• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions

    2024-01-25 07:14:16ZhiqiangSun孫志強(qiáng)GuolinHou侯國(guó)林YanfenQiao喬艷芬andJincunLiu劉金存
    Chinese Physics B 2024年1期
    關(guān)鍵詞:侯國(guó)

    Zhiqiang Sun(孫志強(qiáng)), Guolin Hou(侯國(guó)林), Yanfen Qiao(喬艷芬), and Jincun Liu(劉金存)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    Keywords: Hamiltonian system,symplectic elasticity,quasicrystals,analytic solution,state function

    1.Introduction

    Quasicrystals (QCs) are a kind of solid intermediate between crystal and amorphous materials, which were first discovered by Shechtmanet al.[1]The unique quasi-periodic structure makes QCs become a new kind of functional materials and structural materials.[2,3]

    QCs have many excellent properties, such as high strength, abrasion resistance, hardness, thermal conductivity,and low adhesion.[4,5]It should be noted that the properties of QCs are affected by defects such as dislocations,cracks,holes,and inclusions.[6–12]Many methods and techniques have been developed to address the problems of elasticity and defects in QCs.Among them, symplectic elasticity approach,[13–15]the pseudo-Stroh formalism method,[16,17]the state-space method,[18,19]the integral transformation method,[20]the differential quadrature method,[21,22]the complex variable function method,[23–26]and the state-space based differential quadrature method[27]are practical to construct the analytical or numerical solutions of QCs.The integral transformation and differential quadrature methods are numerical and have been approved to be highly efficient for the rapid solution.The state-space-based differential quadrature method[27]inherits the advantages of the state-space method and the differential quadrature method.Its convergence speed is fast and can apply to different boundary conditions.However,the state-space method must be revised to solve the clamped-supported and mixed boundary conditions.The complex variable function method often leads to high-order partial differential equations,which puts forward higher requirements for the smoothness of solutions and may be difficultly solved further by separating variables.[23]The symplectic elasticity approach is the method of separating variables based on the Hamiltonian system.It can construct the general solution of the considered problem without any assumptions about the solution forms.According to the Vainberg theorem[28]in variational theory,a symmetric differential system can continually be transformed into a suitable Hamiltonian system, which provides the possibility for applications of the symplectic elasticity approach in elasticity mechanical problems because the considered mechanical equations are primarily symmetric.Recently, the symplectic elasticity approach has been applied to establish the final governing equation of Laue class 15,[14]which provides a feasible idea for solving some complex quasicrystal problems.

    This paper aims to extend the symplectic elasticity approach to solve the inhomogeneous dodecagonal QC plates.In the geometry of symplectic space, the phonon stress, phason stress, and displacements are set as unknown functions and included in the state vector, and then the formed first-order differential system,a Hamiltonian system,is introduced.Additionally, using the symplectic orthogonality relations of the eigenvectors,the general solutions of phonon and phason displacement under the given boundary conditions are obtained.Finally, the accuracy of the symplectic elasticity approach is verified by numerical examples of QC plates under uniform and concentrated loads, and the effects of different phason elastic constants on displacements and stresses are analyzed.The numerical results show that the symplectic elasticity approach is an effective tool for analyzing the mechanical behavior of QC plates.The presented method in the current paper can also be used to solve other boundary conditions.

    2.Hamiltonian system of dodecagonal QCs

    According to the linear elastic theory of QCs, the basic equations for the inhomogeneous plane elasticity problem of dodecagonal QCs are described in the following.[29]The equilibrium equations are

    and generalized Hooke’s laws have the following form:

    whereux,uyandwx,wydenote the phonon displacements and phason displacements;σxx,σxy,σyx, andσyyare the phonon stresses;Hxx,Hxy,Hyx,andHyyare the phason stresses;q1,q2,q3, andq4are the body forces;L,M,K1,K2, andK3are the elastic constants.For simplicity,K1+K2+K3is abbreviated toK4.

    To establish the Hamiltonian system,define the displacement vector as

    where the superscript T represents the transpose.The strain energy densityU(q, ˙q)can be expressed as

    where ˙()≡?/?y.Moreover,we introduce the Lagrange density function as

    Consider a dodecagonal QC rectangular domain with lengthl(0≤y ≤l)and widthh(0≤x ≤h).To build the variational operation,the equilibrium Eqs.(1a)–(1d) can be obtained by taking the variation with respect toux,uy,wx,andwy,respectively.Applying the Legendre transformation, the corresponding dual vector is given as follows:

    According to Eqs.(3)and(6),defining a state vector

    the Hamiltonian system can be expressed as

    where the Hamiltonian operator reads

    f(x,y)=?(q3,q4,q1,q2,0,0,0,0)Tis an inhomogeneous term related to body forces.Moreover, we consider Eq.(8)to satisfy the following boundary conditions shown in Fig.1,

    Remark 1 The Hamiltonian system (8) derived here is also applicable to other complex boundary conditions,such as clamped or free.The solution to those problems may require the use of the symplectic superposition methods,[30,31]which are not covered in this study.

    Fig.1.Geometry of boundary conditions(10).

    3.Eigenvalues and eigenvectors of H

    According to the theory of linear differential equations,we should first solve the following homogeneous form of Eq.(8):

    Equation (11) can be solved by the method of separating variables.[32]Assuming

    and substituting it into Eq.(11),we arrive at

    whereψ(y)is easy to get,andΦ(x)is an unknown eignvector corresponding to the unknown eigenvalueμ.The eigenvalue problem

    with the boundary condition (10) is needed to take a lot of effort to solve.According to Eq.(10),we find that the eigenvector has the following form:

    whereαandAi(i=1,2,...,8)are unknown constants which depend onμand can be calculated from Eq.(14).

    Combining Eqs.(10)and(14),the characteristic polynomial is derived as follows:

    From Eq.(15),we obtain the eigenvaluesμn=αn=±nπ/h,μ?n=?μn(n= 1,2,...), and corresponding eigenvectors with respect toμnare given by

    Similarly,the basic eigenvectors ofμ?n=?μn(n=1,2,...)are

    and first-order Jordan form eigenvectors ofμ?n=?μn(n=1,2,...)are

    Additionally,μ=0 is also a multiple eigenvalue ofH.The eigenvectors ofHwith respect to eigenvalueμ=0 include basic eigenvectors

    and first-order Jordan form eigenvectors

    4.Symplectic orthogonality and completeness

    The symplectic orthogonality of the generalized eigenvectors of the Hamiltonian operatorHis analyzed first since it plays an important role in representing the solution of the Hamiltonian system.[32]

    In addition,we have

    The following theorem is one of the main results in this paper, which characterizes the completeness of the generalized eigenvector system ofHand also ensures the feasibility of separating variables in the Hamiltonian system.It is worth noting that all of the calculations in this section can be easily achieved by symbolic software like Mathematica.

    Proof According to the symplectic orthogonal relationship(16)and(17),we take

    Thus,we have

    where the eight components in the above expression are the Fourier series expansions of functionsfi(x) (i= 1,2,...,8)under the orthogonal systemorin Hilbert spaceL2(0,h).Accordingly,

    is valid,and the proof is completed.

    5.Analytic solution of the original problem

    According to Theorem 1 and the principle of superposition of solutions, the general solution of Eq.(8)can be given in the form

    Let the Fourier expansion of the inhomogeneous termf(x,y)=(q4,q3,q1,q2,0,0,0,0)Tin Eq.(8)be

    where

    The details of(i= 1,2,3,4) are expressed in Appendix A.

    Substituting Eqs.(18)and(19)into Eq.(8),and by simple calculations,we obtain

    According to the form of the state vectorU(x,y),the analytic solutions ofHxy,Hyy,σxy,σyy,wx,wy,ux, anduycan be obtained by taking the first component through the eighth component of Eq.(20).For the sake of brevity,we do not write out their specific expressions.

    6.Numerical examples

    This section presents the behavior of solutions of the QC plates under the concentrated load,uniform load,and mechanical load based on the symplectic analytical solution obtained in Section 5.To this end,we consider the following boundary conditions in they-direction:

    For convenience of numerical simulation,we assume that the body forcesq1=q2=q3=q4.Due to the lack of comparative data, we introduce the FITM for the displacementsux,uy,wx,andwyto show the validity of the symplectic elasticity approach.The expressions of phonon and phason displacements given by the FITM can be found in Appendix B.The material constantsL=0.5741 GPa,M=0.88445 GPa,K1=1.22 GPa,K2=0.24 GPa, andK3=0.6 GPa are taken as those in Ref.[13].

    6.1.Concentrated load and uniformly distributed load

    The central concentrated loadq1=q2=q3=q4=Pδ(x ?x0,y ?y0) is examined at the (x0,y0)=(h/2,l/2)of plate,wherePis the intensity,andδ(·,·)denotes the wellknown Dirac function.As the ratio of length and width varies,the results of numerical tests under central concentrated load are shown in Tables 1 and 2 for the displacement responses at fixed horizontal coordinates (x,y)=(h/4,l/4) and (x,y)=(h/4,h/4),respectively.The uniformly distributed load of intensityqis examined, and the numerical results are given in Table 3.

    Table 1 shows that the symplectic elasticity approach performs better than the FITM since it gets a reasonable convergence rate with only 20 terms.Also,we use the first 20 terms of Eq.(20)to show the phonon and phason displacements with different length–width ratios(1≤l/h ≤2)in Fig.2.

    As shown in Fig.2, the tendency of change in displacements with a change in aspect length–width ratios of the QCs plate is different for the responses at two fixed horizontal coordinates.For the fixed valueh,the changes ofuxandwx(uyandwy)at(h/4,l/4)are increasing(decreasing)aslgoes up.This trend depends on the influences of boundary conditions (10)and (21), and the variations of distance between (h/4,l/4)and (h/2,l/2).However, the responsesux,wx,uyandwyat the fixed point (h/4,h/4) are decreasing aslbecomes larger because of the influence of boundary conditions is unchanged,and the effect of the load is gradually weakening.

    In addition,whenh=l,we have the phason displacementux=uyand the phonon displacementwx=wyfor the centralized load, which is in agreement with the case for uniformly distributed load.

    Fig.2.The phonon and phason displacements of the QC plate under a centrally concentrated load: (a) the response at (x,y)=(h/4,l/4),(b)the response at(x,y)=(h/4,h/4).

    Table 1.The calculation results under central concentrated load(x,y)=(h/4,l/4).

    Table 2.Calculation results under central concentrated load(x,y)=(h/4,h/4).

    6.2.Mechanical load

    In this subsection we analyze the effect of the phason elastic constants on the displacements and stresses.In the absence of body forces,we assume that the right side of the QC plate is subjected to the phonon and phason mechanical loads,i.e.,

    whereH0andσ0are the amplitude of the loading.Meanwhile,all other components on the left and right sides of the plate are zero.Consequently, the boundary conditions along theydirection are

    wherepandqare expressed in Eqs.(3)and(6),respectively.

    Following the previous work,[33]we takeH0=σ0=1 N/m2,α=π/h, the dimensions of the plate areh×l=0.3 m×0.3 m,and consider the responses wheny=0.75l.

    Based on the above loads, we analyze the effect of the phase elastic constantsKi(i=1,2,3)on some physical components in the QC plates.We let the phason elastic constants beKi,0.5Ki,0.1Ki(i=1,2,3),and the results of the calculations are shown in Fig.3.It can be seen that the magnitudes of the phason displacementswxandwydecrease with decreasing value of phason elastic constantsKi(i=1,2,3)[see Figs.3(c)and 3(d)], while there is no effect on the trends of the phason and phonon stresses components[see Figs.3(a)and 3(b)].Specifically, the phason displacements are more sensitive to the phason elastic constants than the phason and phonon stress.

    Fig.3.Displacements and stresses with different phason elastic constants: (a) phason stress Hyy, (b) phonon stress σxy, (c) phason displacement wx,and(d)phason displacement wy.

    Table 3.Calculation results under uniform load.

    7.Conclusions

    In summary, we have solved QC equations by employing the symplectic elasticity approach.By introducing a generalized displacement vector, the Hamiltonian system of dodecagonal QCs is derived from the strain energy density and Legendre transformation.Then, the symplectic elasticity approach is adopted to get the general solutions of the Hamiltonian system.It is worth noting that the 1st, 2nd, 3rd, and 4th components of the general solution (20) are the phonon and phason stresses,and the 5th,6th,7th,and 8th components of (20) are the phonon and phason displacements.The displacements and stresses responses of QC plates under the concentrated,uniformly distributed,and mechanical loads are discussed in detail.For the case of concentrated load,the trends of responses at the fixed point and moving point are different from the changes in length–width ratios.The numerical examples of the mechanical load show that the magnitude of the phason displacements decreases with decreasing value of phason elastic constants.The comparison data are constructed by FITM,which justifies calculating of the symplectic elasticity approach.The approach is direct and rational,providing a systematic step to solve the related problems of QCs.

    Appendix A

    Appendix B

    Substituting Eqs.(2a)–(2g)into Eqs.(1a)–(1d),we obtain

    where ?2=?2/?x2+?2/?y2.

    Based on boundary conditions(10)and(21),we can define eight double finite integral transforms with respect towx,wy,ux,uy,q1,q2,q3,andq4as follows:

    whereαm=mπ/handβn=nπ/l(m,n=1,2,3,...).

    The inverse transforms are given by

    By simple calculations, Eq.(B1) is transformed into the following form:

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048), the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2021MS01004 and 2022QN01008), and the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University(Grant No.10000-21311201/165).

    猜你喜歡
    侯國(guó)
    一官半職
    鴨綠江(2024年10期)2024-02-28 00:00:00
    一路沖鋒
    軍嫂(2023年9期)2023-10-12 12:52:40
    Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
    西漢沛郡所轄侯國(guó)地理探賾
    三個(gè)老同學(xué)辦了個(gè)招嫖論壇
    方圓(2022年1期)2022-03-01 13:22:44
    復(fù)原西漢侯國(guó)地理全貌的扛鼎之作 《西漢侯國(guó)地理(修訂本)》評(píng)價(jià)
    南朝陳縣級(jí)封國(guó)地理與置省原因探微
    《東漢政區(qū)地理》縣級(jí)政區(qū)補(bǔ)考
    Virtual Property:the Realization of Rights and Value〔* 〕
    松花江上
    欧美一区二区精品小视频在线| 亚洲最大成人手机在线| 他把我摸到了高潮在线观看| 国产三级黄色录像| 性色av乱码一区二区三区2| 国产欧美日韩一区二区精品| 亚洲欧美激情综合另类| 日韩欧美在线二视频| 精品久久久久久久人妻蜜臀av| h日本视频在线播放| 不卡一级毛片| 在线观看一区二区三区| 十八禁网站免费在线| 成人午夜高清在线视频| 久久久久国内视频| 两人在一起打扑克的视频| 日本黄色片子视频| 国内久久婷婷六月综合欲色啪| 亚洲成av人片在线播放无| 一级黄色大片毛片| 免费看a级黄色片| 国产蜜桃级精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 天美传媒精品一区二区| 欧美黑人巨大hd| 国产精品美女特级片免费视频播放器| 欧洲精品卡2卡3卡4卡5卡区| 欧美高清成人免费视频www| 日韩精品中文字幕看吧| 亚洲成人免费电影在线观看| 精品国产超薄肉色丝袜足j| 身体一侧抽搐| 色哟哟哟哟哟哟| 一进一出好大好爽视频| 男人舔奶头视频| 国产高清激情床上av| 床上黄色一级片| 真人一进一出gif抽搐免费| 国产色爽女视频免费观看| 在线a可以看的网站| 男人舔女人下体高潮全视频| 天天躁日日操中文字幕| 精品久久久久久成人av| 国产精品1区2区在线观看.| 久久国产乱子伦精品免费另类| 国产精品,欧美在线| 亚洲中文日韩欧美视频| 中文字幕人妻熟人妻熟丝袜美 | 国产午夜精品论理片| 日韩人妻高清精品专区| 亚洲av电影在线进入| 无人区码免费观看不卡| 欧美高清成人免费视频www| 久久精品人妻少妇| 国产亚洲欧美在线一区二区| 老司机午夜十八禁免费视频| 又黄又粗又硬又大视频| 日韩成人在线观看一区二区三区| 69av精品久久久久久| 人妻久久中文字幕网| 757午夜福利合集在线观看| 美女免费视频网站| 老鸭窝网址在线观看| 亚洲人成网站在线播| 99久久九九国产精品国产免费| 亚洲精品成人久久久久久| 一夜夜www| 欧美一级毛片孕妇| av福利片在线观看| 国产91精品成人一区二区三区| 最后的刺客免费高清国语| 欧洲精品卡2卡3卡4卡5卡区| 亚洲电影在线观看av| 在线免费观看的www视频| 国产精华一区二区三区| 99久久精品一区二区三区| 精品电影一区二区在线| 国产一区二区亚洲精品在线观看| xxxwww97欧美| 国产伦在线观看视频一区| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 床上黄色一级片| 51国产日韩欧美| 99久久99久久久精品蜜桃| 精品人妻1区二区| 最近视频中文字幕2019在线8| 热99re8久久精品国产| netflix在线观看网站| 色在线成人网| 国产精品久久久久久人妻精品电影| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品合色在线| 一进一出好大好爽视频| 国产成人aa在线观看| 午夜视频国产福利| av国产免费在线观看| 成人午夜高清在线视频| 99久久精品国产亚洲精品| 桃色一区二区三区在线观看| 人人妻,人人澡人人爽秒播| 国产探花极品一区二区| 国产精品国产高清国产av| 在线观看66精品国产| 亚洲成人精品中文字幕电影| 亚洲aⅴ乱码一区二区在线播放| 亚洲成a人片在线一区二区| 黑人欧美特级aaaaaa片| 九色国产91popny在线| 99国产精品一区二区蜜桃av| 亚洲av一区综合| 禁无遮挡网站| 9191精品国产免费久久| 国产精品香港三级国产av潘金莲| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 国产高潮美女av| 女生性感内裤真人,穿戴方法视频| 亚洲人成伊人成综合网2020| 免费av不卡在线播放| www.色视频.com| 亚洲五月天丁香| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 69人妻影院| 丰满人妻熟妇乱又伦精品不卡| 亚洲电影在线观看av| 日本 欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 精品不卡国产一区二区三区| 亚洲av成人av| 精品熟女少妇八av免费久了| 久久久久久久亚洲中文字幕 | 99热只有精品国产| 最近最新中文字幕大全免费视频| 操出白浆在线播放| 真实男女啪啪啪动态图| 欧美乱色亚洲激情| 日韩免费av在线播放| 一区福利在线观看| 国产三级黄色录像| www.www免费av| 亚洲av电影不卡..在线观看| 亚洲一区二区三区不卡视频| 日本五十路高清| 亚洲av美国av| 久久久久久大精品| 嫩草影视91久久| 免费看a级黄色片| 国产精品一及| 最近视频中文字幕2019在线8| 国产精品三级大全| 国产精品精品国产色婷婷| 免费看十八禁软件| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 男女视频在线观看网站免费| 两个人看的免费小视频| 国产一级毛片七仙女欲春2| 有码 亚洲区| 国产亚洲欧美98| 一个人看的www免费观看视频| 天堂动漫精品| 午夜福利成人在线免费观看| 老熟妇仑乱视频hdxx| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 国产精品影院久久| 黄片大片在线免费观看| 国产午夜精品论理片| 国产蜜桃级精品一区二区三区| 午夜精品久久久久久毛片777| 91九色精品人成在线观看| avwww免费| 成年人黄色毛片网站| 91九色精品人成在线观看| 99久久精品热视频| 日本黄色片子视频| 三级国产精品欧美在线观看| 两个人视频免费观看高清| 真实男女啪啪啪动态图| av国产免费在线观看| 给我免费播放毛片高清在线观看| 免费一级毛片在线播放高清视频| 男女做爰动态图高潮gif福利片| 高清毛片免费观看视频网站| 国产成+人综合+亚洲专区| 久久久成人免费电影| 国产真实乱freesex| 欧美乱色亚洲激情| 欧美黑人欧美精品刺激| 成熟少妇高潮喷水视频| 亚洲av成人不卡在线观看播放网| 国产精品 国内视频| 看免费av毛片| 搡女人真爽免费视频火全软件 | 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 俺也久久电影网| 在线观看舔阴道视频| 丰满的人妻完整版| 美女高潮的动态| 久久香蕉精品热| 最近视频中文字幕2019在线8| www.熟女人妻精品国产| 亚洲美女黄片视频| 久久九九热精品免费| 熟妇人妻久久中文字幕3abv| 久久精品影院6| 老司机福利观看| 91久久精品电影网| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 3wmmmm亚洲av在线观看| 日本免费a在线| 两人在一起打扑克的视频| netflix在线观看网站| 五月伊人婷婷丁香| 性色av乱码一区二区三区2| 免费看日本二区| 国产亚洲精品一区二区www| 国内少妇人妻偷人精品xxx网站| 长腿黑丝高跟| 黄色丝袜av网址大全| 嫩草影视91久久| 久久久久国内视频| 欧美激情久久久久久爽电影| 偷拍熟女少妇极品色| 国产成人a区在线观看| 亚洲国产精品999在线| 国产亚洲精品久久久com| 一级毛片女人18水好多| 午夜免费观看网址| 特大巨黑吊av在线直播| 亚洲精品亚洲一区二区| 一本一本综合久久| 国产毛片a区久久久久| 亚洲精品国产精品久久久不卡| 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 男人和女人高潮做爰伦理| 99国产精品一区二区三区| 哪里可以看免费的av片| 日本一本二区三区精品| 中文字幕人成人乱码亚洲影| 亚洲人与动物交配视频| 三级国产精品欧美在线观看| 俺也久久电影网| 伊人久久精品亚洲午夜| 99国产综合亚洲精品| 国产成人av激情在线播放| 日韩人妻高清精品专区| 他把我摸到了高潮在线观看| 97人妻精品一区二区三区麻豆| 久久香蕉国产精品| 一本久久中文字幕| 久久久精品大字幕| 国产精品综合久久久久久久免费| 叶爱在线成人免费视频播放| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 国产91精品成人一区二区三区| 国产亚洲精品久久久com| 午夜精品一区二区三区免费看| 麻豆久久精品国产亚洲av| 十八禁网站免费在线| 可以在线观看的亚洲视频| 看黄色毛片网站| 午夜影院日韩av| 亚洲黑人精品在线| 一本综合久久免费| 乱人视频在线观看| 看黄色毛片网站| 中文字幕人妻丝袜一区二区| 午夜久久久久精精品| 亚洲成人中文字幕在线播放| 欧美黄色淫秽网站| 嫩草影视91久久| 亚洲成av人片免费观看| 九九在线视频观看精品| 午夜福利在线观看吧| 国产精品亚洲美女久久久| АⅤ资源中文在线天堂| 精品久久久久久久久久免费视频| 91麻豆精品激情在线观看国产| 女人被狂操c到高潮| 在线观看av片永久免费下载| 一本一本综合久久| 亚洲中文字幕日韩| 最后的刺客免费高清国语| 成人高潮视频无遮挡免费网站| 欧美一区二区国产精品久久精品| 国产精品电影一区二区三区| 国产av不卡久久| 级片在线观看| 国产欧美日韩一区二区三| 色av中文字幕| 少妇丰满av| 欧美黄色淫秽网站| 国产野战对白在线观看| xxxwww97欧美| 2021天堂中文幕一二区在线观| 精品熟女少妇八av免费久了| 一进一出抽搐gif免费好疼| 男插女下体视频免费在线播放| 国产乱人伦免费视频| 欧美日韩乱码在线| 搞女人的毛片| 午夜久久久久精精品| 91av网一区二区| 99热6这里只有精品| 亚洲精品在线美女| 亚洲五月婷婷丁香| 成人特级黄色片久久久久久久| 男女视频在线观看网站免费| 亚洲av二区三区四区| 狠狠狠狠99中文字幕| 久久精品国产综合久久久| 少妇的逼好多水| 亚洲久久久久久中文字幕| 国产真实伦视频高清在线观看 | 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 男女之事视频高清在线观看| 亚洲欧美日韩东京热| 舔av片在线| 免费一级毛片在线播放高清视频| 琪琪午夜伦伦电影理论片6080| 国产成人av激情在线播放| 国产91精品成人一区二区三区| 日韩欧美在线二视频| 日韩 欧美 亚洲 中文字幕| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频| 免费av不卡在线播放| 制服丝袜大香蕉在线| 91九色精品人成在线观看| 一个人免费在线观看的高清视频| 亚洲国产欧美网| 国产成人福利小说| 免费一级毛片在线播放高清视频| 欧美日韩中文字幕国产精品一区二区三区| 国产伦精品一区二区三区四那| 国产免费av片在线观看野外av| 午夜福利成人在线免费观看| 美女大奶头视频| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 在线免费观看的www视频| 久久久久久久久大av| 亚洲成av人片免费观看| 成人永久免费在线观看视频| 国产精品免费一区二区三区在线| 国产精品美女特级片免费视频播放器| 亚洲色图av天堂| 亚洲国产欧洲综合997久久,| 少妇的丰满在线观看| 国产亚洲精品久久久久久毛片| 九九久久精品国产亚洲av麻豆| 久久性视频一级片| 国产精品野战在线观看| 免费看a级黄色片| 在线观看午夜福利视频| 亚洲成av人片在线播放无| 久久婷婷人人爽人人干人人爱| 国产真实乱freesex| 在线观看66精品国产| 国产精品三级大全| 国产精品亚洲av一区麻豆| 欧美日韩综合久久久久久 | 美女cb高潮喷水在线观看| 欧美乱码精品一区二区三区| www.色视频.com| 欧美色欧美亚洲另类二区| 国产视频一区二区在线看| 中文字幕熟女人妻在线| 尤物成人国产欧美一区二区三区| 成人国产一区最新在线观看| 欧美xxxx黑人xx丫x性爽| 午夜日韩欧美国产| 国产欧美日韩一区二区三| 久99久视频精品免费| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 精品日产1卡2卡| 日本黄大片高清| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 国产高潮美女av| 69人妻影院| 天堂av国产一区二区熟女人妻| 国产真人三级小视频在线观看| 黄片大片在线免费观看| 一个人看视频在线观看www免费 | 高清在线国产一区| 亚洲乱码一区二区免费版| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| www.999成人在线观看| 在线看三级毛片| 亚洲专区国产一区二区| 欧美日韩乱码在线| 丁香六月欧美| 日韩欧美一区二区三区在线观看| 国产美女午夜福利| 欧美日韩精品网址| 欧美一区二区国产精品久久精品| 国产精品永久免费网站| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 午夜日韩欧美国产| АⅤ资源中文在线天堂| 99热这里只有精品一区| 国产乱人视频| www.www免费av| 搞女人的毛片| 少妇的逼好多水| 欧美中文日本在线观看视频| 国产精品98久久久久久宅男小说| 露出奶头的视频| 国产高清三级在线| avwww免费| 色视频www国产| 小说图片视频综合网站| 亚洲无线在线观看| 国产精品一区二区免费欧美| 国产真人三级小视频在线观看| bbb黄色大片| 熟女电影av网| 深爱激情五月婷婷| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 三级毛片av免费| 国产99白浆流出| 99久久无色码亚洲精品果冻| 特级一级黄色大片| 国产精品日韩av在线免费观看| 亚洲人成网站高清观看| 亚洲精品亚洲一区二区| 国产精品,欧美在线| 国产精品 国内视频| 网址你懂的国产日韩在线| 51午夜福利影视在线观看| 高潮久久久久久久久久久不卡| 国产乱人伦免费视频| 亚洲欧美日韩卡通动漫| 久久久久精品国产欧美久久久| 亚洲自拍偷在线| 国产精品久久久久久人妻精品电影| 在线观看舔阴道视频| 午夜免费观看网址| 老司机福利观看| 精品一区二区三区视频在线观看免费| 我要搜黄色片| 脱女人内裤的视频| 精品国产三级普通话版| 日本黄色片子视频| 小说图片视频综合网站| 日本免费a在线| 欧美高清成人免费视频www| 九九久久精品国产亚洲av麻豆| 成年免费大片在线观看| 亚洲 国产 在线| 亚洲人与动物交配视频| 久久香蕉精品热| 好男人在线观看高清免费视频| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 99热这里只有精品一区| 12—13女人毛片做爰片一| www.www免费av| 国产亚洲精品一区二区www| 婷婷六月久久综合丁香| 亚洲精品456在线播放app | 欧美成狂野欧美在线观看| 免费无遮挡裸体视频| 我要搜黄色片| 欧美最黄视频在线播放免费| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久久久久| 精品久久久久久,| 色视频www国产| 好男人电影高清在线观看| 国产成人aa在线观看| 1000部很黄的大片| 十八禁人妻一区二区| 日韩国内少妇激情av| 免费大片18禁| 国产高清三级在线| 久久久久久久久久黄片| svipshipincom国产片| 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 色哟哟哟哟哟哟| 禁无遮挡网站| 国产精品亚洲一级av第二区| 两个人视频免费观看高清| 少妇熟女aⅴ在线视频| 搡老妇女老女人老熟妇| 欧美乱色亚洲激情| 一个人免费在线观看的高清视频| 免费观看精品视频网站| 精品乱码久久久久久99久播| 亚洲不卡免费看| 黄色女人牲交| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美日韩黄片免| 欧美xxxx黑人xx丫x性爽| 日韩精品中文字幕看吧| 亚洲aⅴ乱码一区二区在线播放| 在线十欧美十亚洲十日本专区| 欧美成人性av电影在线观看| 成人高潮视频无遮挡免费网站| 少妇裸体淫交视频免费看高清| 18+在线观看网站| 久久久久久大精品| 午夜视频国产福利| 丰满乱子伦码专区| 看黄色毛片网站| 俄罗斯特黄特色一大片| 日韩国内少妇激情av| 色播亚洲综合网| 日本成人三级电影网站| 性色avwww在线观看| 午夜福利在线观看免费完整高清在 | 久久久国产成人免费| 亚洲精品在线美女| 一边摸一边抽搐一进一小说| h日本视频在线播放| 欧美在线一区亚洲| 手机成人av网站| 国产成人福利小说| 一本久久中文字幕| 在线观看免费视频日本深夜| 男插女下体视频免费在线播放| 中文亚洲av片在线观看爽| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 给我免费播放毛片高清在线观看| 999久久久精品免费观看国产| 久久午夜亚洲精品久久| 精品一区二区三区视频在线观看免费| 真人一进一出gif抽搐免费| ponron亚洲| x7x7x7水蜜桃| 久久人人精品亚洲av| 人妻久久中文字幕网| 色综合亚洲欧美另类图片| 国产 一区 欧美 日韩| 国产91精品成人一区二区三区| 久久久久久久亚洲中文字幕 | 丰满乱子伦码专区| 在线a可以看的网站| 在线看三级毛片| 精品乱码久久久久久99久播| 国产探花极品一区二区| 麻豆成人午夜福利视频| 一a级毛片在线观看| 成人精品一区二区免费| 性色avwww在线观看| 色在线成人网| 脱女人内裤的视频| 夜夜爽天天搞| 女人高潮潮喷娇喘18禁视频| 久久久久久久亚洲中文字幕 | 亚洲人成网站在线播| 色综合站精品国产| 欧美日韩综合久久久久久 | 男女之事视频高清在线观看| 12—13女人毛片做爰片一| 亚洲精品乱码久久久v下载方式 | 免费无遮挡裸体视频| 国产中年淑女户外野战色| 宅男免费午夜| 特级一级黄色大片| 成人av在线播放网站| 久久99热这里只有精品18| 91九色精品人成在线观看| 男人和女人高潮做爰伦理| 男人舔女人下体高潮全视频| 在线国产一区二区在线| 日本一二三区视频观看| 亚洲国产精品sss在线观看| 成人一区二区视频在线观看| 中亚洲国语对白在线视频| 亚洲乱码一区二区免费版| 啦啦啦观看免费观看视频高清| 久久亚洲真实| 2021天堂中文幕一二区在线观| 天堂网av新在线| 99久久无色码亚洲精品果冻| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩高清在线视频| 母亲3免费完整高清在线观看| 国产精品久久久久久亚洲av鲁大| 久久久久久久亚洲中文字幕 | 成人18禁在线播放| 日韩欧美免费精品| 久久久久久人人人人人| 一本精品99久久精品77| 91在线精品国自产拍蜜月 | 欧美中文综合在线视频| or卡值多少钱| 老汉色∧v一级毛片| 国内久久婷婷六月综合欲色啪| 免费观看人在逋| 日韩人妻高清精品专区| 久久人妻av系列| 99国产精品一区二区蜜桃av| 婷婷精品国产亚洲av在线| 中文字幕久久专区| 中亚洲国语对白在线视频|