• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE EXTENSION OPERATORS ON Bn+1 AND BOUNDED COMPLETE REINHARDT DOMAINS*

    2020-11-14 09:40:48YanyanCUI崔艷艷ChaojunWANG王朝君
    關(guān)鍵詞:劉浩王朝

    Yanyan CUI (崔艷艷)? Chaojun WANG (王朝君)

    College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China

    E-mail : cui9907081@163.com; wang9907081@163.com

    Hao LIU (劉浩)

    Institute of Contemporary Mathematics, Henan University, Kaifeng 475001, China

    E-mail : haoliu@henu.edu.cn

    was introduced in [1], where z =(z1,z0)∈ Bn,z1∈ D,z0=(z2,···,zn)∈ Cn?1,f(z1)∈ H(D)and the branch of the square root is chosen such thatThe operator gives a way of extending a univalent analytic function on the unit disc D in C to a biholomorphic mapping on Bn? Cn. Roper and Suffridge [1]proved that Φn(K) ? K(Bn). Graham and Kohr [2]proved that the Roper-Suffridge operator preserves the properties of Bloch mappings on Bnand Φn(S?)? S?(Bn), and generalized the Roper-Suffridge operator to be

    The above conclusions illustrate that the Roper-Suffridge operator and its extensions are the links between starlike (respectively convex) functions on D and starlike (respectively convex)mappings on Bn. Starlike mappings and convex mappings are important research objects in the geometric function theory of several complex variables. It is easy to find the concrete starlike or convex functions on D, while it is difficult in Cn. By using the Roper-Suffridge operator and its extensions we can construct lots of concrete starlike or convex mappings in Cnfrom the corresponding functions on D. Therefore the Roper-Suffridge operator is useful and important for studying biholomorphic mappings with particular geometric properties in Cn.

    Pfaltzgraff and Suffridge [3]introduced the operator

    on the Euclidean unit ball of Cn, where λj≥ 0 and

    Gong,Liu[4]and Liu,and Liu[5]generalized the Roper-Suffridge operator on more general Reinhardt domains and researched the behaviours of the extension operators. Liu [6]extended the operator (1.1) on bounded starlike circular domains to be

    and proved that the operator(1.2)preserves(almost)starlikeness of order α on bounded starlike circular domains.

    Duan [7]obtained that the generalized operator

    preserves starlikeness on the unit ball Bnin Cn, where Λ = (λij) and Λ is invertible, λij≥ 0,In recent years, there have appeared many results about generalized Roper-Suffridge operators (see [8–11]).

    The above operators all construct locally biholomorphic mappings on different domains in Cnfrom one locally biholomorphic function or n functions f1,··· ,fnin C, while the operator

    introduced by Pfaltzgraff and Suffridge [12], constructs F ∈H(Bn+1) from a locally biholomorphic function f ∈ H(Bn), where n ≥ 1, z′= (z1,··· ,zn) ∈ CnandLetting f(z′)=(f1(z1),··· ,fn(zn)), the operator(1.4)constructs F ∈ H(Bn+1)from n locally biholomorphic functions fi∈ H(D)(i = 1,··· ,n). This stimulates us to extend the Roper-Suffridge operator to be

    where z = (z1,··· ,zn+1) ∈ Bn+1, n ≥ 1, fj(zj) (j = 1,··· ,n) is a normalized locally biholomorphic function on D withfor zj∈ D{0}. For n=1 the operator(1.5)reduces to Φ2,β,as introduced by Graham and Kohr in [2]. The operator (1.5) is not the special form of (1.1) and (1.3); we will shortly investigate the behaviours of (1.5) on Bn+1.

    On the bounded complete Reinhardt domain ? ? Cn+1, we introduce the following extension operator:

    where rj=sup{|zj|:(z1,··· ,zj,··· ,zn+1)′∈ ?}is a normalized locally biholomorphic function on D withfor zj∈D{0}. The operator (1.6) is not the special form of (1.2). Applying (1.5) and (1.6),we can construct biholomorphic mappings in Cn+1(not in Cn) from biholomorphic functions f1,··· ,fnin C.

    In this article, we investigate the properties of the generalized operators(1.5)and(1.6). In section 3, we discuss the fact that the mapping defined by (1.5) has parametric representation on Bn+1if fi(i = 1,··· ,n) does on D, and we research the geometric invariance of some subclasses of spirallike mappings preserved by (1.5) on Bn+1. In section 4, from the geometric characteristics and the parametric representation of subclasses of spirallike mappings,we obtain that (1.6) preserves the geometric properties of several subclasses of spirallike mappings on bounded complete Reinhardt domains in Cn+1.

    2 Definitions and Lemmas

    In what follows, let D denote the unit disk in C, Bndenote the unit ball in Cn, and H(?)denote the holomorphic mappings on ?. Let DF(z) denote the Fréchet derivative of F at z.

    To obtain the main results, we need the following definitions and lemmas:

    Definition 2.1([13]) A mapping f : Bn× [0,∞) → Cnis called a Loewner chain if it satisfies the following conditions:

    (1) f(·,t) is biholomorphic on Bn, f(0,t)=0, Df(0,t)=etIn(t ≥ 0);

    (2) f(z,s)? f(z,t) whenever ? 0 ≤ s ≤ t< ∞ and z ∈ Bn; that is, there exists a Schwarz mapping v =v(z,s,t) such that

    Definition 2.2([13]) Let f(z) be a normalized biholomorphic mapping on Bn. We say that f(z) has parametric representation on Bnif there is a Loewner chain f(z,t) such that{e?tf(·,t)}t≥0is a normal family on Bnand f(z)=f(z,0)(z ∈ Bn).

    Definition 2.3([14]) Let F(z) be a normalized locally biholomorphic mapping on Bn,and α ∈ [0,1), β ∈c ∈ (0,1). Then F(z) is called a strong and almost spirallikemapping of type β and of order α on Bnprovided that

    If we define strong and almost spirallike mappings of type β and of order α on bounded complete Reinhardt domains, the corresponding condition is

    Setting α = 0, β = 0 and α = β = 0, Definition 2.3 reduces to the definition of strong spirallike mappings of type β, strong and almost starlike mappings of order α, and strong starlike mappings, respectively.

    Definition 2.4([15]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ?. Then we say thatprovided that

    where ?1 ≤ A

    Setting A = ?1 = ?B ? 2α, A = ?B = ?α, B → 1?in Definition 2.4, we obtain the corresponding definitions of spirallike mappings of type β and order α [16], strongly spirallike mappings of type β and order α [17], and almost spirallike mappings of type β and order α [18]on ?, respectively.

    Definition 2.5([19]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ?. Then F(z)is called an almost starlike mapping of complex order λ on ? provided that

    where λ ∈ C,?λ ≤ 0.

    Setting∈ [0,1) in Definition 2.5, we obtain the definition of almost starlikemappings of order α on ?.

    Definition 2.6([20]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ? and let ρ ∈ [0,1), β ∈Then F(z) is called a parabolic and spirallike mapping of type β and of order ρ on B provided that

    Suffridge [21]introduced the definition of spirallike mappings with respect to a normal linear operator A whose eigenvalues have a positive real part in complex Banach spaces. Now we extend the definition on bounded complete Reinhardt domains.

    Definition 2.7Let A ∈L(Cn+1,Cn+1) be a continuous complex-linear operator with

    Let ? ? Cn+1be a bounded complete Reinhardt domain and let f :? → Cn+1be a normalized locally biholomorphic mapping. Then f is spirallike relative to A if

    Lemma 2.8([22]) Let f(z) be a normalized locally biholomorphic mapping on B withand a = tan β. Then f(z) is an almost spirallike mapping of order α and of type β on B if and only if g(z,t)=is a Loewner chain.

    Lemma 2.9([13]) Let f(z,t) be a Loewner chain. Then

    Lemma 2.10([23]) Let ? ? Cn+1be a bounded complete Reinhardt domain whose Minkowski functional ρ(z) is C1except for a lower-dimensional manifold. Then we have

    Lemma 2.11([24]) Let ? ? Cnbe a bounded complete Reinhardt domain and let h ∈M, where

    Then the initial value problem

    has a unique solution v(t) = v(z,t) (t ≥ 0). Furthermore, v(z,t)→ 0 (t → +∞) and v(z,t) is a Schwarz mapping on ? for fixed t.

    Lemma 2.12([25]) Let ? ? Cnbe a bounded starlike circular domain and let h ∈M, Jh(0) = A, v(z,t) be a solution of the initial value problem (2.1). Then for ?z ∈ ?,must be existing and converge to a spirallike mapping relative to A on ?. If,instead, f(z) is a spirallike mapping relative to A on ? and Jf(z)h(z)= Af(z), f(z) must be expressed as

    3 Extension Operators on the Unit Ball Bn+1

    In this section we will investigate the properties of mappings constructed by (1.5) on the unit ball Bn+1in Cn+1(not in Cn) from biholomorphic functions f1,··· ,fnin C.

    Theorem 3.1Suppose that the normalized biholomorphic function fk(zk) can be embedded in Loewner chain {gk(zk,t)}t≥0(k = 1,··· ,n) on D. Then the mapping F(z) defined by (1.5) can be embedded in a Loewner chain on Bn+1.

    ProofAs fk(zk)is the normalized biholomorphic function on D,then F(z)is normalized biholomorphic on Bn+1obviously. Because fk(zk) can be embedded in the Loewner chain{gk(zk,t)}t≥0, there exists a Schwarz mapping vk=vk(zk,s,t) such that

    (i) As {gk(zk,t)}t≥0is a Loewner chain, gk(·,t) is biholomorphic on D and gk(0,t) = 0,Therefore F(z,t) is biholomorphic on Bn+1. By a simple calculation we obtain that F(0,t)=0,DF(0,t)=etIn+1where In+1is the identity operator in Cn+1.

    (ii) Let

    Thus W(z,s,t) is a Schwarz mapping on Bn+1.

    (iii) In view of (3.1) and (3.2), we obtain

    From(i)–(iii)and Definition 2.1 we obtain that F(z,t)is a Loewner chain. As fk(zk)can be embedded in the Loewner chain{gk(zk,t)}t≥0,gk(zk,0)=fk(zk),and therefore F(z,0)=F(z).Hence F(z) can be embedded in the Loewner chain F(z,t) on Bn+1.

    Theorem 3.2Suppose that fk(zk)(k =1,··· ,n) is an almost spirallike function of type β and of order α on D with α ∈ [0,1), β ∈Then F(z) defined by (1.5) is an almost spirallike mapping of type β and of order α on Bn+1.

    ProofFrom (1.5) we obtain

    As fk(zk)is an almost spirallike function of type β and of order α on D,gk(zk,t)is the Loewner chain in which fk(zk) is embedded. By (3.3) and (3.4), we obtain

    where F(z,t)is the mapping defined by(3.2)in Theorem 3.1,and thereforeis a Loewner chain. By Lemma 2.8 we obtain that F(z)is an almost spirallike mapping of type β and of order α on Bn+1.

    Theorem 3.3If fk(zk) (k = 1,··· ,n) has parametric representation on D, then F(z)defined by (1.5) has parametric representation on Bn+1.

    ProofAs fk(zk) has parametric representation on D, there exists a Loewner chain gk(zk,t) such that gk(zk,0) = fk(zk), and {e?tgk(·,t)}t≥0is a normal family. By Lemma 2.9 we obtain

    Therefore, for |zk|

    By Theorem 3.1 we obtain that F(z,t)defined by(3.1)is a Loewner chain,that F(z,0)=F(z)and

    Therefore {e?tF(·,t)}t≥0is locally uniformly bounded on Bn+1, and thus is a normal family.By Definition 2.2 we obtain that F(z) has parametric representation on Bn+1.

    Theorem 3.4Suppose that fk(zk) (k =1,··· ,n) is a strong and almost spirallike function of type β and of order α on D with α ∈ [0,1) and β ∈Then F(z) defined by(1.5) is a strong and almost spirallike mapping of type β and of order α on Bn+1.

    ProofBy (1.5) we obtain

    As fj(zj) (j =1,··· ,n) is normalized locally biholomorphic on D withandis normalized locally biholomorphic on Bn+1and

    By Definition 2.3, we need only to prove that

    Then |qk(zk)|<1. In view of c ∈(0,1) and (3.5), we obtain

    Therefore F(z) is a strong and almost spirallike mapping of type β and of order α on Bn+1by Definition 2.3.

    Similarly to Theorem 3.4 we can obtain the following conclusion:

    Theorem 3.5Let(k = 1,··· ,n) with ?1 ≤A < B < 1 andLetting F(z)be the mapping defined by(1.5),we get that F(z)∈

    Remark 3.6Setting β = 0 (respectively α = 0) in Theorem 3.4, we obtain the corresponding results for strong and almost starlike mappings of order α (and, respectively,the strongly spirallike mappings of type β). Setting A = ?1 = ?B ? 2α (respectively,A = ?B = ?α) in Theorem 3.5, we obtain the corresponding results for spirallike mappings of type β and of order α (and, respectively, the strongly spirallike mappings of type β and of order α).

    Theorem 3.7Let fk(zk) (k =1,··· ,n) be an almost starlike function of complex order λ on D with λ ∈ C,?λ ≤ 0. Then F(z) defined by (1.5) is an almost starlike mapping of complex order λ on Bn+1.

    ProofBy Definition 2.5, we need only to prove that

    As fk(zk) is an almost starlike function of complex order λ on D, by Definition 2.5, we have that

    Then ?pk(zk)≥ 0. By (3.5) we obtain that

    In addition, ?pk(zk) ≥0 implies thatTherefore F(w,z) is an almost starlike mapping of complex order λ on Bn+1.

    Remark 3.8Settingin Theorem 3.7, we obtain the corresponding results for almost starlike mappings of order α.

    4 Extension Operators on Bounded Complete Reinhardt Domains

    Let ? ? Cn+1be a bounded starlike circular domain whose Minkowski functional ρ(z) is C1except for a lower-dimensional manifold. In this section we will study the properties of(1.6), preserving several subclasses of spirallike mappings on ?.

    Theorem 4.1Let(k = 1,··· ,n) with ?1 ≤A < B < 1 andLet F(z) be the mapping defined by (1.6). Then

    ProofBy Definition 2.4, we need only to prove that

    Then |qk(ξk)|<1. By (4.2) we obtain that

    which follows (4.1). By Definition 2.4 we obtain that

    Similarly, we can obtain that F(z) defined by (1.6) preserves the strongth and almost spirallikeness of type β and of order α on ?.

    Theorem 4.2Let(k = 1,··· ,n) be a strong and almost spirallike function of type β and of order α on D with α ∈ [0,1) andThen F(z) defined by (1.6) is a strong and almost spirallike mapping of type β and of order α on ?.

    Remark 4.3Setting A= ?1= ?B ?2α (respectively, A= ?B = ?α) in Theorem 4.1,we obtain the corresponding results for spirallike mappings of type β and of order α (respectively,the strongly spirallike mappings of type β and of order α). Setting β =0 (respectively, α =0)in Theorem 4.2, we obtain the corresponding results for strong and almost starlike mappings of order α (and respectively, the strongly spirallike mappings of type β).

    Theorem 4.4Let(k =1,··· ,n) be a parabolic and spirallike function of type β and of order ρ on D with ρ ∈ [0,1), β ∈and ρ ≤ cos β. Then F(z) defined by (1.6) is a parabolic and spirallike mapping of type β and of order ρ on ?.

    ProofBy Definition 2.6, we need only to prove that

    As fk(ξk) is a parabolic and spirallike function of type β and of order ρ on D, we have that

    By (4.2) we obtain that

    In view of ρ ≤ cos β, by (4.4) we obtain that

    which follows(4.3). Therefore F(z)is a parabolic and spirallike mapping of type β and of order ρ on ?.

    Remark 4.5Setting ρ = 0 (respectively, β = 0) in Theorem 4.4, we obtain the corresponding results for parabolic and spirallike mappings of type β (respectively, the parabolic and starlike mappings of order ρ).

    Similarly to Theorem 4.4, we can obtain the following conclusion:

    Theorem 4.6Let(k =1,··· ,n) be an almost starlike function of complex order λ on D with λ ∈ C,?λ ≤ 0. Then F(z) defined by (1.6) is an almost starlike mapping of complex order λ on ?.

    For rj=1 (j =1,··· ,n), (1.6)reduces to(1.5). Therefore,from the above conclusions,we can obtain that (1.5) preserves the properties of the following biholomorphic mappings on the Reinhardt domain:

    Corollary 4.7Let fk(zk)be a strong and almost spirallike function of type β and of order α on D (respectively,a parabolic and spirallike function of type β and of order ρ,and an almost starlike function of complex order λ). Then F(z)defined by(1.5)is a strong and almost spirallike mapping of type β and of order α on ?n+1,p(respectively,a parabolic and spirallike mapping of type β and of order ρ, and an almost starlike mapping of complex order λ).

    Remark 4.8For pn+1= 2, ?n+1,preduces to Bn+1. Therefore, by corollary 4.7 we obtain the corresponding results for (1.5) on Bn+1.

    In what follows we will research the properties of the operator(1.6)on the bounded complete Reinhardt domain ? from the parametric representation of spirallike mappings.

    Theorem 4.9Let(k =1,··· ,n)be a spirallike function relative to A on D with A being a continuous complex-linear operator. Then F(z)defined by(1.6)is a spirallike mapping relative to A on ?, where

    Proof(i) Asis a spirallike function relative to A on D, there existssuch that

    Let F(z)=(F1(z),··· ,Fn+1(z)). For z ∈ ? we have that

    By (4.7) and (4.9), we obtain that?H(u(z,t)), where

    Furthermore,

    that is,u(z,0)=z. Therefore u(z,t)is the solution of the initial value problem(2.1)in Lemma 2.11.

    (iii) In view of hj∈M and (4.8), we have that

    Applying Lemma 2.10, we obtain that

    so H ∈M.

    By (4.5) we have that

    By simple calculation, we obtain that

    For H(u(z,t))=(u1q1(u),··· ,un+1qn+1(u))′, let Hj(u)=ujqj(u) (j =1,··· ,n+1). By (4.8)we get thatfor j =1,··· ,n, therefore

    By (4.9) we get that

    By (4.11)–(4.13) we obtain that JH(0)=A.

    From (i)–(iii) and lemma 2.12 we obtain that F(z) is a spirallike mapping relative to A on?.

    Corollary 4.10Let(k = 1,··· ,n) be a spirallike function relative to A on D.Then

    is a spirallike mapping relative to A on ?, where

    Remark 4.11Setting A=e?iβIinto Theorem 4.9 and Corollary 4.10, we obtain the corresponding results for spirallike mappings of type β.

    猜你喜歡
    劉浩王朝
    正確看待輸和贏
    多重映射芽的Gq,k一決定性
    進(jìn)球了
    Negative compressibility property in hinging open-cell Kelvin structure*
    養(yǎng)心殿,帶你走進(jìn)大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    奇波利尼的王朝Saeco
    PROPERTIES OF THE MODIFIED ROPER-SUFFRIDGE EXTENSION OPERATORS ON REINHARDT DOMAINS?
    劉浩藝術(shù)作品欣賞
    消除“鈍”感肌就是這樣滑!
    Coco薇(2015年3期)2015-12-24 03:06:17
    THE INVARIANCE OF STRONG AND ALMOSTSPIRALLIKE MAPPINGS OF TYPE β AND ORDER α?
    久久影院123| 亚洲精品在线观看二区| 两人在一起打扑克的视频| 久久精品人人爽人人爽视色| 一个人免费看片子| 50天的宝宝边吃奶边哭怎么回事| av网站免费在线观看视频| 成年动漫av网址| 757午夜福利合集在线观看| 午夜久久久在线观看| 男女免费视频国产| 精品视频人人做人人爽| 欧美性长视频在线观看| 国产精品亚洲av一区麻豆| 丝袜喷水一区| 欧美精品亚洲一区二区| 国产1区2区3区精品| 亚洲精华国产精华精| 丁香六月天网| 欧美 亚洲 国产 日韩一| 一区在线观看完整版| 国产三级黄色录像| 飞空精品影院首页| 黑人操中国人逼视频| 国产亚洲午夜精品一区二区久久| 一级,二级,三级黄色视频| 国产av精品麻豆| 亚洲国产毛片av蜜桃av| 一二三四在线观看免费中文在| 老司机福利观看| 久久亚洲真实| 欧美激情极品国产一区二区三区| 日韩免费av在线播放| 热re99久久国产66热| 亚洲伊人久久精品综合| 久久国产精品大桥未久av| 一区二区日韩欧美中文字幕| www.熟女人妻精品国产| 99精品欧美一区二区三区四区| 三上悠亚av全集在线观看| 中文字幕精品免费在线观看视频| 国产精品欧美亚洲77777| a在线观看视频网站| 99国产综合亚洲精品| 欧美激情 高清一区二区三区| 少妇粗大呻吟视频| 色播在线永久视频| 国产一区二区三区综合在线观看| 老熟妇乱子伦视频在线观看| 最黄视频免费看| 国产欧美日韩精品亚洲av| 日韩欧美三级三区| 久久人人97超碰香蕉20202| 欧美人与性动交α欧美软件| 免费av中文字幕在线| 亚洲av日韩在线播放| 国产不卡av网站在线观看| 国产亚洲av高清不卡| 午夜91福利影院| 熟女少妇亚洲综合色aaa.| 香蕉国产在线看| 黄色视频不卡| av在线播放免费不卡| 国产日韩欧美视频二区| 久久国产精品影院| 欧美日韩国产mv在线观看视频| 午夜日韩欧美国产| 啦啦啦中文免费视频观看日本| xxxhd国产人妻xxx| 两个人看的免费小视频| 夜夜夜夜夜久久久久| 免费在线观看黄色视频的| 香蕉国产在线看| bbb黄色大片| 久久久欧美国产精品| 成人永久免费在线观看视频 | 2018国产大陆天天弄谢| 黄频高清免费视频| 亚洲精品在线观看二区| 亚洲欧美日韩高清在线视频 | 天天躁日日躁夜夜躁夜夜| 2018国产大陆天天弄谢| 亚洲,欧美精品.| 日韩一区二区三区影片| 国产高清国产精品国产三级| 亚洲人成电影观看| 亚洲久久久国产精品| 精品少妇黑人巨大在线播放| 99国产精品免费福利视频| 国产无遮挡羞羞视频在线观看| 午夜两性在线视频| 精品国产亚洲在线| 九色亚洲精品在线播放| 中文字幕精品免费在线观看视频| 我要看黄色一级片免费的| 窝窝影院91人妻| 真人做人爱边吃奶动态| 午夜日韩欧美国产| 亚洲成人手机| 淫妇啪啪啪对白视频| 啦啦啦中文免费视频观看日本| 王馨瑶露胸无遮挡在线观看| 真人做人爱边吃奶动态| 真人做人爱边吃奶动态| 欧美乱码精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 男男h啪啪无遮挡| 亚洲一区中文字幕在线| 纯流量卡能插随身wifi吗| 精品视频人人做人人爽| kizo精华| 亚洲精品一二三| 男女床上黄色一级片免费看| 亚洲av日韩精品久久久久久密| 国产野战对白在线观看| 另类精品久久| 亚洲熟女毛片儿| 亚洲国产欧美网| 夜夜骑夜夜射夜夜干| 亚洲专区字幕在线| 免费看十八禁软件| 国产男女超爽视频在线观看| 黄色视频,在线免费观看| 久久久欧美国产精品| videos熟女内射| 久久久久精品国产欧美久久久| 亚洲七黄色美女视频| 天堂动漫精品| 免费在线观看视频国产中文字幕亚洲| 高清在线国产一区| 女警被强在线播放| 亚洲一区二区三区欧美精品| 国产精品 国内视频| 黄频高清免费视频| a级片在线免费高清观看视频| 超碰97精品在线观看| 真人做人爱边吃奶动态| 国产精品美女特级片免费视频播放器 | av在线播放免费不卡| 一区二区三区乱码不卡18| svipshipincom国产片| 欧美日韩视频精品一区| 欧美黑人欧美精品刺激| 国产深夜福利视频在线观看| 国产精品麻豆人妻色哟哟久久| 午夜福利影视在线免费观看| 日韩有码中文字幕| 99riav亚洲国产免费| 午夜福利免费观看在线| 美女大奶头视频| 婷婷精品国产亚洲av| 国产亚洲精品一区二区www| 在线免费观看不下载黄p国产 | 免费看美女性在线毛片视频| 草草在线视频免费看| 国内少妇人妻偷人精品xxx网站 | 国产精品久久久久久亚洲av鲁大| 搡老熟女国产l中国老女人| 女人被狂操c到高潮| 俺也久久电影网| 亚洲av日韩精品久久久久久密| 最好的美女福利视频网| 欧美日韩国产亚洲二区| 欧美黄色片欧美黄色片| 国产亚洲精品久久久久久毛片| 精品不卡国产一区二区三区| 久久久久国产精品人妻aⅴ院| 中文字幕av在线有码专区| 精品99又大又爽又粗少妇毛片 | 97超视频在线观看视频| 久久久国产欧美日韩av| 亚洲午夜理论影院| 欧美一级毛片孕妇| 九色成人免费人妻av| 亚洲欧美日韩无卡精品| 亚洲成人精品中文字幕电影| 97碰自拍视频| 每晚都被弄得嗷嗷叫到高潮| 婷婷亚洲欧美| 丁香六月欧美| 久久国产精品人妻蜜桃| 国产精品一区二区三区四区久久| 久久国产乱子伦精品免费另类| 香蕉久久夜色| 成人精品一区二区免费| 黄色丝袜av网址大全| 免费在线观看亚洲国产| 欧美xxxx黑人xx丫x性爽| 舔av片在线| 国产精品爽爽va在线观看网站| 69av精品久久久久久| 在线观看美女被高潮喷水网站 | 黄频高清免费视频| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区三| 热99在线观看视频| 久久精品国产综合久久久| 又黄又爽又免费观看的视频| 欧美日本视频| 久久久精品大字幕| 国产激情久久老熟女| 人妻久久中文字幕网| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区四区五区乱码| 久99久视频精品免费| av在线天堂中文字幕| 天堂√8在线中文| 亚洲成人免费电影在线观看| 国产精品综合久久久久久久免费| 国产一区二区三区视频了| 精品人妻1区二区| 美女免费视频网站| 日韩欧美三级三区| 天天躁日日操中文字幕| 好男人在线观看高清免费视频| 99久久国产精品久久久| 成人无遮挡网站| 欧美xxxx黑人xx丫x性爽| 丝袜人妻中文字幕| 亚洲国产欧洲综合997久久,| 国产免费av片在线观看野外av| 久久精品国产清高在天天线| 亚洲一区二区三区不卡视频| 亚洲第一电影网av| 欧美一级毛片孕妇| 亚洲avbb在线观看| 首页视频小说图片口味搜索| 夜夜夜夜夜久久久久| 俺也久久电影网| 在线观看美女被高潮喷水网站 | 草草在线视频免费看| 少妇人妻一区二区三区视频| 日本 av在线| 男人舔奶头视频| 欧美国产日韩亚洲一区| 国产精品野战在线观看| 午夜精品一区二区三区免费看| 一级毛片高清免费大全| 99久久99久久久精品蜜桃| 国产熟女xx| 脱女人内裤的视频| 首页视频小说图片口味搜索| 国产视频内射| 两个人视频免费观看高清| 免费大片18禁| 岛国在线免费视频观看| 国产成人精品无人区| 日日干狠狠操夜夜爽| 久久精品影院6| 成人特级av手机在线观看| 亚洲欧美日韩卡通动漫| 国产精品久久久久久人妻精品电影| 俺也久久电影网| 亚洲国产色片| aaaaa片日本免费| 久久久久国产一级毛片高清牌| av片东京热男人的天堂| 99久国产av精品| 亚洲在线观看片| 亚洲午夜精品一区,二区,三区| 国产乱人伦免费视频| 神马国产精品三级电影在线观看| av国产免费在线观看| 少妇丰满av| 久久天堂一区二区三区四区| 天堂动漫精品| 麻豆国产97在线/欧美| 午夜a级毛片| 最好的美女福利视频网| 亚洲中文字幕一区二区三区有码在线看 | 国产精品乱码一区二三区的特点| 99精品在免费线老司机午夜| 国产精品1区2区在线观看.| www日本在线高清视频| 婷婷亚洲欧美| 久久久久久人人人人人| 国产真人三级小视频在线观看| 国产亚洲精品久久久久久毛片| 国内精品美女久久久久久| 男人舔奶头视频| 亚洲中文字幕一区二区三区有码在线看 | 久久精品国产99精品国产亚洲性色| 美女cb高潮喷水在线观看 | 99在线人妻在线中文字幕| 国内揄拍国产精品人妻在线| 亚洲欧美日韩无卡精品| 日韩三级视频一区二区三区| 女人高潮潮喷娇喘18禁视频| 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| 一本综合久久免费| 国产精品亚洲av一区麻豆| 99热这里只有是精品50| 美女高潮的动态| x7x7x7水蜜桃| 久久精品国产99精品国产亚洲性色| 久久九九热精品免费| 国产日本99.免费观看| 日本三级黄在线观看| 可以在线观看毛片的网站| 看黄色毛片网站| 国产毛片a区久久久久| 精品一区二区三区视频在线观看免费| 国产久久久一区二区三区| 成人高潮视频无遮挡免费网站| 黄色丝袜av网址大全| 亚洲中文字幕日韩| 一区福利在线观看| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 色精品久久人妻99蜜桃| 美女黄网站色视频| 女生性感内裤真人,穿戴方法视频| 最近最新免费中文字幕在线| 亚洲国产中文字幕在线视频| 超碰成人久久| 啦啦啦韩国在线观看视频| 麻豆成人av在线观看| 国产精品国产高清国产av| 一区二区三区激情视频| 香蕉久久夜色| 超碰成人久久| 白带黄色成豆腐渣| 午夜福利在线观看免费完整高清在 | 欧美成狂野欧美在线观看| 欧美一级毛片孕妇| 国产精品野战在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品人妻少妇| 精品国产美女av久久久久小说| 国产午夜精品久久久久久| 免费观看的影片在线观看| aaaaa片日本免费| 欧美成狂野欧美在线观看| 99久久国产精品久久久| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 91麻豆av在线| 淫妇啪啪啪对白视频| 国内精品久久久久精免费| 香蕉久久夜色| 婷婷亚洲欧美| 国产精品98久久久久久宅男小说| 亚洲人成网站在线播放欧美日韩| 亚洲av片天天在线观看| 91在线观看av| 中文字幕av在线有码专区| www日本在线高清视频| 亚洲国产精品999在线| 成人特级av手机在线观看| e午夜精品久久久久久久| 国产综合懂色| 欧美最黄视频在线播放免费| 日本黄大片高清| 欧美午夜高清在线| 亚洲精品久久国产高清桃花| 中文字幕精品亚洲无线码一区| 很黄的视频免费| 搡老熟女国产l中国老女人| 日韩中文字幕欧美一区二区| 国产av不卡久久| 久久久久久久精品吃奶| 日本撒尿小便嘘嘘汇集6| 午夜日韩欧美国产| 国产成人精品久久二区二区免费| 久久久久久人人人人人| 精品乱码久久久久久99久播| 一个人免费在线观看电影 | 亚洲av片天天在线观看| 香蕉久久夜色| 最好的美女福利视频网| 极品教师在线免费播放| 国产伦人伦偷精品视频| 国产午夜福利久久久久久| 人妻夜夜爽99麻豆av| 日本精品一区二区三区蜜桃| 99精品欧美一区二区三区四区| 在线免费观看的www视频| 亚洲五月天丁香| 99国产精品一区二区蜜桃av| 18美女黄网站色大片免费观看| 亚洲美女黄片视频| 免费电影在线观看免费观看| 亚洲国产欧美一区二区综合| 中文字幕久久专区| 日本一本二区三区精品| 天堂av国产一区二区熟女人妻| 亚洲欧洲精品一区二区精品久久久| 午夜精品在线福利| 别揉我奶头~嗯~啊~动态视频| 国产淫片久久久久久久久 | 成人性生交大片免费视频hd| 日韩有码中文字幕| 欧美成人免费av一区二区三区| 怎么达到女性高潮| 午夜精品一区二区三区免费看| 亚洲欧美精品综合一区二区三区| 日本熟妇午夜| 国产高清视频在线播放一区| 黄色女人牲交| 亚洲精品美女久久av网站| 国产亚洲欧美在线一区二区| 色精品久久人妻99蜜桃| 免费观看的影片在线观看| 人妻久久中文字幕网| 欧美日本视频| 国产精品1区2区在线观看.| 国产一级毛片七仙女欲春2| 午夜免费观看网址| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩高清专用| 国产精品久久电影中文字幕| 怎么达到女性高潮| 一区二区三区国产精品乱码| 美女免费视频网站| 最近最新中文字幕大全免费视频| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| 亚洲av成人一区二区三| 亚洲一区二区三区色噜噜| 欧美成人性av电影在线观看| 久久九九热精品免费| 99久国产av精品| 成人一区二区视频在线观看| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 国产成人精品无人区| 欧美日韩乱码在线| 久久久久性生活片| 午夜精品一区二区三区免费看| 国产伦精品一区二区三区四那| 美女高潮的动态| 色播亚洲综合网| 中亚洲国语对白在线视频| 亚洲欧美日韩卡通动漫| 夜夜爽天天搞| 18美女黄网站色大片免费观看| 色精品久久人妻99蜜桃| 国产一区二区在线av高清观看| 精品福利观看| xxx96com| 国内精品久久久久精免费| 亚洲欧美日韩高清在线视频| 亚洲第一电影网av| 精品99又大又爽又粗少妇毛片 | 国产真人三级小视频在线观看| 男人舔女人下体高潮全视频| 深夜精品福利| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 亚洲国产中文字幕在线视频| 日韩精品中文字幕看吧| 人人妻,人人澡人人爽秒播| 国产欧美日韩精品亚洲av| 99在线人妻在线中文字幕| 18美女黄网站色大片免费观看| 色尼玛亚洲综合影院| 日本熟妇午夜| 成人国产一区最新在线观看| 日韩欧美免费精品| 久久久久国产一级毛片高清牌| 中出人妻视频一区二区| 69av精品久久久久久| 成熟少妇高潮喷水视频| 老汉色∧v一级毛片| 最近最新中文字幕大全免费视频| xxxwww97欧美| 级片在线观看| 制服丝袜大香蕉在线| 99热6这里只有精品| 亚洲国产欧美网| 久久精品人妻少妇| 免费看美女性在线毛片视频| 国内精品久久久久久久电影| 亚洲欧美日韩东京热| 女人高潮潮喷娇喘18禁视频| or卡值多少钱| 欧美色欧美亚洲另类二区| 天天一区二区日本电影三级| 国产真人三级小视频在线观看| 偷拍熟女少妇极品色| 精品久久久久久成人av| 免费无遮挡裸体视频| 欧美性猛交╳xxx乱大交人| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 极品教师在线免费播放| 99在线视频只有这里精品首页| 狂野欧美激情性xxxx| 亚洲av片天天在线观看| www日本黄色视频网| 国产成人福利小说| or卡值多少钱| 成人三级做爰电影| 757午夜福利合集在线观看| 欧美又色又爽又黄视频| 99在线人妻在线中文字幕| 久99久视频精品免费| 一卡2卡三卡四卡精品乱码亚洲| 九色国产91popny在线| 又黄又爽又免费观看的视频| 国内少妇人妻偷人精品xxx网站 | 人妻夜夜爽99麻豆av| 免费高清视频大片| 免费av毛片视频| 国产高潮美女av| 日韩欧美国产一区二区入口| 国产av不卡久久| 在线观看日韩欧美| 亚洲中文日韩欧美视频| 日本免费一区二区三区高清不卡| av天堂在线播放| 国产伦人伦偷精品视频| 日韩欧美在线二视频| 亚洲中文字幕日韩| 亚洲性夜色夜夜综合| 国产日本99.免费观看| 老司机深夜福利视频在线观看| 亚洲美女视频黄频| 久久午夜亚洲精品久久| 91在线观看av| 国产乱人视频| 亚洲精品美女久久av网站| 狂野欧美白嫩少妇大欣赏| 亚洲熟女毛片儿| 一个人免费在线观看的高清视频| 熟女人妻精品中文字幕| 可以在线观看毛片的网站| 日韩欧美国产一区二区入口| 丁香欧美五月| 18美女黄网站色大片免费观看| 日本一本二区三区精品| 欧美又色又爽又黄视频| 无遮挡黄片免费观看| av在线天堂中文字幕| 日本黄色片子视频| 好男人电影高清在线观看| 国产黄色小视频在线观看| 首页视频小说图片口味搜索| 亚洲国产高清在线一区二区三| 欧美一区二区国产精品久久精品| 精品久久久久久久末码| www.熟女人妻精品国产| 不卡一级毛片| 九色成人免费人妻av| cao死你这个sao货| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品合色在线| 日本五十路高清| 日本免费a在线| 欧美极品一区二区三区四区| 免费av不卡在线播放| 亚洲成人久久性| av在线蜜桃| 人人妻,人人澡人人爽秒播| 亚洲午夜理论影院| www.自偷自拍.com| 国内少妇人妻偷人精品xxx网站 | 亚洲一区二区三区不卡视频| 2021天堂中文幕一二区在线观| 亚洲国产精品成人综合色| 精品99又大又爽又粗少妇毛片 | 亚洲天堂国产精品一区在线| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区三| 精品无人区乱码1区二区| 国产精品 欧美亚洲| 成人一区二区视频在线观看| 婷婷精品国产亚洲av| 我的老师免费观看完整版| 亚洲av日韩精品久久久久久密| 久久精品人妻少妇| 岛国在线免费视频观看| 淫妇啪啪啪对白视频| 国产男靠女视频免费网站| a级毛片在线看网站| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出| 国产视频内射| 99视频精品全部免费 在线 | 国产v大片淫在线免费观看| 少妇熟女aⅴ在线视频| 两个人视频免费观看高清| 国产成人av激情在线播放| 久久天堂一区二区三区四区| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看| 色综合站精品国产| 最新在线观看一区二区三区| 国产精品乱码一区二三区的特点| 免费看十八禁软件| 色综合站精品国产| 十八禁网站免费在线| 51午夜福利影视在线观看| 久久久久精品国产欧美久久久| 欧美日韩精品网址| 国产精品亚洲一级av第二区| 长腿黑丝高跟| 巨乳人妻的诱惑在线观看| 欧美性猛交黑人性爽| xxxwww97欧美| 少妇的逼水好多| 国产精品一区二区三区四区免费观看 | 国产精品99久久99久久久不卡| 天堂√8在线中文| 日本在线视频免费播放| 国产激情欧美一区二区| 欧美一区二区国产精品久久精品| 成年女人毛片免费观看观看9| h日本视频在线播放| 亚洲狠狠婷婷综合久久图片| 欧美丝袜亚洲另类 | 变态另类成人亚洲欧美熟女| 99久久精品热视频|