• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of ZnTe film with high copper doping efficiency for solar cells

    2022-10-26 09:54:06XinLuLin林新璐WenXiongZhao趙文雄QiuChenWu吳秋晨YuFengZhang張玉峰HasithaMahabadugeandXiangXinLiu劉向鑫
    Chinese Physics B 2022年10期

    Xin-Lu Lin(林新璐) Wen-Xiong Zhao(趙文雄) Qiu-Chen Wu(吳秋晨)Yu-Feng Zhang(張玉峰) Hasitha Mahabaduge and Xiang-Xin Liu(劉向鑫)

    1Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Georgia College and State University,Milledgeville,GA 31061,USA

    4Institute of Qilu Zhongke Electrical Advanced Electromagnetic Drive Technology,Jinan 250101,China

    Keywords: solar cell,radio frequency sputtering,doping efficiency,post-deposition heat treatment

    1. Introduction

    Now,the technology of making cadmium telluride(CdTe)solar cells is one of the key technologies in the field of thin film solar cells.[1–3]CdTe back contact material for cadmium telluride (CdTe) cell has always been a significant research direction.[4]For a solar cell with traditional structure(Fig.1(a)),a hole barrier is formed in back contact due to mismatch of work function.[5,6]Many researchers have proved that copper-doped zinc telluride (ZnTe:Cu) is an ideal back contact material(Fig.1(b)).[7,8]The ZnTe:Cu is a hole transport material that is inserted between electrode layer and absorber, which can reduce the valence band discontinuity(0.05 eV–0.30 eV)caused by the contact barrier.[9]Owing to the slight mismatch of lattice between ZnTe:Cu and CdTe,the ZnTe:Cu film can be used as an electron back reflection layer(1.00 eV–1.08 eV)to inhibit interface recombination.[10]After the activation of post-deposition heat treatment(PDHT),high level carrier concentration can be easily achieved.[11]

    Fig.1. Schematic diagram of energy band structure for CdTe solar cell(a)metallic contact,and(b)modified cell with ZnTe:Cu layer.

    Although there are few reports on RF coupled DC sputtering of ZnTe:Cu film,there may exist an effect on film properties as demonstrated on ZnO:Al and Cd2SnO4.[12,13]In this work, we investigate the influence of target bias and PDHT for ZnTe:Cu. Furthermore,a systematic study is conducted on the devices with different contact materials,which proves that ZnTe:Cu back contact layer may reduce hole barrier. Through effective activation process, the efficiency of solar cell is improved by the modified band alignment.

    2. Experiment

    2.1. Preparation of ZnTe:Cu and devices

    ZnTe:Cu films were prepared on Corning 7059 glass substrates through RF-coupled DC sputtering followed by rapid thermal processing (RTP) at different temperatures.[14]Optimized ZnTe:Cu films were then used to complete CdTe solar cell devices. Both CdS:O and CdTe polycrystalline films were sputtered on the commercial TEC15 substrate by using standard process. Afterwards, the CdS:O/CdTe devices were activated by chloride treatment, which was conducted in mixed atmosphere with 5% oxygen and 95% nitrogen.[15]After the chloride treatment,different back contacts were used(Fig.2).

    For reference, the Au electrode (30-nm thick) or Cu/Au bilayer structure with an optimal Cu thickness (4 nm) was evaporated on an activated absorber surface by electron beam evaporation (Figs. 2(a) and 2(b)). As shown in Fig. 2(c),ZnTe:Cu/Au stacked structure was sputtered on an absorber layer. The ZnTe target with three inches in diameter was used,which has a purity of 99.99%with 5%atomic concentration of copper. The devices with different thickness ZnTe:Cu buffer layers(40 nm–200 nm)were annealed on the RTP furnace at 200°C–320°C for 20 s–120 s.

    Fig.2. Schematic diagram of devices with different contact layers: (a)Au,(b)Cu/Au,(c)ZnTe:Cu/Au(nonscaled).

    2.2. Characterization methods

    The morphology of film surface and device cross section were observed by using scanning electron microscope(SEM,Zeiss Sigma). The film electrical property was measured by Hall effect(Nanometric Hall 5500). The atomic ratio was investigated by energy dispersive spectrometer (EDS, Bruker).For the device, the current density–voltage (J–V) curve was measured on a source meter (Keithley 2400) and solar simulator (Newport Oriel 91159A, USA). External quantum efficiency (EQE) was investigated in PV measurement (QEX7 system,USA).The capacitance–voltage(C–V)was measured in a semiconductor characterization system (SCS, Keithley 4200).

    3. Results and discussion

    3.1. Improvement of doping efficiency

    Deposition rate, optical and electrical properties of ZnTe:Cu film are affected by target bias voltage as demonstrated in previous work.[14]The influence of PDHT and target bias are investigated to understand benefits obtained from RF-coupled DC sputtering and heating process separately.The combined process of PDHT (300°C) and target bias voltage(-122 V)is dramatically improved,which makes the resistivity decrease from 243.58 Ω·cm to 0.04 Ω·cm(Fig.3(a)). The carrier mobility is enhanced to 0.214 cm2/(V·s) (Fig. 3(b)).As shown in Fig. 3(c), the carrier concentration is improved from 5.0×1017cm-3to 9.2×1020cm-3at a-122 V bias voltage and RTP at 270°C for 60 s. Nevertheless,the carrier concentration decreases with excessive annealing temperature increasing. The doping efficiency is computed as the ratio of free hole density to copper concentration,showing an upward trend from 0.03% to 60.9% (Fig. 3(d)).[16]The copper concentration in ZnTe:Cu film is derived from the relative ratio of Zn to Te to Cu from EDS data taken from the same film.The doping efficiency can be correlated with the performance for CdTe-based solar cell.The higher doping efficiency means that more copper atoms substitute for Zn sites in ZnTe lattices and there remain less mobilized copper atoms which can enter into the CdTe absorber layer. Copper is suspected as a dominant element for CdTe-based cell degradation.[17]Possible degradation mechanisms include the decline in window layer transmission (decreasedJsc) and change in the space charge region(decreasedVoc).[18]

    As shown in Table 1, in National Renewable Energy Laboratory, Gessertet al.noted that carrier concentration of ZnTe:Cu(0.45 at.%)film is 1.9×1018cm-3at annealing temperature of 375°C in flowing N2for 30 min.[19]And the asdeposited ZnTe:Cu (6 at.%) film reaches a maximum carrier concentration of 3×1020cm-3at a substrate temperature of 300°C.[20]In the University of Toledo,Bohnet al. noted that the ZnTe:Cu(8.86 at.%)film with a high carrier concentration of 1×1021cm-3is grown at 400°C.[21]In our laboratory,the doping efficiency of ZnTe:Cu(5 at.%)film (200 nm thick) is improved to 60.9%.

    Fig.3. ZnTe:Cu properties with different target bias of-82 V(black line),-102 V(red line),and-122 V(blue line):(a)resistivity,(b)carrier mobility,(c)carrier concentration,(d)doping efficiency.

    Table 1. Summary of electrical performance of ZnTe:Cu films deposited by different groups.

    3.2. Fabrication of CdTe solar cells

    To understand the changes of back contact materials,it is significant to review the fabrication of device with fundamental structure.All solar cells are deposited on NSG TEC15 glass which is coated by SnO2:F(FTO)(Fig.4(a)). The CdS:O film is sputtered through RF deposition process and used as a window layer on the TEC15 glass for solar cell(Fig.4(b)). Then polycrystalline CdTe film is deposited on CdS:O film in the same sputtering system with a substrate temperature of 301°C(Fig. 4(c)). With the achievement of chlorine activation process,the study of the CdTe grain boundary surface by SEM reveals that the CdCl2treatment results in the enlargement of the grain size(Fig.4(d)). As for back contact,the interface issue of the mismatch of work function can be solved by inserting a buffer layer of ZnTe:Cu which is prepared by the RF coupled DC sputtering, and device performance is significantly enhanced after being annealed additionally. Figure 4(e)shows that the surface of CdTe film is homogenously covered with uniform ZnTe:Cu film. Figure 4(f) shows the surface morphology of ZnTe:Cu with optimal RTP. After the PDHT, the grain boundaries become blurred where the small grains are“swallowed”by large grains.

    The superstrate structure is used for CdTe solar cells as shown in Fig.5(a). Figures 5(b)–5(d)show the box plots obtained from 36 cell efficiencies for each condition. The active area of each cell is approximately 0.07 cm2. Figure 5(b)shows the effect of ZnTe:Cu thickness with RTP at temperature 300°C in 100 s.The cell with 80-nm-thick ZnTe:Cu layer reaches a best performance (10.55%, in average), which is mainly due to the enough copper atoms needed to enhance the p-type doping concentration of the absorber layer. Figure 5(c)shows the efficiency(Eff)valuesversusthe annealing temperature for devices with 80-nm-thick ZnTe:Cu layer and annealing time of 100 s. “No RTP”samples refer to the devices that are unannealed. When the annealing temperature is 280°C,the maximum solar cell efficiency is obtained(11.63%,in average). Figure 5(d) displays the statistical results of the performance for devices with 80-nm-thick ZnTe:Cu film and the same annealing temperature (280°C). TheEffvalue first increases from 8.78%(20 s)to 12.89%(60 s)and then decreased(9.53%,120 s).

    Fig. 4. SEM image of (a) FTO, (b) FTO/CdS:O, (c) FTO/CdS:O/CdTe (as-deposited), (d) FTO/CdS:O/CdTe (with Cl treatment), (e)FTO/CdS:O/CdTe/ZnTe:Cu(as-deposited),and(f)FTO/CdS:O/CdTe/ZnTe:Cu(with optimized PDHT treatment).

    Fig.5.(a)Cross section of device,(b)effect of ZnTe:Cu thickness on device efficiency,(c)effect of annealing temperature on device efficiency,and(d)effect of annealing time on device efficiency.

    Figure 6(a) displays the typicalJ–Vcurves for devices with respective contact materials of Au, Cu/Au, ZnTe:Cu/Au with No RTP treatment,ZnTe:Cu/Au with optimal RTP treatment at 280°C for 60 s,and ZnTe:Cu/Au with excessive RTP treatment at 320°C for 100 s.We collect the highest efficiency of CdTe-based film solar cell under different preparation conditions. The corresponding photovoltaic measurements of devices are summarized in Table 2.

    The typical CdTe soalr cell with Au contact material shows the behavior of“roll-over”,which causesFFof 51.51%andVocof 606 mV. The efficiency value of this device is 7.27%, withJsc= 23.21 mA/cm2,Rs= 9.69 Ω·cm2, andRsh=350 Ω·cm2. The behavior of“roll-over”implies the existence of contact barrier,which results from the mismatch of work function between electrode layer and absorber layer.[22]With the incorporation of a copper film,FFandVocexhibit a limited improvement of 65.36% and 736 mV, withRs=5.40 Ω·cm2andRsh=1675 Ω·cm2. TheJscvalue remains essentially unchanged (23.68 mA/cm2), and thus the overall efficiency increases to 11.48%. As for ZnTe:Cu contact material, as-deposited solar cell with no RTP treatment shows bad current collection(18.41 mA/cm2). The device efficiency is 2.87%, leading to lowVoc(508 mV), the high series resistanceRs(21.26 Ω·cm2),the low shunt resistanceRsh(86 Ω·cm2), and fill factor (30.65%). After the optimal RTP treatment,the performance of device is significantly enhanced.TheRsdecreases from 21.26 Ω·cm2to 4.23 Ω·cm2because of the barrier reduction.[23]The leakage of electricity is prohibited andRshimproves from 86 Ω·cm2to 1109 Ω·cm2. At the same time, theJ–Vcurves exhibit no “roll-over” behavior, withEff=13.48%,Jsc=26.76 mA/cm2,Voc=756 mV,andFF=66.60%. Once the devices are over treated with excessive annealing temperature or annealing time, all the photovoltaic parameters obviously decline. For example, the efficiency of cell declines from 13.48% to 9.55% (29.15% in decrement), withVoc= 730 mV,Jsc= 25.59 mA/cm2, andFF=51.10%. The degradation is assumed to be mainly because of copper diffusion to CdS:O film, which degrades the PN junction and leads to shunting.

    Fig.6. (a)The J–V curves and(b)EQE–wavelength curves.

    Table 2. Photovoltaic parameters of different devices.

    As shown in Fig. 6(b), the values of EQE decrease at wavelengths above 600 nm for the device without Cu(with Au electrode only).Similarly,EQE spectrum shape of device with Cu/Au contact material shows a downward trend in a wavelength range of 600 nm–800 nm. Specific to the ZnTe:Cu/Au back contact device with optimized RTP treatment, the EQE spectral keeps relatively stable over the same wavelength range of 600 nm–800 nm without decreasing. In general, because of free carrier recombination near the back contact,the EQE response decreases at long wavelengths.[24]In contrast,the conduction band barrier of device with ZnTe:Cu/Au contact material has an effect on the EQE response,which works as free electron barrier and reduces the recombination rate of free carrier.

    To obtain higher conversion efficiency, we prepare CdTe-based solar cells with a novel structure of Cd2SnO4(CTO)/MgZnO (MZO)/CdTe/ZnTe:Cu/Ni. The CTO film(200 nm)is used as the conductive layer instead of FTO film to improve the electrical properties and transmission of TCO layer.[13]The MZO film (80-nm thick) is used as the window layer instead of CdS film to enhance the response of solar cell at short wavelengths.[25]The CdTe absorber prepared by closed space sublimation (CSS) at high temperature replaces the method of magnetron sputtering at low temperatures. In addition,the use of Ni as the back electrode instead of Au can reduce the production cost of solar cells.

    Figure 7(a) displays theJ–Vcurve for the best device with contact materials of ZnTe:Cu/Ni. TheJ–Vcurves exhibit no “roll-over” behavior, withEff=15.94%,Voc=834 mV,Jsc=27.98 mA/cm2,FF=68.30%,Rs=3.44 Ω·cm2, andRsh=1244 Ω·cm2. Figures 7(b)–7(d)show the box plots obtained from 36 cell efficiencies under the different conditions of ZnTe:Cu film. Figure 7(b) shows the effect of ZnTe:Cu thickness with RTP at 260°C for 40 s. The cell with 90-nmthick ZnTe:Cu layer reaches the best performance (13.09%,average). Figure 7(c)shows the comparison of annealing temperature among devices with 90-nm ZnTe:Cu layer and annealing time of 40 s. When the annealing temperature is 290°C, the maximum solar cell efficiency is obtained to be an average of 14.00%. Figure 7(d) displays the results of performance for devices with 90-nm-thick ZnTe:Cu film and the same annealing temperature(290°C).Therefore,ZnTe:Cu back contact layer with a thickness of 90 nm annealed at 290°C for 40 s can achieve the best conversion efficiency for the devices with novel structure.

    Fig.7. (a)The J–V curve, (b)effect of ZnTe:Cu thickness on device efficiency, (c)effect of annealing temperature on device efficiency, and(d)effect of annealing time on device efficiency.

    3.3. Analysis of J–V and C–V for solar cell

    With regard to the characteristic ofJ–Vbehavior, the most important thing is the prevalence of parasitic losses,which can be commonly described by the following diode equations:[24,26]

    whereJandJLare the reverse saturation current and photogenerated current,respectively.

    The CurVA 2.0 software is used for the numerical analysis ofJ–Vplot. Figure 8(a) shows theJ–Vplots for device with efficiency of 15.94%. This includes sufficient data in the first quadrant and third quadrant where non-ideal effects are not described by Eq.(1), such as current blocking behavior, which are commonly observed in solar cells. Figure 8(b)shows the derivativeg(V) with respect toVin a reverse bias voltage region where derivative of diode term in Eq. (2) becomes negligible. In this case, theg(V) curves reveal thatG(dark)=0 mS/cm2andG(light)=0.9 mS/cm2. In addition,the slope of realisticJ–Vcurve is very small in the range of reverse bias, so there will be some noise in calculating the derivative under illumination condition. Figure 8(c)shows the dV/dJ versus(J+JscGV)-1plot, which will yield a line ifJLis independent of voltage. From the dark data or the linear region of light data, an intercept is obtained for the series resistance(Rs=3.44 Ω·cm2)and a slope is calculated for diode ideality factor (A=1.53). Figure 8(d) shows semilogarithmic plot of (J+JscGV)versus(V-RsJ). According to dark data or the linear region of light data, the current indicates that the intercept gives the diode reverse saturation current(J=9.7×10-8mA/cm2). The slope is equal toq/AkT,so the diode ideality factor(A)can be calculated to be 1.53(A=1.53)which is consistent with the value indicated in Fig. 8(c). In addition, the values ofAandJfor all devices with different preparation conditions are summarized in Table 2 for comparison. When Cu/Au layers, ZnTe:Cu/Au layers with optimal RTP and ZnTe:Cu/Ni with optimal RTP are used for the back contact of solar cells, the corresponding diode quality factors are 1.70, 1.64, and 1.53, respectively. The results of ideality factor between 1 and 2 indicate that the device operated with dominant trap states is the recombination in space charge region. When Au monolayer, ZnTe:Cu/Au layers without RTP and ZnTe:Cu/Au with excessive RTP are used for the back contact of solar cell, the corresponding diode quality factors are 2.39,3.15,and 2.18,respectively. When the value of diode ideality factor exceeds 2, the interface and tunneling recombination additionally contribute to the total recombination.[26]This suggests that the better quality absorber layer is necessary for high performance.

    To obtain free carrier densities and depletion widths from the PN junction of device,C–Vprofiling is carried out at room temperature(Fig.9(a)).The carrier concentration is calculated from the following equations:[27]

    whereC(V) is the capacitance per area, ΔQthe incremental depletion charge with an applied voltage ΔV,εthe permittivity of the CdTe,Wthe depletion width,qthe electron charge,N(W)the space charge density,andVDthe diffusion voltage.

    Fig.8. (a)The J–V plots,(b) dJ/dV versus voltage,(c) dV/dJ versus(J+Jsc-GV)-1,and(d)(J+Jsc-GV)versus(V-RsJ),for light(red line)and dark(black line)case.

    Fig.9. (a)The C–V plots,(b)1/C2–V plots,and(c)space charge distribution,for different frequencies: 10 kHz(black line),50 kHz(red line),and 100 kHz(blue line).

    Figure 9(b) shows the plot ofC-2againstV. Under the 10-kHz measurement condition,the data for CdTe device have a line from which the slope and intercept are used to calculate the space charge density(6×1014cm-3)and diffusion voltage(VD=0.4 V). Under the 50-kHz and 100-kHz measurement conditions,the device has a varying slope,implying a spatially varyingN. The relatively low free carrier value identifies one of the key issues in CdTe solar cell technology, namely, the inability to dope CdTe absorbers to a sufficiently high carrier density. Figure 9(c)indicates the depletion width of device is estimated to be about 900 nm. In addition, the depth profile is U-shaped, presenting a trapped electron density and defect vacancy density, which serve as the leakage paths to reduce the shunt resistance.[9]

    4. Conclusions and perspectives

    In this work, ZnTe:Cu film (200-nm thick) is sputtered by RF-coupled DC bias voltage system and PDHT, to have the carrier concentration of 9.2×1020cm-3and the doping efficiency of 60.9%. After optimizing ZnTe:Cu films, a systematic study is carried out to incorporate ZnTe:Cu film into CdTe solar cell. Optimized band alignment is supposed to enhance the device performance. However, the device with as-deposited ZnTe:Cu contact material shows low current collection and efficiency. The best efficiency of novel device with optimal PDHT for ZnTe:Cu contact material is 15.94%,with correspondingVoc=834 mV,Jsc=27.98 mA/cm2, andFF=68.30%. In general,the improvement of device performance can be attributed to barrier reduction and the suppressed leakage of electricity. The further analysis ofJ–Vbehavior shows that the results of diode ideality factor (A=1.53) between 1 and 2 indicate that the device operates by dominant recombination of trap states in space charge region. TheC–Vprofiling shows that the space charge density remains at 1014level in a frequency range of 10 kHz–100 kHz. Furthermore,the depletion width can be estimated at 900 nm. With all the analysis considered,it is recommended that CdTe-based solar cells be constructed with a ZnTe:Cu back contact layer with optimizing RTP treatment, thereby improving the device performance.

    Acknowledgements

    The authors are grateful to the Photovoltaic Laboratory at Colorado State University for the CurVA 2.0 software.

    Project supported by the Research Foundation of Institute of Electrical Engineering,Chinese Academy of Sciences,(Grant No. Y710411CSB), the Lujiaxi International Team Project of Chinese Academy of Sciences (Grant No. GJTD-2018-05),the Chinese Academy of Sciences President’s International Fellowship Initiative(Grant No.2020VEC0008),and the Fund from the Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology,Qilu Zhongke.

    午夜视频精品福利| 亚洲情色 制服丝袜| 国产单亲对白刺激| 电影成人av| 精品少妇黑人巨大在线播放| 久久久国产欧美日韩av| 超碰97精品在线观看| 一本久久精品| www日本在线高清视频| 91九色精品人成在线观看| 亚洲va日本ⅴa欧美va伊人久久| 少妇猛男粗大的猛烈进出视频| 久久人妻av系列| 我的亚洲天堂| 日韩一卡2卡3卡4卡2021年| 久久天躁狠狠躁夜夜2o2o| 免费观看av网站的网址| 老汉色av国产亚洲站长工具| 日韩视频在线欧美| 国产欧美日韩一区二区三区在线| 女性被躁到高潮视频| 欧美国产精品va在线观看不卡| 人人澡人人妻人| 这个男人来自地球电影免费观看| 国产精品九九99| 日韩精品免费视频一区二区三区| 少妇被粗大的猛进出69影院| 日本五十路高清| 亚洲 国产 在线| 精品少妇一区二区三区视频日本电影| 精品卡一卡二卡四卡免费| 免费av中文字幕在线| 视频区图区小说| 视频在线观看一区二区三区| 国产免费福利视频在线观看| 国产男女超爽视频在线观看| 欧美午夜高清在线| 欧美在线黄色| 老熟女久久久| 国产精品亚洲一级av第二区| 久久精品亚洲精品国产色婷小说| 国产99久久九九免费精品| √禁漫天堂资源中文www| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉国产在线看| 99国产精品一区二区蜜桃av | 午夜两性在线视频| 久久99热这里只频精品6学生| 精品午夜福利视频在线观看一区 | 青草久久国产| 欧美精品人与动牲交sv欧美| 性色av乱码一区二区三区2| 午夜福利免费观看在线| 精品国产一区二区三区久久久樱花| 成人亚洲精品一区在线观看| 久久久国产精品麻豆| 人妻 亚洲 视频| 日本五十路高清| 黄色 视频免费看| 亚洲熟女毛片儿| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利,免费看| 午夜福利乱码中文字幕| 午夜福利欧美成人| 国产精品麻豆人妻色哟哟久久| 日本欧美视频一区| avwww免费| 婷婷成人精品国产| 亚洲欧美精品综合一区二区三区| 日日摸夜夜添夜夜添小说| 免费av中文字幕在线| 91精品国产国语对白视频| 美国免费a级毛片| 丝袜在线中文字幕| 免费黄频网站在线观看国产| 亚洲av美国av| 女性生殖器流出的白浆| 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久男人| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 99riav亚洲国产免费| 欧美日韩一级在线毛片| 99riav亚洲国产免费| 国产伦人伦偷精品视频| 久久久久国内视频| 国产黄色免费在线视频| 香蕉国产在线看| 视频在线观看一区二区三区| 岛国毛片在线播放| 波多野结衣av一区二区av| 亚洲精品在线观看二区| 在线观看66精品国产| 中文字幕最新亚洲高清| 国产av精品麻豆| 日韩欧美一区视频在线观看| 超碰97精品在线观看| av免费在线观看网站| 欧美激情久久久久久爽电影 | 欧美日韩成人在线一区二区| 男女床上黄色一级片免费看| 乱人伦中国视频| 久热爱精品视频在线9| 黑人欧美特级aaaaaa片| 免费不卡黄色视频| 色精品久久人妻99蜜桃| 国产精品自产拍在线观看55亚洲 | 一二三四社区在线视频社区8| 蜜桃在线观看..| h视频一区二区三区| 99re在线观看精品视频| 天堂动漫精品| 黄色视频,在线免费观看| 国产精品成人在线| av网站在线播放免费| 久久国产亚洲av麻豆专区| 女同久久另类99精品国产91| 老汉色∧v一级毛片| 国产又色又爽无遮挡免费看| 国产精品麻豆人妻色哟哟久久| 国产男靠女视频免费网站| 亚洲 国产 在线| 亚洲国产成人一精品久久久| 建设人人有责人人尽责人人享有的| 少妇 在线观看| 亚洲自偷自拍图片 自拍| 午夜福利影视在线免费观看| 久久 成人 亚洲| 我的亚洲天堂| 国产精品一区二区免费欧美| 精品国产乱子伦一区二区三区| 两个人看的免费小视频| 法律面前人人平等表现在哪些方面| 精品午夜福利视频在线观看一区 | 看免费av毛片| 黄色怎么调成土黄色| 青青草视频在线视频观看| 亚洲精品美女久久av网站| 91麻豆精品激情在线观看国产 | 亚洲人成伊人成综合网2020| 一进一出抽搐动态| bbb黄色大片| 精品熟女少妇八av免费久了| 后天国语完整版免费观看| 这个男人来自地球电影免费观看| 午夜福利在线观看吧| 男女下面插进去视频免费观看| 免费观看av网站的网址| 免费女性裸体啪啪无遮挡网站| 中文字幕另类日韩欧美亚洲嫩草| 极品教师在线免费播放| 亚洲九九香蕉| 极品教师在线免费播放| 丝袜美腿诱惑在线| 国产精品av久久久久免费| 香蕉丝袜av| 久久人妻熟女aⅴ| 在线看a的网站| 母亲3免费完整高清在线观看| 久久久久久久精品吃奶| 欧美在线一区亚洲| 一级片免费观看大全| 电影成人av| 大香蕉久久成人网| 18在线观看网站| 久久精品亚洲av国产电影网| 国产黄频视频在线观看| 亚洲五月婷婷丁香| 中文欧美无线码| 午夜精品久久久久久毛片777| av福利片在线| 极品人妻少妇av视频| 国产成人欧美在线观看 | 国产欧美日韩综合在线一区二区| 欧美日韩福利视频一区二区| 人人妻人人澡人人看| 日韩一卡2卡3卡4卡2021年| 老司机午夜福利在线观看视频 | 欧美乱码精品一区二区三区| 国产免费视频播放在线视频| av电影中文网址| 蜜桃国产av成人99| 少妇被粗大的猛进出69影院| 中文字幕人妻丝袜一区二区| 人人妻人人澡人人爽人人夜夜| 成人亚洲精品一区在线观看| 男女之事视频高清在线观看| av超薄肉色丝袜交足视频| 日本av免费视频播放| 日韩一卡2卡3卡4卡2021年| 少妇的丰满在线观看| www.精华液| 亚洲欧美日韩高清在线视频 | 天堂动漫精品| 日韩视频一区二区在线观看| 桃红色精品国产亚洲av| 黄色片一级片一级黄色片| 色尼玛亚洲综合影院| 91精品国产国语对白视频| 精品福利观看| 老熟妇仑乱视频hdxx| av天堂在线播放| 欧美老熟妇乱子伦牲交| 老司机影院毛片| a级毛片在线看网站| 欧美人与性动交α欧美精品济南到| 女人精品久久久久毛片| 久久久精品94久久精品| 日日爽夜夜爽网站| 高清欧美精品videossex| 999精品在线视频| 日韩精品免费视频一区二区三区| 五月开心婷婷网| 这个男人来自地球电影免费观看| 十分钟在线观看高清视频www| 黄色怎么调成土黄色| 色老头精品视频在线观看| 久久久久久久国产电影| 久久天堂一区二区三区四区| 国内毛片毛片毛片毛片毛片| 麻豆国产av国片精品| 久久久精品94久久精品| av不卡在线播放| 每晚都被弄得嗷嗷叫到高潮| h视频一区二区三区| 俄罗斯特黄特色一大片| 欧美日韩视频精品一区| 久久久国产一区二区| 精品高清国产在线一区| 精品一区二区三区视频在线观看免费 | 精品亚洲成国产av| 欧美激情极品国产一区二区三区| 一级,二级,三级黄色视频| 亚洲免费av在线视频| 啦啦啦视频在线资源免费观看| 日韩一区二区三区影片| 亚洲成人免费av在线播放| 国产亚洲欧美在线一区二区| 最新的欧美精品一区二区| 欧美日韩精品网址| 18禁观看日本| 一区福利在线观看| 国产男女超爽视频在线观看| 两性夫妻黄色片| 久久久精品94久久精品| 99国产精品一区二区三区| 韩国精品一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲国产欧美一区二区综合| 国产97色在线日韩免费| 国产成人免费无遮挡视频| 亚洲五月色婷婷综合| 久久精品aⅴ一区二区三区四区| 黄色视频,在线免费观看| 波多野结衣一区麻豆| 国产亚洲午夜精品一区二区久久| 香蕉久久夜色| 亚洲伊人色综图| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 在线av久久热| 王馨瑶露胸无遮挡在线观看| 久久久久久久国产电影| 99精品欧美一区二区三区四区| 久久免费观看电影| 777米奇影视久久| 无限看片的www在线观看| 18禁观看日本| 久久久国产精品麻豆| 亚洲伊人久久精品综合| 精品国产国语对白av| 黄色 视频免费看| 亚洲男人天堂网一区| 高清毛片免费观看视频网站 | 亚洲va日本ⅴa欧美va伊人久久| 狠狠精品人妻久久久久久综合| 久久中文看片网| 免费女性裸体啪啪无遮挡网站| 一进一出抽搐动态| 我的亚洲天堂| 在线观看www视频免费| 久热这里只有精品99| 免费观看人在逋| 两人在一起打扑克的视频| 久久99热这里只频精品6学生| 欧美日韩精品网址| 国产一区有黄有色的免费视频| 国产亚洲欧美在线一区二区| 在线观看免费日韩欧美大片| 久久这里只有精品19| 免费在线观看日本一区| av免费在线观看网站| 久久亚洲精品不卡| 男女之事视频高清在线观看| 免费不卡黄色视频| 免费在线观看日本一区| 精品国产超薄肉色丝袜足j| 日本黄色日本黄色录像| 国产av又大| 91九色精品人成在线观看| 精品一区二区三区视频在线观看免费 | 久久av网站| 免费观看av网站的网址| 国产麻豆69| 少妇猛男粗大的猛烈进出视频| 悠悠久久av| 女性生殖器流出的白浆| 精品国产乱码久久久久久小说| 天堂8中文在线网| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av香蕉五月 | 精品人妻熟女毛片av久久网站| 久久天躁狠狠躁夜夜2o2o| 久久久久精品国产欧美久久久| 欧美日韩av久久| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| 香蕉国产在线看| 高清在线国产一区| 亚洲午夜精品一区,二区,三区| 午夜免费成人在线视频| 成人免费观看视频高清| 国产欧美日韩一区二区精品| 国产男女内射视频| 一本综合久久免费| 中文字幕制服av| 十八禁网站网址无遮挡| 大香蕉久久成人网| 熟女少妇亚洲综合色aaa.| 欧美日韩国产mv在线观看视频| 男人舔女人的私密视频| 国产在线免费精品| 一进一出抽搐动态| 一区二区三区国产精品乱码| 精品一区二区三区视频在线观看免费 | 国产成人系列免费观看| 国产伦人伦偷精品视频| 最新在线观看一区二区三区| 久久精品国产综合久久久| 老熟女久久久| videosex国产| 99精品久久久久人妻精品| 亚洲欧洲精品一区二区精品久久久| av不卡在线播放| 欧美av亚洲av综合av国产av| 亚洲七黄色美女视频| 18禁裸乳无遮挡动漫免费视频| 色播在线永久视频| 亚洲全国av大片| 日本黄色日本黄色录像| 久久九九热精品免费| 啦啦啦在线免费观看视频4| 丁香六月天网| 国产精品一区二区在线观看99| 大型av网站在线播放| 免费观看a级毛片全部| 真人做人爱边吃奶动态| 日韩欧美国产一区二区入口| 国产成人精品在线电影| 精品一区二区三区四区五区乱码| 咕卡用的链子| 老熟妇仑乱视频hdxx| 久久精品人人爽人人爽视色| 99久久国产精品久久久| 91九色精品人成在线观看| 国产一区有黄有色的免费视频| 中文字幕人妻丝袜制服| 婷婷丁香在线五月| 王馨瑶露胸无遮挡在线观看| 日韩制服丝袜自拍偷拍| 日韩熟女老妇一区二区性免费视频| 波多野结衣一区麻豆| 91大片在线观看| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 精品一区二区三区四区五区乱码| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 精品久久久久久久毛片微露脸| 麻豆国产av国片精品| 看免费av毛片| 黄色 视频免费看| 亚洲熟妇熟女久久| 欧美日韩一级在线毛片| 国产av国产精品国产| 丝袜在线中文字幕| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 97在线人人人人妻| 久久精品亚洲av国产电影网| 老司机深夜福利视频在线观看| 国产xxxxx性猛交| 欧美精品一区二区免费开放| 日日摸夜夜添夜夜添小说| 精品人妻1区二区| 午夜福利在线观看吧| 大片电影免费在线观看免费| 黄色成人免费大全| 大香蕉久久网| 久久九九热精品免费| 免费在线观看日本一区| 久久久久久人人人人人| 国产欧美日韩精品亚洲av| 欧美乱妇无乱码| 久久热在线av| 国产一区二区三区视频了| 人人妻人人爽人人添夜夜欢视频| 国产精品 国内视频| 亚洲欧洲日产国产| a级毛片黄视频| 精品视频人人做人人爽| 满18在线观看网站| 国产精品欧美亚洲77777| 建设人人有责人人尽责人人享有的| 国产在线视频一区二区| e午夜精品久久久久久久| 欧美激情久久久久久爽电影 | 在线观看人妻少妇| 久久国产精品大桥未久av| 国产单亲对白刺激| 又紧又爽又黄一区二区| 大香蕉久久网| 大片电影免费在线观看免费| 一区二区三区激情视频| 精品久久久久久久毛片微露脸| 欧美黄色淫秽网站| 色综合婷婷激情| 国产淫语在线视频| 视频区图区小说| 国产日韩欧美视频二区| 露出奶头的视频| 国产精品一区二区在线不卡| 亚洲 国产 在线| av网站免费在线观看视频| 2018国产大陆天天弄谢| 亚洲av成人不卡在线观看播放网| 最近最新中文字幕大全电影3 | 精品少妇黑人巨大在线播放| 两人在一起打扑克的视频| 免费日韩欧美在线观看| 91麻豆精品激情在线观看国产 | 欧美日韩黄片免| videosex国产| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 久久国产精品大桥未久av| 国产精品免费大片| 国产视频一区二区在线看| 一二三四社区在线视频社区8| 亚洲伊人久久精品综合| a级毛片黄视频| 亚洲男人天堂网一区| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 人人妻人人爽人人添夜夜欢视频| 亚洲国产av影院在线观看| xxxhd国产人妻xxx| 久久人人97超碰香蕉20202| 久久精品国产亚洲av高清一级| 91大片在线观看| 亚洲精品在线观看二区| 欧美精品人与动牲交sv欧美| 免费在线观看日本一区| 国产成人系列免费观看| 嫁个100分男人电影在线观看| 色综合婷婷激情| av视频免费观看在线观看| 女警被强在线播放| 老熟妇乱子伦视频在线观看| www.999成人在线观看| 久久久久久久精品吃奶| 国产精品一区二区免费欧美| 亚洲美女黄片视频| 丝袜人妻中文字幕| 大片免费播放器 马上看| 久久精品国产亚洲av香蕉五月 | 母亲3免费完整高清在线观看| 看免费av毛片| 99re在线观看精品视频| 99香蕉大伊视频| 下体分泌物呈黄色| 五月开心婷婷网| 夫妻午夜视频| 亚洲 国产 在线| 麻豆av在线久日| 精品国产国语对白av| 久久天堂一区二区三区四区| 免费不卡黄色视频| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 国产一区二区 视频在线| 新久久久久国产一级毛片| 国产黄色免费在线视频| 天天躁日日躁夜夜躁夜夜| 国产一卡二卡三卡精品| 国产区一区二久久| 欧美日韩黄片免| 国产福利在线免费观看视频| 精品国产乱子伦一区二区三区| 日韩视频在线欧美| 两人在一起打扑克的视频| 亚洲欧美激情在线| 黑丝袜美女国产一区| 精品一区二区三区av网在线观看 | 亚洲中文av在线| 久久久精品94久久精品| 极品少妇高潮喷水抽搐| 欧美精品一区二区免费开放| 欧美激情久久久久久爽电影 | 国产欧美亚洲国产| 黑人猛操日本美女一级片| 国产男靠女视频免费网站| 男人操女人黄网站| 成年版毛片免费区| 大陆偷拍与自拍| 久久青草综合色| 热99久久久久精品小说推荐| 少妇的丰满在线观看| 亚洲全国av大片| 大香蕉久久成人网| 国产精品久久久久久精品电影小说| videosex国产| 淫妇啪啪啪对白视频| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 少妇粗大呻吟视频| 久久精品成人免费网站| 高清欧美精品videossex| av有码第一页| 久久人人爽av亚洲精品天堂| 在线观看免费视频网站a站| 亚洲免费av在线视频| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 不卡一级毛片| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 久久亚洲真实| 热99国产精品久久久久久7| 露出奶头的视频| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产 | 日韩制服丝袜自拍偷拍| 国产色视频综合| 变态另类成人亚洲欧美熟女 | 极品教师在线免费播放| 亚洲精品av麻豆狂野| 欧美黑人欧美精品刺激| 一级毛片电影观看| 免费少妇av软件| 亚洲免费av在线视频| 日韩制服丝袜自拍偷拍| 国产熟女午夜一区二区三区| 亚洲三区欧美一区| 午夜福利在线观看吧| 手机成人av网站| 亚洲七黄色美女视频| 亚洲专区字幕在线| 黑丝袜美女国产一区| 国产免费视频播放在线视频| 精品人妻熟女毛片av久久网站| 久久影院123| 国产免费av片在线观看野外av| 成人国语在线视频| 免费看a级黄色片| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 一级黄色大片毛片| av超薄肉色丝袜交足视频| 美女国产高潮福利片在线看| 最近最新中文字幕大全免费视频| 热99国产精品久久久久久7| 免费观看人在逋| 无限看片的www在线观看| 91av网站免费观看| 日韩免费高清中文字幕av| 日韩视频一区二区在线观看| 亚洲成人手机| 成人亚洲精品一区在线观看| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 国产1区2区3区精品| 视频区欧美日本亚洲| 成人精品一区二区免费| 国产男女超爽视频在线观看| 午夜日韩欧美国产| 人人妻人人澡人人爽人人夜夜| 亚洲成人手机| 黑丝袜美女国产一区| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品大桥未久av| 黑人操中国人逼视频| 国产有黄有色有爽视频| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 欧美人与性动交α欧美软件| 国产免费福利视频在线观看| 五月天丁香电影| av超薄肉色丝袜交足视频| 欧美成人午夜精品| 亚洲天堂av无毛| 大型黄色视频在线免费观看| 亚洲国产av新网站| 免费黄频网站在线观看国产| 亚洲国产欧美在线一区| avwww免费| 国产高清videossex| 人人妻人人爽人人添夜夜欢视频| 怎么达到女性高潮| 女性生殖器流出的白浆| 99九九在线精品视频| 久久人妻熟女aⅴ|