• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells

    2022-09-24 08:04:08XiufangYang楊秀芳ShengshengZhao趙生盛QianHuang黃茜CaoYu郁超JiakaiZhou周佳凱XiaoningLiu柳曉寧XianglinSu蘇祥林YingZhao趙穎andGuofuHou侯國付
    Chinese Physics B 2022年9期
    關(guān)鍵詞:侯國祥林

    Xiufang Yang(楊秀芳) Shengsheng Zhao(趙生盛) Qian Huang(黃茜) Cao Yu(郁超)Jiakai Zhou(周佳凱) Xiaoning Liu(柳曉寧) Xianglin Su(蘇祥林)Ying Zhao(趙穎) and Guofu Hou(侯國付)

    1Institute of Photoelectronic Thin Film Devices and Technology of Nankai University,Tianjin 300350,China

    2Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Tianjin 300350,China

    3Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Tianjin 300072,China

    4Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education,Tianjin 300350,China

    5Suzhou Maxwell Automation Equipment Co. Ltd,Suzhou 215299,China

    Keywords: radio-frequency magnetron sputtering,silicon heterojunction(SHJ)solar cell,MoOx,hole transport layer

    1. Introduction

    In the past decades, amorphous/crystalline silicon heterojunction solar cells have been one of the most promising candidates for low-cost and highly-efficient solar cells.[1,2]Intrinsically hydrogenated amorphous silicon (a-Si:H(i)) films have been widely adopted as the passivating layer and emitting layer in the silicon heterojunction(SHJ)solar cells,which effectively enhance the open circuit voltage(Voc). Kaneka Co.Ltd has reported heterojunction interdigitated back contact(HJ-IBC) cell with the record efficiency of 26.63%.[3]However, the unavoidable parasitic absorption caused by a-Si:H passivating layer and emitting layer is considered as the main limitation to further improve the SHJ device performance. In order to get p-type or n-type a-Si:H layers, highly toxic PH3or B2H6dopants are usually adopted. In addition,the heavily doped carrier selective layer (n+, p+) leads to serious carrier combination. Therefore, hydrogenated amorphous silicon alloyed with carbon,oxygen and nitrogen etc. are used to obtain wide bandgap silicon films to partially decrease the parasitic absorption.[4-6]Many researchers have tried to adjust the work function of the n+/p+layers by optimizing doping techniques to achieve better band matching effects with c-Si.[7-9]Other studies have proven that it is a more convenient and effective way to insert a buffer layer with high work function to further extract carriers at the c-Si interface.[10-14]

    Recently, novel carrier-selective passivating materials have been extensively developed, especially nonstoichiometric transition metal oxides with high work function including WOx(x <3),[7]V2Ox(x <5),[15,16]CrOx(x <3)[17,18]and MoOx(x <3).[7,19-21]Among them, MoOxhas attracted extensive attention as a hole selective transport layer (HTL) in organic solar cells and undoped asymmetric heterogeneous contact (DASH) silicon solar cells due to its high work function and unique electrical and optical properties.[21-25]The combination of high work function MoOxwith lightly doped c-Si(n) substrate will lead to upward band bending at the c-Si interface, and the Fermi level of MoOxclose to the valence band of c-Si absorber, forming a favorable level alignment for band to band (B2B) hole transport.[26-28]

    Various deposition techniques such as thermal evaporation,[29]electron beam evaporation,[30]pulsed laser deposition,[31]and sputtering[32-35]and sol-gel process[36]were employed for the growth of MoOxfilms. Compared with the traditional coating technology, magnetron sputtered films have stronger adhesion with the substrate,and it is more convenient to fabricate the films with high melting point materials. It is easy to control the composition of the films by varying the target material and to realize reactive sputtering,which can be more convenient for plating a variety of films.RF sputtered is preferred to other deposition methods for large area and good reproducibility, too. Recently, several groups reported MoOxfilms by reactive sputtering from the Mo metal target and applying MoOxfilms as hole-selective contacts in SHJ cells.Boccardet al.observed a barrier for hole extraction due to the stoichiometric issues. It has been demonstrated that TMOs thin films with low average oxidation state present better transport properties,while moderate carrier selectivity.[37]Bivouret al.demonstrated the suitability of sputtered MoOxthin film as a carrier-selective contact for the n-type silicon(n-Si) wafer, and highlighted the importance of higher work function MoOxfilm to improve the hole-selectivity due to c-Si upward band bending at the n-Si/MoOxinterface.[38]So far,several groups have reported MoOx-based SHJ solar cells with efficiencies up to 22% or even the highest one of 23.5%.[39]In most cases the evaporation method is adopted to deposit MoOxfilms. Truth to be told that the evaporation is not a popular method in industrial production, at least not as good as the sputtering one.It is worth mentioning that sputtered MoOxfilms as HTL for c-Si SHJ solar cell has not been reported with efficiency over than 15%up to now.

    Fig.1. Schematic structures of SHJ solar cells with MoOx as buffer layer(a)and hole transport layer(b),respectively.

    In this experiment,we demonstrated magnetron sputtered MoOxfilms and applications in SHJ solar cells. The results show that the MoOxfilm as a buffer layer effectively improve the SHJ device efficiency to 19.1%. Meanwhile, we demonstrated that MoOxcan replace p-type a-Si:H emitting layer as a hole selective transport layer, resulting in a conversion efficiency of 17.5%,which is the highest one for the MoOxfilm as HTL by RF sputtering,to the best of our knowledge.

    2. Experimental details

    2.1. Film and device fabrication

    All the solar cells were fabricated on CZ n-type c-Si(5 cm×5 cm, 1-3 Ω, 180μm)substrates. A stack composed of a-Si:H(i)/a-Si:H(n or p) was deposited at the both sides by plasma enhanced chemical vapor deposition (PECVD) at 300°C on all substrates. The MoOxfilms were deposited on n-type c-Si and Eagle glass substrates by 13.56 MHz RF magnetron sputtering from a MoO3(>99.95%)target. MoOxsputtering process was done in a vacuum chamber(base pressure before deposition~2×10-4Pa), from a stoichiometric MoO3target at 160°C, with argon flow of 60 sccm,working pressure at 2×10-4Pa and RF power density with 1.75 W/cm2. In order to ensure the same experimental conditions, the target was pre-sputtered in argon for about 30 minutes before the formal deposition. Then,ITO films with thickness about 80-100 nm were prepared on passivated selective contacts by using thermal evaporated method. Finally,800 nm thick Ag+Al gridlines were deposited on the front surface by using thermal evaporated,and Al electrodes of the same thickness were deposited on the rear field. In our work,the performances of solar cells with MoOxfilm as buffer layer and HTL are analyzed, respectively. The schematic structures of fabricated solar cells are shown in Fig.1. During the test,a reticle was used to block the redundant part,and the illumination area was 1 cm×1 cm.

    2.2. Film and device characteristics

    Top-view of scanning electron microscopy (SEM) images were characterized by Jeol JSM-6700F scanning electron microscope. The quasi-steady state photoconductivity decay(QSSPC) method was used to measure the minority carrier lifetime of the samples by the WCT-120 minority carrier lifetime tester from Sinton Instruments company. The x-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements of the MoOxfilms coated on indium tin oxides(ITO)were performed in an ESCALAB 250Xi. Finally,the solar cells were tested with a Wacom solar simulator(WXS-156S-L2,AM1.5GMM)under the room temperature of 25°C,standard spectrum AM1.5 and power density of 100 mW/cm2. The quantum efficiency of the devices was tested by the QEX10 quantum efficiency system from PV Measurements company.

    3. Results and discussion

    3.1. Surface morphology of MoOx film

    The MoOxfilms were prepared by magnetron sputtering process of specific target and deposited on a-Si:H(i)/c-Si with film thickness of 5 nm and 30 nm, respectively. Morphology of MoOxfilms is a crucial factor to affect the performance of as-fabricated devices. The SEM images of MoOxfilms reveal uniform and dense surface morphologies, where no obvious cracks can be observed for the sample,indicating the positive effect on the devices (Figs. 2(a) and 2(b)). Moreover, it can be seen that an ultrathin MoOxfilm can fully cover the pyramidally textured surface. Fortunately, no cracks appeared at the bottoms of the pyramids when the MoOxfilm thickness increased to 30 nm.

    Fig.2. SEM images of(a)5 nm MoOx and(b)30 nm MoOx films. All scale bars are 5μm.

    3.2. The passivation quality of sputtered MoOx layer

    As we all know,sputtered damage is inevitable in the thin film fabrication process. When the precursors migrate through the deposition chamber and reach the c-Si substrate,the sputtered particle groups or atoms from the target usually have enough energy to damage passivation layer. Therefore, this has prompted scientists to develop new techniques to circumvent the bombardment on passivation layer during sputtering process.Studies have shown that environmental annealing can effectively change the stoichiometric ratio of Mo/O ratio and reduce the defect density states in MoOxfilms.[24]For samples subjected to ion bombardment,annealing is an effective way to restore the passivation quality. In general,the minority carrier lifetime was used to characterize the passivation performance.Minority carrier lifetime as a function of minority carrier density of samples without MoOx,with as-sputtered 5 nm MoOxand with post-annealed 5 nm MoOxwere measured and the results are shown in Fig. 3. For the sample with only 5 nm a-Si:H(i) passivating layer, the minority carrier lifetime is as high as 3911 μs at minority carrier density of 1×1015cm-3and implied open circuit voltage(iVoc)of 725 mV.Then 5 nm MoOxwere subsequently sputtered, which dramatically decrease the minority carrier lifetime to 2119 μs and iVocof 710 mV. The following post-annealing with temperature of 200°C and process duration of 60 min was performed on the sample,the minority carrier lifetime was 3752μs and iVocof 721 mV, which is nearly as good as the original one. Since the thermal annealing can almost totally recover the passivation quality, the above results demonstrate the feasibility of application of sputtered MoOxinto SHJ solar cells to a large extent.

    Fig. 3. Minority carrier lifetime as a function of minority carrier density of samples without MoOx,with as-sputtered 5 nm MoOx and with post-annealed 5 nm MoOx.

    3.3. The characteristics of MoOx films

    Affected by the preparation method and deposition conditions,the as-deposited transition metal oxide film is usually non-stoichiometric. The chemical state,element composition and electronic properties determine the work function of the transition metal oxides. Furthermore,the energy level matching of each functional layer is an important prerequisite to get better device performance. XPS was used to analyze the as-sputtered and post-annealed MoOxfilms. The corresponding Mo 3d and O 1s XPS spectra are shown in Fig. 4, while the composition and binding energy positions of the oxidation state are listed in Table 1. As we all know that even if a fully stoichiometric MoO3target is adopted,it is still impossible to get fully stoichiometric MoO3films by the sputtering process.Usually, MoOxfilms were obtained withxin the range from two to three, which mean that both Mo6+and Mo5+oxidation states exist in the films. For the as-sputtered MoOxfilm in our experiments,the O/Mo ratio was calculated to be~2.83.The deconvolution of the spectra was calibrated by referencing to the well-known adventitious hydrocarbon C 1s peak at~284.8 eV. The spectra of Mo 3d core level energy was deconvoluted into two shoulders positioned at~232.6 eV and~231.1 eV, which correspond to Mo6+and Mo5+oxidation state with the Mo 3d 5/2 peak,respectively(Fig.4(a)). Similarly,another doublet splitting represents the Mo6+oxidation state with the Mo 3d 3/2 peak centered at~235.8 eV and the Mo5+oxidation state with the Mo 3d 3/2 at~234.5 eV. For the post-annealed MoOxfilm(Fig.4(b)),the annealing process results with increased oxygen concentration in the film, were also revealed in the O 1s XPS (Figs. 4(c) and 4(d)). The Mo 3d curve consists of two sub-curves centered at~232.9 eV and at~231.8 eV,which represent the Mo6+and Mo5+oxidation state with the Mo 3d 5/2,respectively. On the contrary,shoulders peaked at~236.0 eV and at~234.9 eV represent the Mo6+and Mo5+oxidation state with the Mo 3d 3/2, respectively. (ΔB.E.=E(Mo3d3/2)-E(Mo3d5/2)=3.15 eV).

    Fig.4. XPS analysis of as-sputtered and annealed MoOx films: (a)as-sputtered Mo 3d,(b)annealed Mo 3d,(c)as-sputtered O 1s,(d)annealed O 1s,respectively.

    Table 1. Peak positions of the XPS spectra of as-sputtered and annealed MoOx films.

    Fig.5. UPS analysis of(a)the as-sputtered MoOx film and(b)the post-annealed MoOx film.

    To further confirm the influence of the annealed atmosphere on the work function and oxygen vacancies of the MoOxfilms,UPS measurements were performed for the corresponding films,as shown in Fig.5. Similar to the XPS results,the UPS spectra showed an increase of the oxygen concentration in the film during annealing process. The as-sputtered MoOxsample demonstrated a work function of 4.88 eV,while the work function of the post-annealed MoOxincreased to a much higher value of 5.16 eV, which was also much higher than that of transparent conductive oxide(TCO)(4.7 eV).[26]From the above-mentioned XPS and UPS results, the postannealing process proved to be an effective method to control the oxygen vacancies and the existence of the Mo5+and/or Mo6+cation in the MoOxfilm,as well as to increase the work function.

    3.4. MoOx as a buffer layer between p-a-Si:H/ITO interface

    Fig.6. Comparison of conventional SHJ solar cells with or without sputtered 5 nm MoOx buffer layer with(a)J-V curves,(b)EQE spectra.

    In this section, the above-mentioned MoOxfilms were applied into SHJ solar cells to study their influence on device performance. In the first step, the MoOxfilm was inserted as a buffer layer between TCO and p-type a-Si:H emitting layer in a conventional SHJ cell. As can be seen from Fig.6(a),the conversion efficiency of the reference SHJ solar cell is 18%withVocof 715.9 mV,Jscof 38.33 mA/cm2andFFof 65.58%.On the contrary, the insertion of 5 nm MoOxbetween TCO and a-Si:H(p)can effectively increaseVocup to 719.6 mV andFFup to 70.24%, respectively. However, theJscslightly decreased to 37.75 mA/cm2,which can be contributed to the parasitic absorption of MoOxbecause of its relatively low optical transmittance.It can be seen from Fig.6(b)that although these two solar cells behave very similar to EQE spectral responses in the infrared band, the EQE spectral response in the visible region of the reference SHJ solar cell is obviously higher than that of the device with MoOxbuffer layer. Finally, the conversion efficiency was improved to 19.1%, which can be attributed to the decrease of contact barrier and improvement of energy level matching between TCO and a-Si:H(p) interface by inserting the MoOxbuffer layer.

    3.5. MoOx as the hole selective transport layer

    Fig. 7. Contact resistivity ρc measurements of MoOx-based contacts to ntype c-Si. (a) A series of I-V measurements of the samples with optimal thickness of MoOx films,and(b)the ρc with different thickness. Schematics of the contact resistivity test structure samples is included in inset.

    In the following step, the MoOxfilm as a hole selective transport layer was applied into a SHJ solar cell to replace the a-Si:H(p) emitting layer. To evaluate the hole-selective contact behavior of the i-a-Si:H/MoOx, the contact resistivityρcwas measured by using the method devised by Cox and Strack.A series of current-voltage(I-V)measurements of the samples with optimal thickness of MoOxfilms and theρcwith different thickness are presented in Fig.7,with the test structure in the inset. As can be seen in Fig.7(a),the sample with Ag directly deposited MoOxexhibited Schottky contacts for different sizes area pads. We determined the extracted contact resistivityρcfor the structure with n-Si/a-Si:H/MoOx/Ag to be 0.8 Ω·cm2.

    Fig.8. The influence of MoOx thickness on J-V output parameters(a)Voc,(b)Jsc,(c)FF and(d)Eff.

    The influence of MoOxthickness onJ-Vparameters of SHJ solar cells with MoOxas the hole selective layers are shown in Fig. 8. In fact, the increase of MoOxthickness has two opposite effects: the positive one is to improve the passivating quality and built-in electric field because of fully covered c-Si surface by thick enough MoOxlayer,while the negative one is to increase the series resistance and parasitic absorption. The increase of series resistance would hinder the carrier transport and then lead toVocandFFdecrease,while the increase of parasitic absorption will result inJscdecrease.The results in Fig. 8 indicate that with the increase of MoOxthickness theJscmonotonically decrease. On the contrary,theVocandFFdemonstrate peak values when the MoOxthickness is 17 nm, which can be contributed by balancing the abovementioned positive and negative effects. Eventually, a 17 nm MoOxfilm prepared by sputtering method is successfully used as the hole transport layer in SHJ solar cell, and the conversion efficiency reach the maximum value of 15.69%.Based on the above results,the MoOxfilms with sufficient thickness are able to obtain good passivating quality and build a high built-in electric field to achieve carrier selectivity. In order to further improve the passivation effect, we try to increase the thickness of the a-Si:H(i)passivation layer and reduce the deposition temperature of thermal evaporated ITO films. Although the thicker a-Si:H layer limiting the short-circuit current density, theVocandFFare significantly improved. Finally, a champion conversion efficiency of 17.5%withVocof 711 mV,Jscof 32.8 mA/cm2andFFof 74.9% is currently obtained,as shown in Fig. 9. As mentioned above, a relatively thick(17 nm) MoOxfilm results in a decrease ofJsc. This is consistent with the optical results,where 17-nm-thick MoOxfilm demonstrated the poor optical transmittance around 75%(the red curve)in the visible spectrum region,as shown in Fig.10.We infer that the lower transmittance may be related to the ion bombardment on MoOxfilms and deteriorate the film quality during the sputtering process. Further optimization will be carried out including pre-treatment, post-annealing in various gaseous environments,mesh electrode with bias voltage,etc. to control the ion damage on the films and interfaces and then ultimately improve the device performance. Moreover,oxygen vacancies in TMOs appear during film deposition or exposure to air.[28]According to the UPS test results,the factors affecting the work function of the oxygen concentration in the metal oxide should be taken into consideration. The main factors that reduce the device performance with the sputtered MoOxfilm require further intensive research.

    Fig.9. The champion SHJ solar cell with 17 nm MoOx hole transport layer: (a)J-V curve,(b)EQE spectra.

    Fig. 10. The transmittance of MoOx films prepared under various RF sputtering power.

    4. Conclusion

    The effects of MoOxas buffer layer and hole transport layer on the performance of SHJ solar cells were investigated.The results show that the high work function of MoOxlayer enable to significantly improve the performance of solar cells.By inserting a 5 nm MoOxbuffer layer between a-Si:H(p)/ITO interface result in an efficiency of 19.1%withVocof 719.6 mV,Jscof 37.75 mA/cm2, andFFof 70.24%. In addition, the best conversion efficiency of 17.5% andFFof 74.9% were obtained by using 17 nm MoOxfilm as the hole selective layer to replace the p-type a-Si:H emitting layer. These results in this manuscript confirm the feasibility of a sputtering process of MoOxfilms and their application in SHJ solar cells. Further optimization of magnetron sputtered MoOxis urgently deserved to improve SHJ solar cell performance.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 62074084), the National Key Research and Development Program of China (Grant No.2018YFB1500402),and Key Research and Development Program of Hebei Province,China(Grant No.20314303D).

    猜你喜歡
    侯國祥林
    一官半職
    鴨綠江(2024年10期)2024-02-28 00:00:00
    Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions
    賀祥林兄展覽“云”
    中華詩詞(2023年5期)2023-02-06 08:48:18
    西漢沛郡所轄侯國地理探賾
    “四層”:引導(dǎo)數(shù)學(xué)高考的一面旗
    逢山開路、遇水搭橋
    數(shù)學(xué)高考路上的導(dǎo)航燈
    《東漢政區(qū)地理》縣級政區(qū)補考
    松花江上
    示兒書—趙一曼就義前留給兒子的信
    男女免费视频国产| 亚洲av美国av| 久久 成人 亚洲| 久久人人爽av亚洲精品天堂| 黄色a级毛片大全视频| 精品卡一卡二卡四卡免费| 午夜福利影视在线免费观看| 国产精品一区二区精品视频观看| 动漫黄色视频在线观看| 久热爱精品视频在线9| 又紧又爽又黄一区二区| 麻豆乱淫一区二区| 国产一级毛片在线| 午夜精品国产一区二区电影| 丝袜喷水一区| 蜜桃在线观看..| 久久久水蜜桃国产精品网| 男女免费视频国产| 国产麻豆69| 国产男女内射视频| 淫妇啪啪啪对白视频 | 久久午夜综合久久蜜桃| 亚洲情色 制服丝袜| 国产成人a∨麻豆精品| 久久99热这里只频精品6学生| 日韩中文字幕视频在线看片| 法律面前人人平等表现在哪些方面 | 正在播放国产对白刺激| 午夜精品久久久久久毛片777| 久久久久国产一级毛片高清牌| 爱豆传媒免费全集在线观看| 亚洲情色 制服丝袜| 亚洲av片天天在线观看| 一本综合久久免费| 嫩草影视91久久| 国产精品国产av在线观看| 久久久国产精品麻豆| 人成视频在线观看免费观看| 纵有疾风起免费观看全集完整版| 国产精品秋霞免费鲁丝片| www.熟女人妻精品国产| 亚洲中文日韩欧美视频| 欧美成人午夜精品| 精品视频人人做人人爽| 亚洲精品粉嫩美女一区| 大陆偷拍与自拍| 天天操日日干夜夜撸| 国产黄频视频在线观看| 一区在线观看完整版| 操美女的视频在线观看| 夫妻午夜视频| 我的亚洲天堂| 欧美精品啪啪一区二区三区 | 国产在线观看jvid| 亚洲精品美女久久久久99蜜臀| 久久人妻福利社区极品人妻图片| 成年美女黄网站色视频大全免费| 午夜福利免费观看在线| 国产精品 国内视频| 日韩大码丰满熟妇| 国产麻豆69| 成人国产av品久久久| 99久久国产精品久久久| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩国产mv在线观看视频| 国产成+人综合+亚洲专区| 亚洲精品成人av观看孕妇| 老汉色∧v一级毛片| 涩涩av久久男人的天堂| 91成人精品电影| 午夜福利乱码中文字幕| 丝袜美腿诱惑在线| 国产一区二区三区av在线| 日本猛色少妇xxxxx猛交久久| 久久99热这里只频精品6学生| 一本综合久久免费| 亚洲精品国产区一区二| 久久久国产欧美日韩av| 久久天堂一区二区三区四区| 大陆偷拍与自拍| 日韩人妻精品一区2区三区| 国产av又大| 人人妻人人澡人人看| 国产人伦9x9x在线观看| 中文字幕精品免费在线观看视频| 黄网站色视频无遮挡免费观看| av线在线观看网站| 免费少妇av软件| 中文字幕人妻丝袜一区二区| 亚洲欧美精品自产自拍| bbb黄色大片| 国产亚洲午夜精品一区二区久久| 男男h啪啪无遮挡| 一区二区三区激情视频| 美女午夜性视频免费| 精品人妻熟女毛片av久久网站| 美女高潮到喷水免费观看| 亚洲七黄色美女视频| tocl精华| 欧美精品av麻豆av| 中文字幕高清在线视频| 一边摸一边做爽爽视频免费| 国产日韩欧美在线精品| 亚洲av电影在线进入| a在线观看视频网站| 国产男人的电影天堂91| av天堂久久9| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区91| 后天国语完整版免费观看| 黑人猛操日本美女一级片| 无限看片的www在线观看| 亚洲av成人不卡在线观看播放网 | 成人黄色视频免费在线看| 人人妻人人澡人人看| 午夜激情久久久久久久| 9191精品国产免费久久| 黄色 视频免费看| 人妻 亚洲 视频| 美女脱内裤让男人舔精品视频| 大香蕉久久成人网| 亚洲avbb在线观看| 国产av国产精品国产| 97人妻天天添夜夜摸| 久久久精品区二区三区| 日韩电影二区| 啦啦啦 在线观看视频| 欧美日韩成人在线一区二区| www.精华液| 国产av国产精品国产| 热re99久久精品国产66热6| 亚洲av美国av| a级毛片在线看网站| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜添小说| 亚洲va日本ⅴa欧美va伊人久久 | 19禁男女啪啪无遮挡网站| 青草久久国产| 国产成人免费观看mmmm| 91精品伊人久久大香线蕉| 国产一级毛片在线| 欧美午夜高清在线| a级毛片在线看网站| 亚洲精品国产一区二区精华液| 99久久综合免费| 天天躁夜夜躁狠狠躁躁| 亚洲精品粉嫩美女一区| 免费人妻精品一区二区三区视频| 欧美另类一区| 午夜福利影视在线免费观看| 午夜视频精品福利| 中文字幕人妻丝袜一区二区| 最近最新中文字幕大全免费视频| 国产区一区二久久| 在线观看舔阴道视频| 成人av一区二区三区在线看 | 99热网站在线观看| 精品高清国产在线一区| 少妇粗大呻吟视频| 久久久久精品人妻al黑| 男人操女人黄网站| www.精华液| 一二三四在线观看免费中文在| 一区福利在线观看| 69av精品久久久久久 | 各种免费的搞黄视频| 国产成人av激情在线播放| 久久人人爽人人片av| 国产亚洲av片在线观看秒播厂| 国产不卡av网站在线观看| 午夜福利在线观看吧| 大片电影免费在线观看免费| 国产成+人综合+亚洲专区| 成人av一区二区三区在线看 | 淫妇啪啪啪对白视频 | 岛国毛片在线播放| 成人黄色视频免费在线看| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 在线永久观看黄色视频| 免费看十八禁软件| 成年女人毛片免费观看观看9 | 成人亚洲精品一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲日产国产| 一本综合久久免费| 乱人伦中国视频| 一区二区日韩欧美中文字幕| 精品一区在线观看国产| 咕卡用的链子| 男女午夜视频在线观看| 91精品三级在线观看| 99热国产这里只有精品6| 在线观看免费高清a一片| 丝袜在线中文字幕| 精品少妇黑人巨大在线播放| 国产欧美日韩一区二区精品| 免费一级毛片在线播放高清视频 | 欧美乱码精品一区二区三区| 丝袜喷水一区| 久久精品国产亚洲av高清一级| 法律面前人人平等表现在哪些方面 | 日韩欧美一区二区三区在线观看 | 狠狠精品人妻久久久久久综合| 91精品三级在线观看| 人人妻人人澡人人看| 在线 av 中文字幕| 久久久欧美国产精品| 老鸭窝网址在线观看| √禁漫天堂资源中文www| 老熟妇乱子伦视频在线观看 | 两性夫妻黄色片| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 亚洲男人天堂网一区| 在线看a的网站| 免费不卡黄色视频| 男人舔女人的私密视频| 久久av网站| a在线观看视频网站| 日韩大片免费观看网站| 欧美亚洲 丝袜 人妻 在线| 国产高清国产精品国产三级| 精品少妇一区二区三区视频日本电影| 国产在线观看jvid| 美女脱内裤让男人舔精品视频| 亚洲伊人久久精品综合| 另类精品久久| 日韩人妻精品一区2区三区| 午夜日韩欧美国产| 99re6热这里在线精品视频| 精品久久蜜臀av无| 十八禁高潮呻吟视频| 91国产中文字幕| 日韩免费高清中文字幕av| 一二三四社区在线视频社区8| 人妻久久中文字幕网| 免费在线观看影片大全网站| 老鸭窝网址在线观看| 亚洲av片天天在线观看| 19禁男女啪啪无遮挡网站| 国产精品 欧美亚洲| 99国产极品粉嫩在线观看| 丝袜人妻中文字幕| 色老头精品视频在线观看| 日韩三级视频一区二区三区| 久久久久久久久免费视频了| 另类亚洲欧美激情| 成人三级做爰电影| 欧美av亚洲av综合av国产av| 99热网站在线观看| 成人国产一区最新在线观看| 一区在线观看完整版| 国产精品一区二区精品视频观看| 在线看a的网站| 精品少妇内射三级| 国产一区二区激情短视频 | 日韩电影二区| av又黄又爽大尺度在线免费看| 国产欧美日韩一区二区三区在线| 黄片大片在线免费观看| 777久久人妻少妇嫩草av网站| 成人亚洲精品一区在线观看| 亚洲精品av麻豆狂野| 国产av一区二区精品久久| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 一级片免费观看大全| 国产在视频线精品| 一个人免费在线观看的高清视频 | 久热这里只有精品99| 国产麻豆69| 美女视频免费永久观看网站| 黄片大片在线免费观看| 99热全是精品| 亚洲欧美精品自产自拍| 亚洲自偷自拍图片 自拍| 十八禁网站免费在线| 日韩大片免费观看网站| 精品少妇内射三级| 夫妻午夜视频| 欧美日韩av久久| 人人妻,人人澡人人爽秒播| kizo精华| 国产精品偷伦视频观看了| 亚洲国产欧美网| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 99久久综合免费| 精品亚洲乱码少妇综合久久| 丝袜美腿诱惑在线| 各种免费的搞黄视频| 欧美国产精品va在线观看不卡| 午夜福利乱码中文字幕| 91国产中文字幕| 9色porny在线观看| 亚洲专区中文字幕在线| 国产一区二区三区在线臀色熟女 | 久久热在线av| 蜜桃国产av成人99| 国产三级黄色录像| 成人国语在线视频| 97人妻天天添夜夜摸| 在线精品无人区一区二区三| 免费在线观看黄色视频的| 美国免费a级毛片| 国产亚洲欧美在线一区二区| 一级毛片精品| 99国产精品免费福利视频| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| 亚洲第一欧美日韩一区二区三区 | 欧美黑人精品巨大| 欧美另类亚洲清纯唯美| 一区福利在线观看| 国产精品 欧美亚洲| 国产真人三级小视频在线观看| 国产麻豆69| 久久久久久人人人人人| 久久香蕉激情| 老司机靠b影院| 中文欧美无线码| 啦啦啦视频在线资源免费观看| 国产高清videossex| 一区二区av电影网| 天堂8中文在线网| 久久久久久人人人人人| 国产精品自产拍在线观看55亚洲 | 1024香蕉在线观看| 亚洲精品久久久久久婷婷小说| 欧美久久黑人一区二区| 极品少妇高潮喷水抽搐| 日韩三级视频一区二区三区| 日韩有码中文字幕| 国产老妇伦熟女老妇高清| 国产有黄有色有爽视频| av不卡在线播放| 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| 成人免费观看视频高清| 99九九在线精品视频| 国产一区二区激情短视频 | 免费观看av网站的网址| www日本在线高清视频| 国产伦人伦偷精品视频| 超碰成人久久| 欧美在线一区亚洲| a级毛片黄视频| 欧美xxⅹ黑人| 老司机影院成人| 中文字幕人妻丝袜制服| 免费在线观看视频国产中文字幕亚洲 | 法律面前人人平等表现在哪些方面 | 热99re8久久精品国产| 老司机靠b影院| 亚洲天堂av无毛| 国产成人欧美| 精品熟女少妇八av免费久了| 亚洲精品国产av蜜桃| 操出白浆在线播放| 成人国产一区最新在线观看| 色婷婷av一区二区三区视频| 亚洲欧美色中文字幕在线| 少妇的丰满在线观看| 国产一区有黄有色的免费视频| 狂野欧美激情性xxxx| 搡老岳熟女国产| 一本色道久久久久久精品综合| 97在线人人人人妻| 成人国语在线视频| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 国产日韩一区二区三区精品不卡| 亚洲av美国av| 成年女人毛片免费观看观看9 | 色老头精品视频在线观看| 高清黄色对白视频在线免费看| 女性被躁到高潮视频| 高清黄色对白视频在线免费看| 女性被躁到高潮视频| 永久免费av网站大全| 精品福利观看| 视频在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 18在线观看网站| 亚洲精品第二区| 一级片免费观看大全| 欧美精品亚洲一区二区| 大香蕉久久成人网| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 日韩制服丝袜自拍偷拍| 亚洲精品乱久久久久久| 午夜福利乱码中文字幕| 久久热在线av| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| 最近中文字幕2019免费版| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 狠狠婷婷综合久久久久久88av| 日韩免费高清中文字幕av| 男女免费视频国产| 秋霞在线观看毛片| 午夜精品久久久久久毛片777| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| 丁香六月天网| 法律面前人人平等表现在哪些方面 | 欧美黄色淫秽网站| 日韩视频在线欧美| av天堂久久9| 在线精品无人区一区二区三| 91精品伊人久久大香线蕉| 99精国产麻豆久久婷婷| 国产精品久久久久久精品电影小说| 天天操日日干夜夜撸| 亚洲五月色婷婷综合| 中文欧美无线码| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 丝瓜视频免费看黄片| 99久久精品国产亚洲精品| 午夜影院在线不卡| 成人影院久久| 美女高潮到喷水免费观看| 99九九在线精品视频| 亚洲欧美精品自产自拍| 国产精品1区2区在线观看. | 亚洲国产日韩一区二区| 天天躁日日躁夜夜躁夜夜| 免费观看av网站的网址| 侵犯人妻中文字幕一二三四区| 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 欧美97在线视频| 国产精品欧美亚洲77777| 国产不卡av网站在线观看| 久久青草综合色| 国产免费现黄频在线看| 免费在线观看视频国产中文字幕亚洲 | 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品自产自拍| 亚洲熟女毛片儿| av福利片在线| 精品亚洲成国产av| 国产亚洲午夜精品一区二区久久| 十八禁网站免费在线| 亚洲av成人一区二区三| cao死你这个sao货| 一区二区三区激情视频| 精品一区二区三区四区五区乱码| 男女无遮挡免费网站观看| 亚洲av电影在线观看一区二区三区| www.999成人在线观看| 亚洲av成人一区二区三| 国产精品久久久久久人妻精品电影 | 三上悠亚av全集在线观看| 女警被强在线播放| 狠狠精品人妻久久久久久综合| 国产精品亚洲av一区麻豆| 日韩欧美一区视频在线观看| 免费在线观看日本一区| 黄色视频,在线免费观看| 手机成人av网站| 亚洲激情五月婷婷啪啪| 国产欧美日韩一区二区三区在线| 亚洲第一欧美日韩一区二区三区 | 亚洲av电影在线进入| 久久久久网色| 后天国语完整版免费观看| 日本五十路高清| 亚洲国产中文字幕在线视频| 日本黄色日本黄色录像| 精品久久久精品久久久| 母亲3免费完整高清在线观看| 亚洲精品中文字幕在线视频| 日韩大片免费观看网站| 国产一卡二卡三卡精品| 少妇猛男粗大的猛烈进出视频| 欧美激情高清一区二区三区| 亚洲欧美激情在线| 老司机午夜十八禁免费视频| avwww免费| 久久综合国产亚洲精品| 免费高清在线观看日韩| 一级a爱视频在线免费观看| 99香蕉大伊视频| 国产在线观看jvid| 久久人人爽av亚洲精品天堂| 亚洲人成77777在线视频| 午夜激情av网站| 99香蕉大伊视频| 午夜影院在线不卡| 午夜免费鲁丝| 欧美xxⅹ黑人| 欧美亚洲日本最大视频资源| 成年女人毛片免费观看观看9 | 欧美 日韩 精品 国产| 各种免费的搞黄视频| 亚洲第一青青草原| 精品卡一卡二卡四卡免费| 久久久久久久久久久久大奶| 三上悠亚av全集在线观看| 人妻久久中文字幕网| 十八禁网站免费在线| 一本大道久久a久久精品| 亚洲激情五月婷婷啪啪| 老熟女久久久| 多毛熟女@视频| 日韩,欧美,国产一区二区三区| av不卡在线播放| 香蕉国产在线看| 精品亚洲成a人片在线观看| svipshipincom国产片| 久久久水蜜桃国产精品网| 免费日韩欧美在线观看| 国产熟女午夜一区二区三区| 精品一区二区三卡| 精品少妇久久久久久888优播| 性色av乱码一区二区三区2| 麻豆乱淫一区二区| 国产成人免费观看mmmm| 精品人妻在线不人妻| av国产精品久久久久影院| 满18在线观看网站| 欧美亚洲日本最大视频资源| 色综合欧美亚洲国产小说| 国产在线视频一区二区| 成年人午夜在线观看视频| 美女主播在线视频| 美女午夜性视频免费| 精品国内亚洲2022精品成人 | 国产精品久久久人人做人人爽| 精品高清国产在线一区| 免费看十八禁软件| 精品人妻一区二区三区麻豆| 久久热在线av| 亚洲七黄色美女视频| 悠悠久久av| 精品久久蜜臀av无| 日韩三级视频一区二区三区| 精品福利观看| 国产一区二区在线观看av| 午夜福利一区二区在线看| 国产免费视频播放在线视频| av网站免费在线观看视频| 在线亚洲精品国产二区图片欧美| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕精品免费在线观看视频| 久久九九热精品免费| 亚洲成人免费av在线播放| 精品一区二区三区av网在线观看 | 男人操女人黄网站| avwww免费| 精品少妇内射三级| 欧美亚洲 丝袜 人妻 在线| 丝袜喷水一区| 国产99久久九九免费精品| 交换朋友夫妻互换小说| av线在线观看网站| 欧美久久黑人一区二区| 亚洲七黄色美女视频| 在线亚洲精品国产二区图片欧美| 欧美另类一区| 亚洲九九香蕉| 丝袜在线中文字幕| 亚洲欧洲日产国产| 99国产综合亚洲精品| 日韩中文字幕欧美一区二区| 首页视频小说图片口味搜索| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 日本wwww免费看| 国产伦理片在线播放av一区| 久久精品亚洲熟妇少妇任你| 亚洲人成电影免费在线| 另类亚洲欧美激情| 又黄又粗又硬又大视频| 欧美日韩福利视频一区二区| 久久精品aⅴ一区二区三区四区| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 波多野结衣av一区二区av| 黄色a级毛片大全视频| 欧美精品一区二区大全| 欧美+亚洲+日韩+国产| 久久影院123| 男女免费视频国产| 丝瓜视频免费看黄片| 久久综合国产亚洲精品| 日韩欧美免费精品| 亚洲精品国产区一区二| 亚洲欧洲日产国产| 国产亚洲欧美在线一区二区| 免费在线观看视频国产中文字幕亚洲 | 99香蕉大伊视频| av国产精品久久久久影院| 亚洲人成77777在线视频| 欧美国产精品va在线观看不卡| 亚洲精华国产精华精| 一级黄色大片毛片| 中文字幕人妻熟女乱码| 亚洲精品国产av蜜桃| 亚洲天堂av无毛| 欧美日韩黄片免| 亚洲伊人久久精品综合| 美女中出高潮动态图| 久久久久视频综合| tube8黄色片| 国产亚洲午夜精品一区二区久久|