• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      兩個棉蚜胰島素受體生物信息學(xué)分析及其在三種有翅型棉蚜中的表達模式比較

      2023-04-29 01:04:15王柳玉王麗朱香鎮(zhèn)張開心李東陽姬繼超崔金杰馬偉華
      棉花學(xué)報 2023年6期
      關(guān)鍵詞:棉蚜

      王柳玉 王麗 朱香鎮(zhèn) 張開心 李東陽 姬繼超 崔金杰 馬偉華

      摘要:【目的】明確棉蚜2個胰島素受體基因的序列結(jié)構(gòu)及其在3種有翅型棉蚜翅型分化與發(fā)育過程中的表達模式?!痉椒ā炕诿扪寥蚪M數(shù)據(jù)獲取2個胰島素受體基因(insulin receptor 1, AgInR1和insulin receptor 2, AgInR2)序列并進行氨基酸序列分析、系統(tǒng)發(fā)育分析,而后對InR1和InR2進行蛋白保守結(jié)構(gòu)域分析以及基序分析。通過實時熒光定量聚合酶鏈式反應(yīng)(quantitative real-time polymerase chain reaction, qRT-PCR)技術(shù)分析2種胰島素受體基因在棉蚜孤雌無翅蚜以及3種有翅蚜不同發(fā)育時期的表達模式?!窘Y(jié)果】理化性質(zhì)分析結(jié)果顯示AgInR1和AgInR2均為親水性跨膜蛋白。系統(tǒng)發(fā)育分析結(jié)果顯示17種昆蟲的InR1聚為1簇,14種昆蟲的InR2聚為1簇。半翅目蚜科的InR1、InR2分別以極高的自展值聚為一支,親緣關(guān)系較近。保守結(jié)構(gòu)域和基序分析表明棉蚜InR1和InR2保守結(jié)構(gòu)排列較為相似,但相較于AgInR1,AgInR2缺少1個FN3結(jié)構(gòu)域。qRT-PCR結(jié)果顯示,AgInR1在孤雌有翅蚜、性母、雄蚜這3種有翅蚜的4齡、成蟲期的表達量均顯著高于同齡期的孤雌無翅蚜,而AgInR2在3種有翅蚜中的表達模式與AgInR1不同。【結(jié)論】AgInR1可能參與調(diào)控3種有翅蚜在4齡及成蟲期的翅發(fā)育過程。AgInR2與AgInR1的表達模式不同,可能具有不同的生物學(xué)功能。該研究為進一步探究胰島素信號通路在棉蚜翅型分化中的作用提供理論支持。

      關(guān)鍵詞:棉蚜;翅多態(tài)性;胰島素受體;表達模式;翅型分化

      Bioinformatics analysis of two insulin receptors in Aphis gossypii and comparison of their expression patterns in three winged phenotypes

      Wang Liuyu1, Wang Li2, Zhu Xiangzhen2, Zhang Kaixin2, Li Dongyang2, Ji Jichao2*, Cui Jinjie2*, Ma Weihua1*

      (1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; 2. Institute of Cotton Research, Chinese Academy of Agricultural Sciences/National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan 455000, China)

      Abstract: [Objective] This study aims to clarify the sequence structure and expression pattern of two insulin receptor genes in three kinds of winged aphids of Aphis gossypii. [Methods] Based on the whole genome data of A. gossypii, amino acid sequence analysis of two insulin receptor genes (insulin receptor 1, AgInR1; insulin receptor 2, AgInR2) was identified, and phylogenetic analysis of insect InR1 from 17 insects and InR2 from 14 insect was performed. The protein conserved structural domains of insulin receptors were analyzed and motif analysis was conducted using online software. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of AgInR1 and AgInR2 in wingless female and three kinds of winged aphids at different developmental stages. [Results] The physicochemical analysis showed that AgInR1 and AgInR2 were hydrophilic transmembrane proteins. Phylogenetic analysis showed that InR1 and InR2 of the analyzed insects were clustered into two distinctive groups. The InR1 and InR2 of Hemiptera Aphididae were clustered together with very high bootstrap values, showed close affinity. Conserved domains and motif analyses showed that conserved domain arrangement of InR1 and InR2 from A. gossypii were relatively similar. Compared with AgInR1, AgInR2 lacked one FN3 domain. The results of qRT-PCR showed that the expression level of AgInR1 in the 4th instar and adult stages of the three winged aphids, namely, parthenogenetic wing female, gynoparae, and male was significantly higher than that of parthenogenetic wingless female at the same instar. Meanwhile the expression pattern of AgInR2 in the three kinds of winged aphids was different from that of AgInR1. [Conclusion] AgInR1 might involve in regulating the wing development process in the 4th instar and adult stages of three winged aphids. AgInR2 had a different expression pattern from AgInR1 and might have different biological functions. The study provides theoretical support for further investigation of the role of insulin signaling pathway in wing differentiation of A. gossypii.

      Keywords: Aphis gossypii; wing polymorphism; insulin receptor; expression patterns; wing dimorphism

      棉蚜(Aphis gossypii)屬于半翅目(Hemiptera)蚜科(Aphididae),是棉田及溫室種植蔬菜的主要害蟲[1]。棉蚜為異寄主全周期蚜蟲,在春夏季節(jié)進行孤雌生殖,秋末冬初產(chǎn)生性母,并飛至冬寄主產(chǎn)下性雌,進入有性生殖階段。在棉蚜的生活史中存在3種有翅型形態(tài),即孤雌有翅蚜、性母、雄蚜。春夏季節(jié),孤雌有翅蚜在不同寄主間遷移,種群快速擴張;秋冬季節(jié),性母、雄蚜遷飛至冬寄主,雄蚜與性雌交配產(chǎn)卵,而卵可抵御寒冬[2]。棉花病蟲害的發(fā)生直接影響棉花的產(chǎn)量和纖維品質(zhì),有翅型棉蚜在棉蚜種群擴張、病毒傳播中起重要作用。

      昆蟲翅的多態(tài)性是昆蟲在長期進化中適應(yīng)環(huán)境的策略,也是昆蟲對環(huán)境變化的響應(yīng)[3]。翅多態(tài)性的昆蟲通過優(yōu)化資源分配,平衡飛行與繁殖需求以適應(yīng)復(fù)雜多變的生存環(huán)境,對穩(wěn)定種群以及增加種群遺傳多樣性具有重要意義[4-5]。半個世紀以來,研究者以果蠅(Drosophila)、家蠶(Bombyx mori)、蟋蟀(Gryllulus)等為模式昆蟲,對昆蟲翅的多態(tài)性展開了廣泛的研究。對家蠶翅發(fā)育的研究主要集中于翅發(fā)育基因的功能以及相關(guān)信號通路的調(diào)控作用[6]。對果蠅翅的發(fā)育機制已有比較透徹的研究,其發(fā)育與形成由多條信號通路的協(xié)調(diào)作用共同決定,包括Dpp信號通路和Hedgehog信號通路等[7-10]。昆蟲種內(nèi)最常見的翅型分化有長翅型和短翅型、有翅型和無翅型[11]。在半翅目飛虱科(Hemiptera: Delphacidae)昆蟲類群中,翅型分化為長/短類型。然而,在半翅目蚜科(Hemiptera: Aphididae)昆蟲類群中,翅型分化為有/無類型。影響翅型分化的因素有很多,如溫度、光照、種群密度、寄主營養(yǎng)等[12-14]。此外,多項研究表明蛻皮激素、保幼激素(juvenile hormone)參與調(diào)控昆蟲翅型分化。例如,蛻皮激素通過TORC1依賴機制調(diào)節(jié)果蠅翅盤大小。在豌豆蚜(Acyrthosiphon pisum)與甜菜蚜(A. fabae)中,在1齡期局部應(yīng)用保幼激素可以使有翅蚜發(fā)育為無翅蚜[15-17]

      近些年,胰島素信號通路成為翅型分化分子機制研究的熱點。從果蠅到哺乳動物,胰島素信號途徑高度保守,在生長發(fā)育、代謝平衡、翅二態(tài)性以及衰老過程等方面發(fā)揮重要作用[14, 18]。胰島素受體是胰島素信號通路的上游因子,與胰島素結(jié)合后觸發(fā)信號轉(zhuǎn)導(dǎo)級聯(lián)反應(yīng),實現(xiàn)對機體的調(diào)控[19]。胰島素受體一般包括配體結(jié)合L結(jié)構(gòu)域(Recep_L)、半胱氨酸富集區(qū)Furin樣區(qū)(Furin-like)、纖連蛋白III型結(jié)構(gòu)域(FN3)和酪氨酸激酶催化結(jié)構(gòu)域(TyrKc),各結(jié)構(gòu)域行使的功能不同[20]。2個Recep_L及其中間的1個Furin-like作為配體結(jié)合位點,在胰島素與胰島素受體結(jié)合過程中起重要作用。FN3對α-亞基和β-亞基結(jié)合時產(chǎn)生的二硫鍵起到重要作用,TyrKc自身磷酸化可能會充分激活胰島素受體的激酶活性[21-22]。昆蟲胰島素和胰島素樣生長因子信號的功能可塑性可能來自于胰島素受體的多樣性[23]。有研究表明在果蠅突變體中,改變胰島素受體激酶活性或蛋白結(jié)構(gòu)域相互作用能延緩其衰老[24]。

      2015年,Xu等[25]在褐飛虱(Nilaparvata lugens)翅型分化分子機理方面取得了突破進展,發(fā)現(xiàn)褐飛虱體內(nèi)有2個胰島素受體基因(insulin receptor 1,InR1和insulin receptor 2,InR2),通過調(diào)節(jié)叉頭轉(zhuǎn)錄因子FoxO的活性,在控制長翅型和短翅型的發(fā)育中起著相反的作用。在之后的研究中發(fā)現(xiàn)褐飛虱長/短翅的發(fā)育取決于Zfh1-FoxO通路和IIS-FoxO途徑的平衡[26]。研究表明miR-9b和ABCG4調(diào)控胰島素信號途徑在柑橘蚜蟲(Aphis citricidus)中介導(dǎo)翅兩型分化,且該研究結(jié)果在豌豆蚜中得到證實。在柑橘蚜蟲中,擁擠條件下aci-miR-9b負調(diào)控AcABCG4的表達,從而激活胰島素和胰島素類似肽信號通路,增加有翅后代的比例[27]。在4齡的柑橘蚜蟲中沉默胰島素受體基因會出現(xiàn)翅發(fā)育畸形、翅發(fā)育不良以及若蟲階段之后無法發(fā)育的蚜蟲[28]。由于棉蚜體型小、生活史復(fù)雜,加上前人對性母、雄蚜的研究相對較少,胰島素信號通路在棉蚜翅型分化的系統(tǒng)性研究進展緩慢。

      本研究通過生物信息學(xué)手段分析2個棉蚜胰島素受體的基因序列結(jié)構(gòu)與保守結(jié)構(gòu)域,探究其與其他昆蟲胰島素受體蛋白的序列相似性,并用實時熒光定量聚合酶鏈式反應(yīng)(quantitative real-time polymerase chain reaction, qRT-PCR)技術(shù)測定2個基因在3種有翅型棉蚜不同發(fā)育時期的表達量,以期為進一步探究胰島素信號通路在棉蚜翅型分化中的作用奠定基礎(chǔ)。

      1 材料與方法

      1.1 供試昆蟲

      以3種有翅型棉蚜以及孤雌無翅蚜作為供試蟲源,棉蚜為中國農(nóng)業(yè)科學(xué)院棉花研究所棉花生物育種與綜合利用全國重點實驗室連續(xù)飼養(yǎng)多代種群,遺傳背景一致。棉蚜以棉花品種中棉所49的幼苗為食,孤雌有翅蚜的飼養(yǎng)條件為溫度(25±1)℃,相對濕度75%,光周期(光照時間/黑暗時間)14 h/10 h,性母與雄蚜飼養(yǎng)條件為溫度18 ℃,相對濕度75%,光周期(光照時間/黑暗時間)8 h/16 h[2]。

      1.2 試驗處理

      根據(jù)形態(tài)學(xué)特征,分別收取1齡、2齡、3齡、4齡以及成蟲期的孤雌有翅蚜、性母及雄蚜樣品用于RNA提取,其中1齡孤雌有翅蚜與1齡孤雌無翅蚜為同種試蟲[29]。每個齡期設(shè)置3個生物學(xué)重復(fù)。

      1.3 總RNA的提取及cDNA合成

      收集的棉蚜加液氮研磨充分后,按照TRIzol試劑(Life Technologies,美國)說明書步驟提取RNA,利用TaKaRa公司的PrimeScriptTM RT reagent Kit(Perfect Real Time)反轉(zhuǎn)錄試劑盒合成第一鏈cDNA。

      1.4 qRT-PCR

      采用Primer Premier 6.0,根據(jù)棉蚜基因組序列信息設(shè)計引物(表1),由生工生物工程(上海)股份有限公司合成引物。以棉蚜cDNA為模板,棉蚜EF-1α基因為內(nèi)參基因[30],采用TransStart Top Green qPCR SuperMix(+Dye I)熒光定量試劑盒進行qRT-PCR,反應(yīng)體系及條件按照說明書進行,試驗所用儀器為eppendorf Mastercycler epgradient S,數(shù)據(jù)分析軟件為realplex Properties。qRT-PCR引物驗證,以cDNA為模板,梯度稀釋后配制反應(yīng)體系,得到相應(yīng)的標準曲線。從數(shù)據(jù)分析軟件導(dǎo)出擴增效率和相關(guān)系數(shù),根據(jù)擴增效率和相關(guān)系數(shù)選擇合適的引物?;虮磉_量根據(jù)2-△△Ct公式計算[31],每個生物學(xué)重復(fù)設(shè)置3個技術(shù)重復(fù),采用單因素方差分析,用Duncan氏新復(fù)極差法進行多重比較(P<0.05)。

      1.5 生物信息學(xué)分析

      對AgInR1(XP_027848345.2)和AgInR2(XP_050058177.1)運用在線軟件Expasy-ProtParam tool(https://web.expasy.org/protparam/)進行理化性質(zhì)分析,用在線軟件TMHMM-2.0分析跨膜結(jié)構(gòu),在https://services.healthtech.dtu.dk/services/SignalP-5.0/網(wǎng)頁預(yù)測信號肽。通過在線網(wǎng)頁SOPMA(https://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)分析蛋白的二級結(jié)構(gòu),采用NetPhos 3.1程序(http://www.cbs.dtu.dk/services/NetPhos-3.1/)預(yù)測蛋白的磷酸化位點。在美國國立生物技術(shù)信息中心(National Center for Biotechnology Information, NCBI)下載24種昆蟲的胰島素受體蛋白的氨基酸序列全長,包括17條昆蟲的InR1氨基酸序列以及14條昆蟲的InR2氨基酸序列(表2),利用MEGA 7.0 軟件采用鄰接法(neighbour joining)對棉蚜以及其他昆蟲的InR1和InR2進行系統(tǒng)發(fā)育分析,設(shè)自展值(bootstrap)為1 000次,其他參數(shù)為默認值。并通過在線工具iTOL對進化樹進行美化;使用MEME(https://meme-suite.org/meme/doc/meme.html)在線分析保守基序(motif),設(shè)置基序數(shù)量為12,其他參數(shù)為默認值。采用CD-Search(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)分析保守結(jié)構(gòu)域,并通過TBtools對系統(tǒng)發(fā)育分析、保守結(jié)構(gòu)域分析以及保守基序分析結(jié)果進行可視化[32-33]。

      2 結(jié)果與分析

      2.1 AgInR1和AgInR2蛋白理化性質(zhì)分析

      AgInR1基因編碼1 490個氨基酸(amino acid, aa),預(yù)測其分子量和理論等電點分別為168.745 KDa和5.79。AgInR1親水性平均系數(shù)(grand average of hydropathicity,GRAVY)為-0.413,是親水性蛋白。預(yù)測顯示,AgInR1有1個跨膜區(qū)域,位于1 044~1 066 aa處(圖1A);對AgInR1進行信號肽預(yù)測,結(jié)果顯示無信號肽(圖2A)。通過二級結(jié)構(gòu)分析,發(fā)現(xiàn)AgInR1蛋白主要包括α-螺旋(alpha helix)、延伸鏈(sheet)、β-轉(zhuǎn)角(beta-turn)和不規(guī)則卷曲(random coil),占比分別為27.03%、19.73%、4.86%和48.38%(圖3A)。磷酸化位點分析顯示絲氨酸(S)磷酸化位點71個,酪氨酸(Y)磷酸化位點24個,蘇氨酸(T)磷酸化位點43個。

      AgInR2基因編碼1 320個氨基酸,預(yù)測其分子量和理論等電點分別為150.162 KDa和6.01,GRAVY為-0.261,是親水性蛋白。預(yù)測AgInR2在926~948 aa有1個跨膜區(qū)域(圖1B);信號肽預(yù)測分析顯示其N端存在信號肽,剪切位點在第23、24殘基處(圖2B)。通過二級結(jié)構(gòu)分析,發(fā)現(xiàn)AgInR1蛋白主要包括α-螺旋、延伸鏈、β-轉(zhuǎn)角和不規(guī)則卷曲,占比分別為25.30%、21.29%、5.61%和47.80%(圖3B)。磷酸化位點分析顯示絲氨酸(S)磷酸化位點76個,酪氨酸(Y)磷酸化位點24個,蘇氨酸(T)磷酸化位點32個。

      2.2 氨基酸序列同源性分析

      如圖4和圖5A所示,系統(tǒng)進化分析表明昆蟲的InR1(藍色分支)與InR2(綠色分支)各聚為一支。棉蚜與花生蚜的InR1以極高的自展值聚在一起,親緣關(guān)系最近,其次是玉米蚜(Rhopalosiphum maidi)和桃蚜(Myzus persicae)。同樣地,棉蚜的InR2與花生蚜的InR2也以極高的自展值聚為一小支,親緣關(guān)系最近,其次是豌豆蚜和桃蚜。

      結(jié)構(gòu)域分析結(jié)果(圖5B)顯示,文中比較的17種昆蟲InR1均含有Furin-like,Recep_L和FN3結(jié)構(gòu)域,其中4種蚜蟲(棉蚜、玉米蚜、桃蚜和花生蚜)InR1中的TyrKc結(jié)構(gòu)域為PKc_like_superfamily,其他昆蟲的InR1的TyrKc結(jié)構(gòu)域為PTKc_InsR_like。PKc_like_superfamily結(jié)構(gòu)域和PTKc_InsR_like結(jié)構(gòu)域都屬于蛋白激酶超家族,能夠催化γ-磷酸基團從ATP轉(zhuǎn)移到蛋白質(zhì)底物中的酪氨酸殘基[34]。除蜚蠊目(Blattodea)的2種昆蟲的InR2包含PTKc_InsR_like結(jié)構(gòu)域外,文中分析的InR2均含有PKc_like_superfamily、Recep_L和FN3結(jié)構(gòu)域。蚜蟲InR1和InR2的保守結(jié)構(gòu)域較為相似,均有PKc_like_superfamily,Recep_L和FN3結(jié)構(gòu)域。在棉蚜中FN3結(jié)構(gòu)域的數(shù)量存在差異,AgInR1有3個FN3,AgInR2有2個FN3。

      將MEME中得到的基序用Pfam預(yù)測相對應(yīng)的結(jié)構(gòu)域,結(jié)果顯示motif 1、motif 2、motif 3、motif 7、motif 9、motif 10均存在于TyrKc結(jié)構(gòu)域,motif 4、motif 5、motif 6對應(yīng)Recep_L結(jié)構(gòu)域的部分序列,motif 8、motif 12均對應(yīng)FN3結(jié)構(gòu)域的部分序列,而motif 11沒有匹配到結(jié)構(gòu)域。Motif分析結(jié)果顯示(圖5C),所列17種昆蟲的InR1均含有12種相同的基序,位置排列基本一致。而InR2預(yù)測的motif較為復(fù)雜,半翅目中4種蚜蟲棉蚜、花生蚜、桃蚜、豌豆蚜的InR2均沒有motif 11,且motif 11在其他半翅目昆蟲InR2中位置不同。乳草長蝽(Oncopeltus fasciatus)和紅肩美姬緣蝽(Jadera haematoloma)的InR2中沒有motif 5和motif 6,而結(jié)構(gòu)域分析顯示它們較其他InR2蛋白少1個Recep_L結(jié)構(gòu)域。對于棉蚜和花生蚜,InR2比InR1缺少1個motif 11以及1個motif 8,即缺乏1個FN3,與保守結(jié)構(gòu)域預(yù)測結(jié)果相對應(yīng)。

      2.3 AgInR1和AgInR2基因在3種有翅蚜中的表達模式

      對于棉蚜來說,1齡時,孤雌有翅蚜和孤雌無翅蚜在外觀上無法區(qū)分,2齡時,在體視鏡下觀察可見有翅蚜的翅原基略有突起,3齡時肉眼可觀察到翅原基突起,4齡時翅芽發(fā)育明顯,在成蟲期發(fā)育為完整的翅。通過qRT-PCR檢測AgInR1和AgInR2在孤雌無翅蚜和3種有翅蚜不同發(fā)育時期的表達水平,均以AgInR1在孤雌蚜1齡期中的表達量為對照(圖6)。在孤雌無翅蚜中,與1齡、2齡相比,3齡時AgInR1的表達量顯著下降。在孤雌有翅蚜中,與1齡相比,AgInR1在3齡時的表達量下降但未達到顯著水平,在4齡及成蟲期的表達量顯著上升。在性母中,與1齡性母相比,AgInR1的表達量在4齡和成蟲期顯著升高;且在3齡、4齡、成蟲期AgInR1的表達量均顯著高于同齡期的孤雌無翅蚜,在2齡期顯著低于同齡期的孤雌無翅蚜。在雄蚜發(fā)育過程中AgInR1的表達量整體呈現(xiàn)出上升趨勢,其在成蟲期的表達量顯著高于各齡期;在3齡、4齡、成蟲期雄蚜中AgInR1的表達量均顯著高于同齡期的孤雌無翅蚜。在孤雌有翅蚜、性母、雄蚜這3種有翅蚜的4齡期和成蟲期,AgInR1的表達量均顯著高于同齡期的孤雌無翅蚜。

      AgInR2在孤雌無翅蚜與孤雌有翅蚜中均呈現(xiàn)先下降后上升的趨勢。在孤雌無翅蚜中,與1齡相比,在2齡和3齡期AgInR2的表達量顯著下降。在4齡及成蟲期,孤雌有翅蚜中AgInR2的表達量均顯著低于同齡期的孤雌無翅蚜。在性母中,與1齡性母相比,AgInR2的表達量在4齡和成蟲期顯著上升,且在2齡、3齡、4齡以及成蟲期AgInR2的表達量均顯著高于同齡期的孤雌無翅蚜。在雄蚜中,與1齡相比,AgInR2的表達量在4齡明顯下降但并不顯著,在成蟲期顯著上升;AgInR2的表達量在1齡和4齡顯著低于同齡期的孤雌無翅蚜。

      3 討論

      本研究針對棉蚜胰島素受體的理化性質(zhì)、蛋白結(jié)構(gòu)域等進行分析,為深入探究其功能奠定基礎(chǔ)。對AgInR1和AgInR2蛋白基本理化性質(zhì)分析結(jié)果顯示AgInR1和AgInR2均為親水性跨膜蛋白。進化分析結(jié)果顯示,昆蟲的InR1和InR2分別聚為一簇,在進化中較為保守。

      此前大量研究已證實,許多昆蟲類群飛行肌與生殖系統(tǒng)之間存在資源權(quán)衡[35]。在翅多態(tài)昆蟲中,長翅形態(tài)具有飛行能力,但以犧牲生殖力為代價;短翅及無翅飛行力較弱或無飛行能力,但具有更強的生殖力[36]。相較于無翅蚜,棉蚜中的有翅蚜形態(tài)相似,頭部、翅膀和胸部變黑硬化[2]。棉蚜InR1和InR2在3種有翅蚜不同發(fā)育時期的表達模式顯示,相較于同齡期孤雌無翅蚜,3種有翅蚜AgInR1的表達量在4齡以及成蟲期均顯著上升。這與柑橘蚜蟲(A. citricidus)后期InR1的表達相似,而且在A.citricidus中干擾InR1導(dǎo)致23%的蚜蟲翅發(fā)育畸形,暗示AgInR1可能在3種有翅蚜的翅發(fā)育后期起重要作用[24]。AgInR2在3種有翅蚜中的表達模式與AgInR1不同,說明AgInR2在3種有翅蚜生長發(fā)育中可能具有不同于AgInR1的功能。光周期和溫度對棉蚜兩性形態(tài)有明確的影響[37]。已有研究表明光周期的變化影響胰島素信號通路相關(guān)基因表達量的變化,在中短光照條件下,豌豆蚜的胰島素受體基因表達量下降[38]。AgInR2在孤雌無翅蚜和孤雌有翅蚜中的表達量整體呈現(xiàn)出先下降后上升趨勢,而在性母和雄蚜中略有差異,可能是由于胰島素信號通路對光周期產(chǎn)生了響應(yīng)。胰島素受體在胰島素信號通路中發(fā)揮重要作用,參與調(diào)控許多昆蟲的繁殖[20]。在雄蚜和性母4齡時,AgInR2的表達趨勢相反,可能是由于AgInR2參與了性母的生殖調(diào)控。

      4 結(jié)論

      本研究分析了棉蚜胰島素受體基因AgInR1和AgInR2在3種有翅蚜不同發(fā)育時期的表達模式。AgInR1的表達量在3種有翅蚜的4齡及成蟲期顯著上升,AgInR2的表達量在孤雌無翅蚜和孤雌有翅蚜中整體呈現(xiàn)出先下降后上升趨勢。本研究為進一步探究胰島素信號通路在棉蚜生長發(fā)育及翅型調(diào)控中的作用奠定基礎(chǔ)。

      參考文獻:

      [1] Li J H, Wu Y K, Zhang Q, et al. Aphid parasitism and parasitoid diversity in cotton fields in Xinjiang, China[J/OL]. PLoS ONE, 2018, 13(11): e0207034[2023-07-16]. https://doi.org/10.1371/journal.pone.0207034.

      [2] Ji J C, Huangfu N B, Luo J Y, et al. Insights into wing dimorphism in worldwide agricultural pest and host-alternating aphid Aphis gossypii[J/OL]. Journal of Cotton Research, 2021, 4: 5[2023-07-16]. https://doi.org/10.1186/s42397-021-00080-w.

      [3] Yang X W, Liu X X, Xu X L, et al. Gene expression profiling in winged and wingless cotton aphids, Aphis gossypii (Hemiptera: Aphididae)[J/OL]. International Journal of Biological Sciences, 2014, 10(3): 257-267[2023-07-16]. https://doi.org/10.7150/ijbs.7629.

      [4] Tigreros N, Davidowitz G. Flight-fecundity tradeoffs in wing-monomorphic insects[J/OL]. Advances in Insect Physiology, 2019, 56: 1-41[2023-07-16]. https://doi.org/10.1016/BS.AIIP.2019.02.001.

      [5] Renault D. A review of the phenotypic traits associated with insect dispersal polymorphism, and experimental designs for sorting out resident and disperser phenotypes[J/OL]. Insects, 2020, 11(4): 214[2023-07-16]. https://doi.org/10.3390/insects11040214.

      [6] Yin J, Zhang J, Li T, et al. BmSd gene regulates the silkworm wing size by affecting the Hippo pathway[J/OL]. Insect Science, 2020, 27(4): 655-664[2023-07-17]. https://doi.org/10.1111/1744-7917.12702.

      [7] Zhang X, Luo D, Pflugfelder G O, et al. Dpp signaling inhibits proliferation in the Drosophila wing by Omb-dependent regional control of bantam[J/OL]. Development, 2013, 140(14): 2917-2922[2023-07-16]. https://doi.org/10.1242/dev.094300.

      [8] Wang W N, Peng J, Li Z, et al. Transcription factor E93 regulates wing development by directly promoting Dpp signaling in Drosophila[J/OL]. Biochemical and Biophysical Research Communications, 2019, 513(1): 280-286[2023-07-16]. https://doi.org/10.1016/j.bbrc.2019.03.100.

      [9] Tripathi B K, Irvine K D. The wing imaginal disc[J/OL]. Genetics, 2022, 220(4): iyac020[2023-07-16]. https://doi.org/10.1093/genetics/iyac020.

      [10] Bray S. Drosophila development: Scalloped and Vestigial take wing[J/OL]. Current Biology, 1999, 9(7): R245-R247[2023-07-16]. https://doi.org/10.1016/s0960-9822(99)80154-7.

      [11] 王小藝, 楊忠岐, 魏可, 等. 昆蟲翅型分化的表型可塑性機制[J]. 生態(tài)學(xué)報, 2015, 35(12): 3988-3999.

      Wang Xiaoyi, Yang Zhongqi, Wei Ke, et al. Mechanisms of phenotypic plasticity for wing morph differentiation in insects[J]. Acta Ecologica Sinica, 2015, 35(12): 3988-3999.

      [12] Lees A D. The production of the apterous and alate forms in the aphid Megoura viciae Buckton, with special reference to the role of crowding[J/OL]. Journal of Insect Physiology, 1967, 13(2): 289-318[2023-07-16]. https://doi.org/10.1016/0022-1910(67)90155-2.

      [13] Gudmunds E, Narayanan S, Lachivier E, et al. Photoperiod controls wing polyphenism in a water strider independently of insulin receptor signaling[J/OL]. Proceedings of the Royal Society B: Biological Sciences, 2022, 289(1973): 20212764[2023-07-16]. https://doi.org/10.1098/rspb.2021.2764.

      [14] Zhang C X, Brisson J A, Xu H J. Molecular mechanisms of wing polymorphism in insects[J/OL]. Annual Review Entomo-logy, 2018, 64: 297-314[2023-07-16]. https://doi.org/10.1146/annurev-ento-011118-112448.

      [15] Strassburger K, Lutz M, Müller S, et al. Ecdysone regulates Drosophila wing disc size via a TORC1 dependent mechanism[J/OL]. Nature Communications, 2021, 12(1): 6684[2023-07-16]. https://doi.org/10.1038/s41467-021-26780-0.

      [16] Vellichirammal N N, Gupta P, Hall T A, et al. Ecdysone signa-ling underlies the pea aphid transgenerational wing polyphenism[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(6): 1419-1423[2023-07-16]. https://doi.org/10.1073/pnas.1617640114.

      [17] Jim H. Juvenile hormone mimics the photoperiodic apterization of the alate gynopara of aphid, Aphis fabae[J/OL]. Nature, 1980, 286: 602-604[2023-07-16]. https://doi.org/10.1038/286602a0.

      [18] Tanabe K, Itoh M, Tonoki A. Age-related changes in insulin-like signaling lead to intermediate-term memory impairment in Drosophila[J/OL]. Cell Reports, 2017, 18(7): 1598-1605[2023-07-16]. https://doi.org/10.1016/j.celrep.2017.01.053.

      [19] Wente S R, Rosen O M. Insulin-receptor approaches to studying protein kinase domain[J/OL]. Diabetes Care, 1990, 13(3): 280-287[2023-07-16]. https://doi.org/10.2337/diacare.13.3.280.

      [20] Wu S, Tang Y, Su S J, et al. RNA interference knockdown of insulin receptor inhibits ovarian development in Chilo suppressalis[J/OL]. Molecular Biology Reports, 2022, 49(12): 11765-11773[2023-07-16]. https://doi.org/10.1007/s11033-022-07948-3.

      [21] De Meyts P. Insulin and its receptor: structure, function and evolution[J/OL]. BioEssays, 2004, 26(12): 1351-1362[2023-07-16]. https://doi.org/10.1002/bies.20151.

      [22] 盧博. 褐飛虱胰島素受體基因分析與功能研究[D]. 杭州: 浙江大學(xué), 2015.

      Lu Bo. Genetic and functional analysis of insulin receptor genes of brown planthopper (Nilaparvata lugens)[D]. Hangzhou: Zhejiang University, 2015.

      [23] Sm?kal V, Pivarci M, Provazník J, et al. Complex evolution of insect insulin receptors and homologous decoy receptors, and functional significance of their multiplicity[J/OL]. Molecular Biology and Evolution, 2020, 37(6): 1775-1789[2023-07-16]. https://doi.org/10.1093/molbev/msaa048.

      [24] Yamamoto R, Palmer M, Koski H, et al. Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms[J/OL]. Genetics, 2021, 217(2): iyaa037[2023-07-16]. https://doi.org/10.1093/genetics/iyaa037.

      [25] Xu H J, Xue J, Lu B, et al. Two insulin receptors determine alternative wing morphs in planthoppers[J/OL]. Nature, 2015, 519(7544): 464-467[2023-07-16]. https://doi.org/10.1038/nature14286.

      [26] Zhang J L, Chen S J, Liu X Y, et al. The transcription factor Zfh1 acts as a wing-morph switch in planthoppers[J/OL]. Nature Communications, 2022, 13(1): 5670[2023-07-16]. https://doi.org/10.1038/s41467-022-33422-6.

      [27] Shang F, Niu J, Ding B Y, et al. The miR-9b microRNA mediates dimorphism and development of wing in aphids[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(15): 8404-8409[2023-07-16]. https://doi.org/10.1073/pnas.1919204117.

      [28] Ding B Y, Shang F, Zhang Q, et al. Silencing of two insulin receptor genes disrupts nymph-adult transition of alate brown citrus aphid[J/OL]. International Journal of Molecular Sciences, 2017, 18(2): 357[2023-07-16]. https://doi.org/10.3390/ijms18020357.

      [29] Ji J C, Zhang S, Luo J Y, et al. Comparative transcriptional analysis provides insights of possible molecular mechanisms of wing polyphenism induced by postnatal crowding in Aphis gossypii[J/OL]. Journal of Cotton Research, 2019, 2: 17[2023-07-16]. https://doi.org/10.1186/s42397-019-0036-z.

      [30] Ma K S, Li F, Liang P Z, et al. Identification and validation of reference genes for the normalization of gene expression data in qRT-PCR analysis in Aphis gossypii (Hemiptera: Aphididae)[J/OL]. Journal of Insect Science, 2016, 16(1): 17[2023-07-16]. https://doi.org/10.1093/jisesa/iew003.

      [31] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method[J/OL]. Methods, 2001, 25(4): 402-408[2023-07-16]. https://doi.org/10.1006/meth.2001.1262z.

      [32] 晁毛妮, 董潔, 胡根海, 等. 陸地棉AGPase基因家族的鑒定及表達分析[J/OL]. 棉花學(xué)報, 2022, 34(4): 299-312[2023-07-16]. https://doi.org/10.11963/cs20220026.

      Chao Maoni, Dong Jie, Hu Genhai, et al. Identification and expression analysis of AGPase gene family in upland cotton (Gossypium hirsutum L.)[J/OL]. Cotton Science, 2022, 34(4): 299-312[2023-07-16]. https://doi.org/10.11963/cs20220026.

      [33] 吳翠翠, 肖水平, 夏芝, 等. 陸地棉LTPG基因家族的全基因組鑒定及表達分析[J/OL]. 棉花學(xué)報, 2023, 35(1): 1-16[2023-07-16]. https://doi.org/10.11963/cs20220064.

      Wu Cuicui, Xiao Shuiping, Xia Zhi, et al. Genome-wide identification and expression analysis of LTPG gene family in Gossypium hirsutum L.[J/OL]. Cotton Science, 2023, 35(1): 1-16[2023-07-16]. https://doi.org/10.11963/cs20220064.

      [34] Lu S N, Wang J Y, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J/OL]. Nucleic Acids Research, 2020, 48(D1): D265-D268[2023-07-16]. https://doi.org/10.1093/nar/gkz991.

      [35] Braendle C, Davis G K, Brisson J A, et al. Wing dimorphism in aphids[J/OL]. Heredity, 2006, 97(3): 192-199[2023-07-16]. https://doi.org/10.1038/sj.hdy.6800863.

      [36] Chang H H, Guo X Q, Guo S L, et al. Trade-off between flight capability and reproduction in Acridoidea (Insecta: Orthoptera)[J/OL].? Ecology and Evolution, 2021, 11(23): 16849-16861[2023-07-16]. https://doi.org/10.1002/ece3.8317.

      [37] Kwon S H, Kim D S. Effects of temperature and photoperiod on the production of sexual morphs of Aphis gossypii (Hemiptera: Aphididae) in Jeju, Korea[J/OL]. Journal of Asia-Pacific Entomology, 2017, 20(1): 53-56[2023-07-16]. http://dx.doi.org/10.1016/j.aspen.2016.11.006.

      [38] Barberà M, Ca as-Ca as R, Martínez-Torres D. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum[J/OL]. Insect Biochemistry and Molecular Biology, 2019, 112: 103185[2023-07-17]. https://doi.org/10.1016/j.ibmb.2019.103185.

      (責(zé)任編輯:付毓 責(zé)任校對:王小璐)

      收稿日期:2023-08-23? ? ? ? ? ?第一作者簡介:王柳玉(1998―),女,碩士研究生,liuyuwang2021@163.com。 *通信作者:姬繼超,hnnydxjc@163.com;崔金杰,aycuijinjie@163.com;馬偉華,weihuama@mail.hzau.edu.cn

      基金項目:國家自然科學(xué)基金(32102214)

      猜你喜歡
      棉蚜
      棉蚜抗藥性現(xiàn)狀及治理策略
      植物保護(2023年5期)2023-10-16 03:38:38
      Hap1型棉蚜在5種春季雜草上的生長發(fā)育情況
      植物保護(2023年1期)2023-02-03 10:22:08
      Hap4型棉蚜取食西葫蘆后的寄主適應(yīng)性變化
      植物保護(2023年1期)2023-02-03 10:07:46
      低劑量啶蟲脒和雙丙環(huán)蟲酯對棉蚜繭蜂寄生功能的影響
      七星瓢蟲對不同初始密度棉蚜種群的調(diào)控作用
      氣象因素對棉蚜生長影響的分析
      棉蚜取食被棉長管蚜危害棉花后其相關(guān)酶的活性
      棉蚜繭蜂對不同品種、不同生育期棉花的趨性行為反應(yīng)
      棉蚜抗藥性現(xiàn)狀及防治對策
      棉蚜田間藥效試驗篩選
      安新县| 咸丰县| 晴隆县| 芜湖市| 东乌| 阜南县| 游戏| 互助| 卫辉市| 旅游| 舒兰市| 栾川县| 万全县| 潜山县| 文昌市| 新余市| 中方县| 利川市| 东阳市| 兰溪市| 肃宁县| 昌邑市| 兴安盟| 苗栗市| 德化县| 盐边县| 青阳县| 永平县| 湖南省| 新民市| 台东县| 龙游县| 大城县| 志丹县| 福泉市| 樟树市| 灌南县| 开远市| 安福县| 巨野县| 班玛县|