• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple modes of perpendicular magnetization switching scheme in single spin–orbit torque device

    2022-10-26 09:54:42TongXiLiu劉桐汐ZhaoHaoWang王昭昊MinWang王旻ChaoWang王朝BiWu吳比WeiQiangLiu劉偉強(qiáng)andWeiShengZhao趙巍勝
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王朝

    Tong-Xi Liu(劉桐汐) Zhao-Hao Wang(王昭昊) Min Wang(王旻) Chao Wang(王朝)Bi Wu(吳比) Wei-Qiang Liu(劉偉強(qiáng)) and Wei-Sheng Zhao(趙巍勝)

    1Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China

    2College of Integrated Circuits,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    Keywords: spin–orbit torque(SOT),field-like torque,magnetization switching,perpendicular magnetization

    1. Introduction

    Magnetic random access memory (MRAM) has become a promising candidate for both embedded and standalone applications[1]due to its non-volatility, low power, high speed, and nearly unlimited endurance. The write technology of the MRAM, which is reflected by the mechanism of magnetization switching, has long been attracting numerous research interests as it significantly determines the performance of the MRAM. To date, MRAM written by spintransfer torque (STT) has made great progress of both academic research and industrial applications.Nevertheless,newgeneration MRAM has been explored by researchers to outperform the STT-MRAM.Typically, spin–orbit torque(SOT)MRAM shows great potential in non-volatile memory and inmemory computing.[2–5]Comparing with the STT-MRAM,the read and write paths are separated in the SOT-MRAM,resulting in higher reliability. Furthermore, the SOT-driven magnetization switching is as fast as several hundreds of picoseconds,[6,7]which qualifies the SOT-MRAM to be used in high-level caches.

    Actually, the SOT-driven magnetization switching is achieved under the joint effects of multiple factors, such as magnetic anisotropy field, Gilbert damping torque, dampinglike torque, field-like torque,etc. Most notably, by changing the relative proportions of these factors,the behavior of magnetization switching varies dramatically. Overall,both unipolar and bipolar switching have been proposed with different SOT mechanisms.[8–14]As shown in Table 1, for the unipolar switching,the magnetization is switched into the opposite state once an SOT current larger than the threshold is applied,regardless of the current polarity. For the bipolar switching,the final magnetization state is dependent on the polarity of the applied SOT current. The combination of unipolar and bipolar switching could benefit the function extension of the SOT-based memories or circuits. However, up to now these two modes of magnetization switching are implemented with different devices separately, which degrades the design flexibility of the related memories or circuits.

    Table 1. Unipolar and bipolar switching behaviors. In this table,J is the applied SOT current density with a magnitude larger than the threshold. mz=-1 and mz=+1 represent the two states for storing binary data.

    In this work,we propose a novel scheme that implements both unipolar and bipolar switching of the perpendicular magnetization within a single SOT device. The mode of switching is only dependent on the amplitude of the applied current. The change of switching mode is mainly attributed to the modulation of the field-like torque. Our proposal makes it possible to design the SOT-based memories or circuits with good reconfigurability.

    2. Device model

    In this study, the magnetization switching occurs in a common SOT magnetic tunnel junction (MTJ) with perpendicular anisotropy as illustrated in Fig.1. No special structure is required in this device. A charge current passing through the heavy metal induces the SOT which switches the perpendicular magnetization of the free layer(FL).Generally,an additional bias field is used to break the symmetry so that the switching process becomes deterministic.This bias field could be generated inside the device by using antiferromagnet[15–18]or magnetic hard mask.[19]The magnetization dynamics of the FL can be described by a modified Landau–Lifshitz–Gilbert(LLG)equation as follows:

    Here,mandσare the unit vectors of the FL magnetization and SOT-induced spin polarization,respectively.Jis the SOT current density. The effective field includes the contribution of the magnetic anisotropy field,the demagnetization field and the external field.ξ=γˉh/(2etFMs)is a device-dependent parameter, withγbeing the gyromagnetic ratio, ˉhthe reduced Planck constant,ethe electron charge,tFthe free layer thickness,Msthe saturation magnetization. The default values of some magnetic parameters are configured as follows, unless otherwise stated. The damping constant (α) is 0.05. The effective anisotropy constant is 1.5×105J/m3.tF= 1 nm,Ms=1×106A/m,λDLandλFLrepresent the strength of the damping-like and field-like torques,respectively,λDLis equivalent to the spin Hall angle whose default value is 0.3. More details are described elsewhere.[11]

    Fig.1. Device structure and coordinate system in this study.

    3. Results and discussion

    In our proposal, the field-like torque must be strong enough to implement multiple modes of switching within the above magnetic device. Strong field-like torque has been reported in previous researches.[20–22]Moreover, a number of researches have demonstrated that both the strength and sign ofλFL/λDLcan be adjusted by tuning the material types or fabrication processes.[20,23,24]The strength of field-like torque is related to multiple factors such as layer thickness, material system, interfacial intermixing,etc. This is a complicated issue and still under exploration. Recent researches have reported several methods of enhancing the field-like torque.[22,24]In this workλFL/λDL=4 is chosen for a preliminary study. Accordingly,macrospin simulation results under the various current densities are shown in Fig. 2. For all the cases, the device is subjected to a bias field of 20 mT,and the pulse width of SOT current is set to be 0.5 ns. Both unipolar and bipolar switchings can be clearly observed from the simulation results. First, no switching occurs when the current density is insufficient, since the torque is too weak to overcome the energy barrier. Second, unipolar switching is achieved if the current density is set to be an intermediate value(see Figs.2(b)and 2(e)). Finally,the switching process becomes bipolar while the current density is further increased(see Figs. 2(c) and 2(f)). Therefore, the mode of switching can be easily changed by adjusting the current density. The detailed mechanisms are analyzed below.

    The large field-like torque plays a dominant role in the unipolar switching process. According to Eq. (1), the fieldlike torque is equivalently induced by an in-plane magnetic field (HFL). ForλFL/λDL=4 andJ=6×1011A/m2, this equivalent magnetic field is aroundλFLξJ/γ ≈237 mT,which is much higher than the bias field (20 mT). In this case, the magnetization vector almost precesses around theHFLwith a speed ofγμ0|HFL|,[13]as shown in Figs.3(a)and 3(b). Thus,the magnetization vector will turn to the in-plane direction(i.e.mz=0) after a delay of aboutπ/(2γμ0|HFL|), which is in agreement with the results of Figs.2(b)and 2(e). Finally,the magnetization vector is stabilized at an equilibrium position under the action of various torques.

    The bipolar switching occurs if a larger current density is applied. In this case, the field-like torque is enhanced so that the magnetization vector is driven closer to the axis ofσ.Then the torque induced by the bias field (Hbias) is nearly aligned to±σ×Hbias. Note thatσandHbiasare parallel toxaxis andyaxis,respectively(see Fig.1),thus this torque is almost oriented towards?zaxes. Depending on the direction of the applied current,the magnetization vector is switched to the+zaxis or-zaxis,as shown in Fig.3(c)or Fig.3(d). Overall,the joint effects of the bias field and huge field-like torque lead to the bipolar switching.

    Fig. 2. Macrospin simulation results of z-component magnetization (mz), indicating that ((a), (d)) no switching occurs while J=2×1011 A/m2,((b),(e))unipolar switching occurs while J=6×1011 A/m2,((c),(f))bipolar switching occurs while J=7×1011 A/m2,((a)–(c))current is applied along+y axis,and((d)–(f))current is applied along-y axis. The SOT pulse is withdrawn at 0.5 ns(as marked by the vertical dotted line).

    Fig. 3. Trajectories of magnetization vector and key torques in switching process: ((a), (b))unipolar switching for J=6×1011 A/m2 and((c), (d))bipolar switching for J = 7.5×1011 A/m2. Here other torques are not shown for the clarity. It is seen from panels(c)and(d)that the Heff torque has+z component and-z component,respectively,which are mainly contributed by the bias field(Hbias). Here we only show the trajectories for the case of starting point mz =1, which are highly symmetric with respect to those for the case of starting point mz=-1.

    It is important to mention that the role of the bias field becomes significant only when the current density is sufficiently large. This conclusion can be explained by Fig. 4(a), where a non-zero bias field induces an effective torque to pull the magnetization vector back, leading to bipolar switching. In contrast,the effect of the bias field is negligible in the case of unipolar switching as shown in Fig. 4(b). The difference between Fig.4(a)and Fig.4(b)is attributed to the various values ofxcomponent magnetization(mx). Specifically,sinceHbiasis aligned to the +yaxis, thezcomponent effective torque is contributed by±γμ0mx×Hbias. Stronger current density leads to largermx(see Fig.4(a)),and hence more easily drives the magnetization vector towards thezaxis.

    Fig. 4. Influence of the bias field on the magnetization switching for (a)bipolar switching and(b)unipolar switching.

    The influence of key parameters on the switching mode is further discussed. Figure 5 shows the phase diagram of the final-statemzas a function ofλFL/λDLandJ. Overall, the bipolar switching occurs when both the current density and the field-like torque are large enough. In this case, the combination of stronger field-like torque and larger current density causes magnetization vector to approach in-plane direction, favoring the bias-field-induced torque, as illustrated by Figs. 3(c) and 3(d). On the other hand, the unipolar switching is obtained in a relatively narrow range of parameters,where the field-like torque suppresses the other factors and leads to the precession of the magnetization vector as shown in Figs.3(a)and 3(b).

    The proposed mechanism of the magnetization switching is also validated through micromagnetic simulation. Here the Dzyaloshinskii–Moriya interaction (DMI) is further considered, since it is widely reported to exist in SOT devices.Micromagnetic simulations are performed by the OOMMF package. The MTJ diameter is changed to 100 nm for constructing the multi-domain scenario as distinguished from the macrospin model. Other magnetic parameters are in consistence with those used in macrospin simulation. Both the unipolar and bipolar switching are implemented with the appropriate parameter settings, no matter whether the DMI strength is zero or non-zero. Typical results for non-zero DMI(with a DMI magnitude of 0.3 mJ/m2and an exchange stiffness of 5×10-11J/m) are shown in Fig. 6, where the magnetization switching is completed through magnetic domain dynamics. However,the DMI has a dramatic influence on the characteristic of the magnetization switching. The unipolar switching disappears in the case of strong DMI (not shown here). Nevertheless, we find that the unipolar switching can be recovered by increasing the exchange stiffness(e.g.it is increased to 5×10-11J/m in Fig.6)or reducing the bias field.The reason may be that the uniformity of the magnetization is enhanced.

    Fig.5. Phase diagram of mz as a function of λFL/λDL and J. Regions I,II,and III indicate,respectively,no switching,unipolar switching,and bipolar switching.

    Fig. 6. Typical simulation results of micromagnetic configuration for the proposed switching mechanism, with the applied SOT current densities for unipolar switching and bipolar switching being J=4.5×1011 A/m2 and J=5.8×1011 A/m2,respectively,and SOT current withdrawn at 0.5 ns.

    Fig. 7. Reconfigurable logic circuit using the proposed mechanism of magnetization switching. Here inputs are transistor gate voltage level(AN)and MTJ state in current cycle(Bi),and output is MTJ state in the next cycle(Bi+1).

    Benefiting from the proposed switching scheme, the reconfigurable logic circuits can be flexibly designed. A typical example is shown in Fig. 7. Three transistors with different sizes are used as the selection switches for various logic functions. One of three transistors is activated by MUX for generating a write current whose amplitude is in the range of unipolar or bipolar switching.As a result,the specific logic function can be implemented and reconfigured as indicated in the truth table of Fig.7.

    4. Conclusions

    In summary,we have proposed a novel switching scheme for the perpendicular-anisotropy SOT device. The switching mode of the device can be transformed between the unipolar type and bipolar type,only by tuning the amplitude of the current density. For the unipolar switching, the strong field-like torque mainly governs the magnetization dynamics. For the bipolar switching, the bias field and field-like torque jointly determine the polarity of the magnetization switching. Our proposal can breed a multifunction SOT device, especially is suitable for the design of the reconfigurable memories and circuits.Furthermore,the presented theoretical work can provide guidance and reference for the future experiments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62171013 and 61704005),the National Key Research and Development Program of China(Grant Nos.2021YFB3601303,2021YFB3601304,and 2021YFB3601300),the Beijing Municipal Science and Technology Project, China (Grant No. Z201100004220002), and the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-21-BJ-J-1043).

    猜你喜歡
    王朝
    正確看待輸和贏
    為了班級的榮譽(yù)
    進(jìn)球了
    THE EXTENSION OPERATORS ON Bn+1 AND BOUNDED COMPLETE REINHARDT DOMAINS*
    一個(gè)愛打人屁股的王朝
    公民與法治(2020年3期)2020-05-30 12:30:00
    養(yǎng)心殿,帶你走進(jìn)大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    奇波利尼的王朝Saeco
    中國自行車(2018年8期)2018-09-26 06:53:08
    PROPERTIES OF THE MODIFIED ROPER-SUFFRIDGE EXTENSION OPERATORS ON REINHARDT DOMAINS?
    楊貴妃 王朝的女人
    電影(2015年7期)2015-12-24 01:36:04
    THE INVARIANCE OF STRONG AND ALMOSTSPIRALLIKE MAPPINGS OF TYPE β AND ORDER α?
    一级毛片久久久久久久久女| 亚洲av日韩精品久久久久久密| 亚洲国产精品成人综合色| 午夜福利在线观看吧| 国产中年淑女户外野战色| 国产又黄又爽又无遮挡在线| 免费无遮挡裸体视频| 日韩精品青青久久久久久| 99久久中文字幕三级久久日本| 狠狠狠狠99中文字幕| 1024手机看黄色片| 可以在线观看毛片的网站| 黄色一级大片看看| 色在线成人网| 久久久久久大精品| 精品无人区乱码1区二区| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 人人妻人人澡欧美一区二区| 国产精品自产拍在线观看55亚洲| 午夜激情欧美在线| 国产欧美日韩精品一区二区| ponron亚洲| 精品乱码久久久久久99久播| 欧美xxxx黑人xx丫x性爽| 91麻豆av在线| 欧美人与善性xxx| 日韩人妻高清精品专区| a级毛片免费高清观看在线播放| 午夜精品在线福利| 黄色欧美视频在线观看| 国产一级毛片七仙女欲春2| 免费av毛片视频| 欧美激情在线99| 两人在一起打扑克的视频| 日韩一区二区视频免费看| 亚洲电影在线观看av| 成人国产麻豆网| 一个人免费在线观看电影| 免费观看人在逋| 国产精品嫩草影院av在线观看 | 黄色欧美视频在线观看| 12—13女人毛片做爰片一| 美女黄网站色视频| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 日韩国内少妇激情av| 亚洲欧美日韩东京热| 亚洲 国产 在线| 久久人人爽人人爽人人片va| 日韩高清综合在线| 欧美一区二区国产精品久久精品| 国产精品,欧美在线| 欧美bdsm另类| 一a级毛片在线观看| 亚洲一级一片aⅴ在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧洲综合997久久,| 久久中文看片网| 精品午夜福利在线看| 国产精品免费一区二区三区在线| 99久久精品热视频| 久久精品国产清高在天天线| 婷婷六月久久综合丁香| 日韩精品有码人妻一区| avwww免费| 在线观看一区二区三区| 日本 av在线| 热99在线观看视频| 99久久精品热视频| 99在线人妻在线中文字幕| 最近最新免费中文字幕在线| 国产中年淑女户外野战色| 精品久久久久久久人妻蜜臀av| 我的老师免费观看完整版| 一进一出好大好爽视频| 男人的好看免费观看在线视频| 国内久久婷婷六月综合欲色啪| 国产乱人伦免费视频| 热99在线观看视频| 国产精品久久视频播放| 别揉我奶头 嗯啊视频| 日韩,欧美,国产一区二区三区 | 校园春色视频在线观看| 亚洲av五月六月丁香网| 国产成年人精品一区二区| 男人的好看免费观看在线视频| 国产综合懂色| 中文亚洲av片在线观看爽| 亚洲av.av天堂| 亚洲精华国产精华精| 欧美国产日韩亚洲一区| 熟女电影av网| 国产精品一及| 高清毛片免费观看视频网站| 国产久久久一区二区三区| 又黄又爽又免费观看的视频| 草草在线视频免费看| 制服丝袜大香蕉在线| x7x7x7水蜜桃| 伦精品一区二区三区| 亚洲真实伦在线观看| av在线天堂中文字幕| xxxwww97欧美| 欧美人与善性xxx| 久久国产乱子免费精品| 亚洲va在线va天堂va国产| 国产在视频线在精品| 在线a可以看的网站| 九九久久精品国产亚洲av麻豆| 欧美黑人巨大hd| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利在线观看免费完整高清在 | 热99re8久久精品国产| 可以在线观看毛片的网站| 久久精品人妻少妇| 狂野欧美激情性xxxx在线观看| 在线看三级毛片| 老司机深夜福利视频在线观看| 色在线成人网| 69人妻影院| 91精品国产九色| 欧美绝顶高潮抽搐喷水| 久久久久久伊人网av| 99久久精品国产国产毛片| 免费观看精品视频网站| 国产一区二区三区av在线 | 国产黄a三级三级三级人| 午夜福利视频1000在线观看| 亚洲欧美精品综合久久99| 天堂网av新在线| 国产精品野战在线观看| 日韩,欧美,国产一区二区三区 | 99国产极品粉嫩在线观看| 亚洲精品亚洲一区二区| 日韩人妻高清精品专区| 美女大奶头视频| eeuss影院久久| 亚洲熟妇熟女久久| 观看美女的网站| 久久午夜福利片| videossex国产| 国产亚洲精品久久久com| 51国产日韩欧美| 精品一区二区三区av网在线观看| 动漫黄色视频在线观看| 深夜a级毛片| 3wmmmm亚洲av在线观看| 一个人观看的视频www高清免费观看| 九九爱精品视频在线观看| 亚洲av五月六月丁香网| 美女高潮喷水抽搐中文字幕| aaaaa片日本免费| 日韩欧美精品免费久久| av在线老鸭窝| 日韩一本色道免费dvd| 成人特级av手机在线观看| 桃色一区二区三区在线观看| 国产精品久久久久久久电影| 我要看日韩黄色一级片| 免费在线观看成人毛片| 国产在线男女| 国产精品福利在线免费观看| 国产精品久久久久久av不卡| 国产激情偷乱视频一区二区| 精品人妻视频免费看| 岛国在线免费视频观看| 亚洲人成网站在线播| 国产熟女欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成网站在线播| 久久精品91蜜桃| 亚洲av日韩精品久久久久久密| 国产精品伦人一区二区| 国产熟女欧美一区二区| a级毛片a级免费在线| 久久草成人影院| 日本成人三级电影网站| 日韩强制内射视频| 精品人妻一区二区三区麻豆 | 悠悠久久av| 亚洲性夜色夜夜综合| 人妻久久中文字幕网| 麻豆成人av在线观看| 波多野结衣高清作品| 久久精品国产亚洲网站| 在线观看免费视频日本深夜| 国产精品自产拍在线观看55亚洲| 国产高清三级在线| 亚洲av中文av极速乱 | 在线观看66精品国产| 变态另类丝袜制服| 人妻久久中文字幕网| 国产午夜福利久久久久久| 亚洲狠狠婷婷综合久久图片| 国产大屁股一区二区在线视频| 成人av一区二区三区在线看| 性插视频无遮挡在线免费观看| 国产成人a区在线观看| 久久欧美精品欧美久久欧美| 最后的刺客免费高清国语| 麻豆一二三区av精品| 精华霜和精华液先用哪个| 欧美黑人巨大hd| 国产av麻豆久久久久久久| www日本黄色视频网| 国内精品宾馆在线| 国产免费男女视频| 国产一区二区亚洲精品在线观看| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| www.www免费av| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 色av中文字幕| 91久久精品电影网| 精品久久久久久久末码| 国产伦在线观看视频一区| 国产主播在线观看一区二区| 亚洲国产色片| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 日本三级黄在线观看| 在线观看av片永久免费下载| 嫁个100分男人电影在线观看| 赤兔流量卡办理| 搡老岳熟女国产| 免费观看的影片在线观看| 波多野结衣巨乳人妻| 日韩中字成人| av女优亚洲男人天堂| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区| 韩国av在线不卡| 免费av不卡在线播放| 床上黄色一级片| 亚洲人成网站在线播| 久久精品人妻少妇| 久久午夜亚洲精品久久| 亚洲av五月六月丁香网| 一级毛片久久久久久久久女| 免费一级毛片在线播放高清视频| 久久久久久伊人网av| 成年免费大片在线观看| 一进一出抽搐gif免费好疼| 狠狠狠狠99中文字幕| 国产欧美日韩精品一区二区| 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 欧美最新免费一区二区三区| 露出奶头的视频| 日韩欧美在线二视频| 久久欧美精品欧美久久欧美| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品合色在线| 国产精品自产拍在线观看55亚洲| 可以在线观看毛片的网站| avwww免费| 非洲黑人性xxxx精品又粗又长| 成年版毛片免费区| 偷拍熟女少妇极品色| 精品久久久久久久久久免费视频| 久久精品国产亚洲av香蕉五月| 无人区码免费观看不卡| 熟女电影av网| 免费人成视频x8x8入口观看| 91狼人影院| 久久精品国产清高在天天线| 亚洲不卡免费看| av中文乱码字幕在线| 俺也久久电影网| 国产伦一二天堂av在线观看| 亚洲熟妇熟女久久| 亚洲人成网站在线播| 欧美最黄视频在线播放免费| 日日干狠狠操夜夜爽| 无人区码免费观看不卡| 亚洲欧美日韩高清在线视频| 亚洲第一区二区三区不卡| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 欧美中文日本在线观看视频| 亚洲午夜理论影院| 无遮挡黄片免费观看| 偷拍熟女少妇极品色| 久久精品国产99精品国产亚洲性色| 成人国产综合亚洲| 热99在线观看视频| 啪啪无遮挡十八禁网站| 别揉我奶头 嗯啊视频| 国产精品久久久久久久电影| 久久精品国产清高在天天线| 日本三级黄在线观看| 国产男靠女视频免费网站| 麻豆国产av国片精品| 亚洲经典国产精华液单| 日本a在线网址| 中文字幕高清在线视频| 国产黄a三级三级三级人| 午夜久久久久精精品| 3wmmmm亚洲av在线观看| 夜夜夜夜夜久久久久| 免费在线观看影片大全网站| 真人一进一出gif抽搐免费| 欧美最新免费一区二区三区| 亚洲av第一区精品v没综合| 波多野结衣巨乳人妻| 美女高潮喷水抽搐中文字幕| 亚洲最大成人中文| 精品午夜福利在线看| 欧美国产日韩亚洲一区| 婷婷六月久久综合丁香| 最新在线观看一区二区三区| 男女啪啪激烈高潮av片| 麻豆成人午夜福利视频| 亚洲成人久久性| 日韩高清综合在线| 欧美区成人在线视频| 欧美成人性av电影在线观看| 欧美人与善性xxx| 国产亚洲91精品色在线| 九九爱精品视频在线观看| 亚洲精品日韩av片在线观看| 免费看日本二区| 亚洲精品亚洲一区二区| 少妇人妻精品综合一区二区 | 桃色一区二区三区在线观看| 国产男靠女视频免费网站| 国产成人aa在线观看| 成人特级黄色片久久久久久久| 男女视频在线观看网站免费| 成人高潮视频无遮挡免费网站| 偷拍熟女少妇极品色| 中文字幕av在线有码专区| 国产精品一区二区三区四区久久| 亚洲欧美日韩高清在线视频| 久久人人爽人人爽人人片va| 亚洲在线观看片| 丰满的人妻完整版| 黄色丝袜av网址大全| 国产主播在线观看一区二区| 欧美国产日韩亚洲一区| 日韩欧美一区二区三区在线观看| 亚洲图色成人| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 人人妻,人人澡人人爽秒播| 成年人黄色毛片网站| 国产精品久久久久久久电影| 给我免费播放毛片高清在线观看| 国产视频一区二区在线看| 少妇猛男粗大的猛烈进出视频 | 大又大粗又爽又黄少妇毛片口| 日韩欧美三级三区| 亚洲av成人精品一区久久| 美女黄网站色视频| 一本精品99久久精品77| 国产精品国产三级国产av玫瑰| 高清在线国产一区| 美女黄网站色视频| 亚洲欧美日韩高清在线视频| 精品久久久久久久久av| 午夜视频国产福利| 听说在线观看完整版免费高清| 天堂av国产一区二区熟女人妻| 精品久久久久久久久av| 看黄色毛片网站| 国产一区二区激情短视频| 成人一区二区视频在线观看| 九色成人免费人妻av| 午夜福利成人在线免费观看| 欧美bdsm另类| 国产久久久一区二区三区| 搡女人真爽免费视频火全软件 | 联通29元200g的流量卡| 琪琪午夜伦伦电影理论片6080| 欧美潮喷喷水| 国产精品爽爽va在线观看网站| 少妇的逼水好多| 国产av不卡久久| 日本黄色片子视频| 日韩,欧美,国产一区二区三区 | 国产精品98久久久久久宅男小说| 精品人妻偷拍中文字幕| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 12—13女人毛片做爰片一| 午夜老司机福利剧场| a级一级毛片免费在线观看| 国产精品免费一区二区三区在线| 少妇人妻精品综合一区二区 | 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av在线| 午夜老司机福利剧场| 国产午夜精品论理片| 国产av不卡久久| 成人亚洲精品av一区二区| 一区二区三区高清视频在线| 制服丝袜大香蕉在线| 老师上课跳d突然被开到最大视频| 动漫黄色视频在线观看| 亚洲av.av天堂| av女优亚洲男人天堂| 亚洲av二区三区四区| 88av欧美| 中出人妻视频一区二区| 精品一区二区三区人妻视频| 免费搜索国产男女视频| 中文字幕高清在线视频| 黄色女人牲交| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 我要看日韩黄色一级片| 中文在线观看免费www的网站| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| 国产精品98久久久久久宅男小说| 极品教师在线免费播放| 国产色爽女视频免费观看| 亚洲欧美日韩无卡精品| 简卡轻食公司| 免费在线观看影片大全网站| 韩国av在线不卡| 精品人妻视频免费看| 夜夜夜夜夜久久久久| 日本免费一区二区三区高清不卡| 夜夜爽天天搞| 久久久久免费精品人妻一区二区| 久久精品影院6| 日本在线视频免费播放| 欧美日本亚洲视频在线播放| 免费在线观看影片大全网站| 天美传媒精品一区二区| 别揉我奶头 嗯啊视频| ponron亚洲| 性插视频无遮挡在线免费观看| 亚洲性久久影院| 十八禁网站免费在线| 国产精品永久免费网站| 亚洲欧美日韩无卡精品| 欧美xxxx性猛交bbbb| 亚洲中文字幕一区二区三区有码在线看| 亚洲黑人精品在线| 国产精品亚洲美女久久久| 少妇熟女aⅴ在线视频| 免费大片18禁| 网址你懂的国产日韩在线| 性色avwww在线观看| 国内精品美女久久久久久| 美女 人体艺术 gogo| 精品人妻视频免费看| 日韩欧美在线二视频| 亚洲av美国av| 在线播放无遮挡| 变态另类成人亚洲欧美熟女| 亚洲最大成人手机在线| 99国产极品粉嫩在线观看| 特大巨黑吊av在线直播| 国产精品国产三级国产av玫瑰| 窝窝影院91人妻| 久久久久久大精品| 国产精品国产高清国产av| 欧美xxxx黑人xx丫x性爽| av在线蜜桃| 久久久久性生活片| 热99在线观看视频| 联通29元200g的流量卡| 免费观看人在逋| 欧美高清成人免费视频www| 床上黄色一级片| 欧美最黄视频在线播放免费| 制服丝袜大香蕉在线| 国产精品国产高清国产av| 亚洲欧美清纯卡通| 中文字幕av成人在线电影| 亚洲精品456在线播放app | 我要搜黄色片| 日本成人三级电影网站| 久99久视频精品免费| 欧美日韩综合久久久久久 | 窝窝影院91人妻| 免费看美女性在线毛片视频| 欧美日韩综合久久久久久 | 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| 国产精品福利在线免费观看| 精品久久久久久久久久久久久| 少妇的逼好多水| 欧美人与善性xxx| 欧美成人一区二区免费高清观看| 日本免费一区二区三区高清不卡| 国产v大片淫在线免费观看| 国产高清激情床上av| 联通29元200g的流量卡| 69人妻影院| 亚洲国产高清在线一区二区三| 午夜激情欧美在线| 久久亚洲精品不卡| 日韩大尺度精品在线看网址| 狂野欧美激情性xxxx在线观看| 成人国产综合亚洲| 麻豆国产av国片精品| 国产精品无大码| 欧洲精品卡2卡3卡4卡5卡区| 长腿黑丝高跟| 欧美+日韩+精品| 女人十人毛片免费观看3o分钟| 999久久久精品免费观看国产| 亚洲成a人片在线一区二区| 国产蜜桃级精品一区二区三区| 亚洲三级黄色毛片| 搡老妇女老女人老熟妇| 免费观看在线日韩| 最新在线观看一区二区三区| 国产不卡一卡二| 免费观看精品视频网站| а√天堂www在线а√下载| 免费观看在线日韩| 女人被狂操c到高潮| 日日撸夜夜添| 中国美白少妇内射xxxbb| 97热精品久久久久久| 亚洲专区中文字幕在线| 中文字幕免费在线视频6| 哪里可以看免费的av片| 黄色配什么色好看| 在线免费十八禁| 日韩中字成人| 国产精品电影一区二区三区| 久久6这里有精品| 我的老师免费观看完整版| 久久草成人影院| 国产高清视频在线观看网站| 特级一级黄色大片| 久久午夜亚洲精品久久| 18禁黄网站禁片免费观看直播| 久久人妻av系列| 嫩草影院精品99| 小说图片视频综合网站| 国产日本99.免费观看| 日日撸夜夜添| 国产午夜精品论理片| 亚洲欧美清纯卡通| 精品久久久久久,| 久久久久久久亚洲中文字幕| 制服丝袜大香蕉在线| 午夜福利在线观看免费完整高清在 | 亚州av有码| 欧美日本视频| 美女cb高潮喷水在线观看| 色在线成人网| 欧美一级a爱片免费观看看| 观看美女的网站| 999久久久精品免费观看国产| 国产单亲对白刺激| 长腿黑丝高跟| 国产亚洲精品综合一区在线观看| 最后的刺客免费高清国语| 自拍偷自拍亚洲精品老妇| 久久人妻av系列| 国产伦人伦偷精品视频| 亚洲成人久久性| 精品久久久久久成人av| 九九热线精品视视频播放| 国产白丝娇喘喷水9色精品| bbb黄色大片| 久久这里只有精品中国| 观看免费一级毛片| 久久中文看片网| 免费观看精品视频网站| 亚洲无线在线观看| 日韩国内少妇激情av| 在现免费观看毛片| 男女下面进入的视频免费午夜| 麻豆一二三区av精品| 一边摸一边抽搐一进一小说| 亚洲美女黄片视频| 亚洲三级黄色毛片| 性插视频无遮挡在线免费观看| 久久久午夜欧美精品| 九色国产91popny在线| 日本a在线网址| 国产女主播在线喷水免费视频网站 | 亚洲国产精品国产精品| 丰满迷人的少妇在线观看| 永久网站在线| 中文字幕亚洲精品专区| 男女国产视频网站| 你懂的网址亚洲精品在线观看| 国产精品伦人一区二区| 色哟哟·www| 欧美日韩综合久久久久久| 国产无遮挡羞羞视频在线观看| 中文精品一卡2卡3卡4更新| 看十八女毛片水多多多| 人妻系列 视频| 亚洲av福利一区| 三级经典国产精品| 天堂俺去俺来也www色官网| 欧美精品国产亚洲| 少妇高潮的动态图| 秋霞在线观看毛片| 五月玫瑰六月丁香| 久久久久久久久久久免费av| 日韩一区二区三区影片| 亚洲av福利一区| 亚洲成色77777| 国产乱来视频区| 国产国拍精品亚洲av在线观看| 波野结衣二区三区在线| 免费看av在线观看网站| 精品久久国产蜜桃| 在线天堂最新版资源| 国产欧美日韩一区二区三区在线 |