两性在线视频| 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久 | 国产伦一二天堂av在线观看| 色播亚洲综合网| 国产一区二区三区视频了| 亚洲成人久久爱视频| 免费看a级黄色片| 国产久久久一区二区三区| 黄色女人牲交| 亚洲天堂国产精品一区在线| 变态另类丝袜制服| 国产精品99久久久久久久久| 色精品久久人妻99蜜桃| 国产高清视频在线播放一区| 精品无人区乱码1区二区| 国产一区在线观看成人免费| 黄色丝袜av网址大全| 哪里可以看免费的av片| 亚洲无线观看免费| 亚洲黑人精品在线| 亚洲中文字幕一区二区三区有码在线看| 别揉我奶头~嗯~啊~动态视频| 久久久久亚洲av毛片大全| 日本撒尿小便嘘嘘汇集6| 在线观看一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 伊人久久大香线蕉亚洲五| 美女高潮的动态| 国产伦精品一区二区三区视频9 | 亚洲专区中文字幕在线| 蜜桃亚洲精品一区二区三区| 色综合亚洲欧美另类图片| 精品国内亚洲2022精品成人| 天美传媒精品一区二区| 小说图片视频综合网站| 亚洲国产色片| 亚洲美女黄片视频| 日韩欧美在线二视频| 男女床上黄色一级片免费看| 国产激情欧美一区二区| 少妇裸体淫交视频免费看高清| 波野结衣二区三区在线 | 看黄色毛片网站| 亚洲av熟女| 精品一区二区三区视频在线观看免费| 三级毛片av免费| 色噜噜av男人的天堂激情| 日本一本二区三区精品| 天天添夜夜摸| h日本视频在线播放| tocl精华| 国产真实伦视频高清在线观看 | 亚洲七黄色美女视频| 一区二区三区激情视频| 99久久精品国产亚洲精品| 国产精品av视频在线免费观看|