高升旗 邵武奎 趙準(zhǔn) 邵盤霞 胡文冉 黃全生
摘要:【目的】解析類鈣調(diào)磷酸酶B亞基蛋白(calcium B-like protein, CBL)基因GhCBL3-A01在棉花抗黃萎病反應(yīng)中的功能,為棉花抗病育種提供基因資源?!痉椒ā繌拿藁ɑ蚪M數(shù)據(jù)庫(kù)獲得 GhCBL3-A01基因的同源序列,進(jìn)行生物信息學(xué)分析。采用實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real-time polymerase chain reaction, qRT-PCR)檢測(cè)大麗輪枝菌(Verticillium dahliae)、茉莉酸甲酯(methyl jasminate, MeJA)和H2O2處理的棉株中GhCBL3-A01基因的表達(dá)量變化。利用病毒誘導(dǎo)的基因沉默(virus-induced gene silencing, VIGS)技術(shù)研究GhCBL3-A01在棉花抗黃萎病中的功能。通過(guò)檢測(cè)活性氧積累以及相關(guān)基因的表達(dá)量,初步分析GhCBL3-A01的作用機(jī)制?!窘Y(jié)果】陸地棉中GhCBL3-A01及其3個(gè)同源蛋白均含有3個(gè)CBL家族典型的EF-hand結(jié)構(gòu)域。大麗輪枝菌、MeJA和H2O2處理后,GhCBL3-A01的表達(dá)量顯著升高。VIGS沉默GhCBL3-A01導(dǎo)致病株率和病情指數(shù)顯著降低,莖稈維管束褐變程度減輕,有病菌繁殖的莖段數(shù)量明顯減少,增強(qiáng)了棉株對(duì)黃萎病的抗性。GhCBL3-A01基因沉默棉株葉片中活性氧積累增多,防御相關(guān)基因PR1、NPR1、PR4和PDF1.2以及茉莉酸信號(hào)通路關(guān)鍵基因AOS1、OPR3、MYC2和LOX2的表達(dá)量增加?!窘Y(jié)論】GhCBL3-A01通過(guò)調(diào)控防御相關(guān)基因、茉莉酸信號(hào)通路基因的表達(dá)和活性氧積累負(fù)調(diào)控棉花對(duì)黃萎病的抗性,是提高棉花黃萎病抗性的候選基因。
關(guān)鍵詞:棉花;黃萎??;類鈣調(diào)磷酸酶B亞基蛋白;GhCBL3-A01;抗病基因;病毒誘導(dǎo)的基因沉默
Functional analysis of cotton calcineurin B-like protein GhCBL3-A01 in regulating the resistance to Verticillium wilt
Gao Shengqi1, 2, Shao Wukui1, 2, Zhao Zhun1, 2, Shao Panxia1, 2, Hu Wenran1, 2, Huang Quansheng1, 2*
[1. Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Crop Biotechnology, Urumqi 830091, China; 2. National Key Laboratory of Crop Genetic Improvement and Germplasm Innovation in Arid Desert Areas (Preparation), Urumqi 830091, China]
Abstract: [Objective] This research aims to investigate the role of calcium B-like protein (CBL) gene GhCBL3-A01 in resistance to Verticillium wilt in cotton, so as to provide genetic resource for cotton disease resistance breeding. [Methods] The homologous sequences of GhCBL3-A01 gene were obtained from cotton genomic database for bioinformatic analysis. The relative expression levels of GhCBL3-A01 under Verticillium dahliae, methyl jasminate (MeJA) and H2O2treatments were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The function of GhCBL3-A01 in cotton resistance to Verticillium wilt was analysed by virus-induced gene silencing (VIGS) technique. The functional mechanisms of GhCBL3-A01 were analyzed by detecting the accumulation of reactive oxygen species (ROS) and the expression levels of related genes. [Results] GhCBL3-A01 and its three homologous proteins in upland cotton all contain three typical EF-hand domains of the CBL family. The expression level of GhCBL3-A01 was significantly increased under the treatment of Verticillium dahliae, MeJA, and H2O2. Silencing GhCBL3-A01 by VIGS resulted in a significant decrease in rate of diseased plants and disease index, a reduction in the browning degree of vascular bundles, and a decline in the number of hyphae in stem segments, which enhanced the resistance of cotton plants to Verticillium wilt. The expression levels of disease resistance-related genes (PR1, NPR1, PR4, and PDF1.2) and jasmonic acid (JA) signaling pathway genes (AOS1, OPR3, MYC2, and LOX2) were increased, and ROS accumulation was enriched in GhCBL3-A01 silenced cotton plants. [Conclusion] GhCBL3-A01 negatively regulates the resistance of cotton to Verticillium wilt by regulating the expression levels of defense-related genes and JA signaling pathway genes as well as the accumulation of ROS, which is a candidate gene for improving the resistance of cotton to Verticillium wilt.
Keywords: cotton; Verticillium wilt; calcineurin B-like protein(CBL); GhCBL3-A01; resistance gene; virus-induced gene silencing
棉花(Gossypium spp.)是紡織工業(yè)的天然纖維來(lái)源。棉花的生長(zhǎng)發(fā)育經(jīng)常受到多種病害的影響,尤其是黃萎?。╒erticillium wilt),導(dǎo)致產(chǎn)量和纖維品質(zhì)嚴(yán)重下降[1-2]。目前,利用殺菌劑無(wú)法有效防治棉花黃萎病,最有效的措施是選育抗病品種。因此,鑒定黃萎病抗性基因并解析其作用機(jī)制對(duì)于培育優(yōu)質(zhì)抗病棉花品種至關(guān)重要[3]。
近年來(lái),關(guān)于棉花對(duì)黃萎病菌侵染的防御反應(yīng)機(jī)制取得了新的研究進(jìn)展,發(fā)現(xiàn)幾種信號(hào)通路(包括植物激素等)能夠激活棉花對(duì)大麗輪枝菌(Verticillium dahliae)的防御反應(yīng)[4]。已鑒定到一些黃萎病抗性相關(guān)基因。如棉花乳膠蛋白基因GhMLP28正調(diào)控乙烯響應(yīng)因子GhERF6,這2個(gè)基因編碼的蛋白通過(guò)協(xié)同互作保護(hù)棉花免受黃萎病菌的侵染[5]。鈣依賴蛋白激酶GhCPK33通過(guò)磷酸化12-氧代植二烯酸還原酶GhOPR3負(fù)調(diào)控棉花對(duì)黃萎病菌的抗性,進(jìn)一步研究發(fā)現(xiàn)GhOPR3可直接調(diào)控茉莉酸(jasmonic acid, JA)的生物合成,從而提高棉花對(duì)黃萎病的抗性[6]。抑制油菜素內(nèi)酯(brassinosteroid, BR)GhBZR1基因的表達(dá)能增強(qiáng)感病陸地棉(Gossypium hirsutum L.)品系86-1對(duì)黃萎病菌的抗性,而超表達(dá)GhBZR1降低轉(zhuǎn)基因擬南芥(Arabidopsis thaliana)對(duì)黃萎病菌的抗性[7]。陸地棉Rho鳥(niǎo)苷三磷酸酶GhROP6通過(guò)參與JA合成、JA信號(hào)通路以及木質(zhì)素合成代謝調(diào)控棉花抗黃萎病反應(yīng)[8]。促絲裂原活化蛋白激酶GhMAPKKK2通過(guò)參與JA和水楊酸(salicylic acid, SA)信號(hào)通路在棉花抗黃萎病反應(yīng)中發(fā)揮正調(diào)控作用[9]。沉默GhMYB43增強(qiáng)棉株對(duì)黃萎病菌的抗性,進(jìn)一步分析發(fā)現(xiàn)GhMYB43負(fù)調(diào)控木質(zhì)素合成途徑中關(guān)鍵酶編碼基因和JA信號(hào)通路相關(guān)基因的轉(zhuǎn)錄水平[10] 。此外,利用病毒誘導(dǎo)的基因沉默(virus-induced gene silencing, VIGS)技術(shù)發(fā)現(xiàn),沉默棉花非特異抗性基因GhNDR1和絲裂原活化蛋白激酶的激酶GhMKK2降低了棉花對(duì)黃萎病的抗性[11]。沉默棉花病原體相關(guān)分子模式調(diào)節(jié)因子GhBAK1導(dǎo)致細(xì)胞死亡,同時(shí)產(chǎn)生活性氧(reactive oxygen species, ROS),從而使棉花品系CA4002對(duì)黃萎病產(chǎn)生抗性[12]。鈣依賴蛋白激酶GhCPK28-A10(Gh_A10G086300)負(fù)調(diào)控棉花對(duì)黃萎病的抗性反應(yīng)[13],而且GhCPK28(由Gh_A11G186100編碼)可以與絲氨酸/蘇氨酸蛋白激酶GhPBL9和核糖體蛋白GhRPL12C相互作用,激活調(diào)控棉花黃萎病抗性的潛在分子靶點(diǎn)[14]。GhDIR參與木質(zhì)素的形成,與植物對(duì)病原菌的防御反應(yīng)有關(guān)[15]。Sun等[16]利用VIGS技術(shù)發(fā)現(xiàn),沉默GhADF6增加了根細(xì)胞中肌動(dòng)蛋白的豐度,增強(qiáng)棉花對(duì)大麗輪枝菌的抗性。Zhao等[17]發(fā)現(xiàn),抑制GhRDUF4D基因表達(dá)導(dǎo)致植株對(duì)黃萎病菌的抗性減弱。然而,目前關(guān)于棉花對(duì)大麗輪枝菌入侵的防御反應(yīng)機(jī)制尚不十分清楚[18]。
為應(yīng)對(duì)病原菌入侵,植物已進(jìn)化出兩層天然免疫系統(tǒng),即病原相關(guān)分子模式激發(fā)的免疫反應(yīng)(pattern-triggered immunity, PTI)和效應(yīng)子激發(fā)的免疫反應(yīng)(effector-triggered immunity, ETI)。胞質(zhì)鈣離子(Ca2+)的變化和ROS的爆發(fā)對(duì)激活PTI和ETI反應(yīng)具有重要意義[19]。Ca2+作為1種重要的次級(jí)信使,幾乎參與非生物和生物應(yīng)激反應(yīng)中細(xì)胞信號(hào)傳導(dǎo)的各個(gè)方面[20]。鈣調(diào)蛋白(calmo-dulin, CaM)、CaM相關(guān)蛋白(CaM-related proteins)、鈣依賴蛋白激酶(calcium-dependent protein kinase, CDPK)和類鈣調(diào)磷酸酶B亞基蛋白(calcium B-like protein, CBL)是植物中4類主要的Ca2+傳感器[21]。其中,CBL作為1類特殊的Ca2+傳感器,在植物非生物脅迫響應(yīng)中起著重要作用。例如,AtCBL1正調(diào)控?cái)M南芥對(duì)鹽和干旱脅迫的響應(yīng)[22]。AtCBL9不僅影響植株對(duì)鹽脅迫和甘露醇的反應(yīng),還調(diào)節(jié)滲透脅迫誘導(dǎo)的脫落酸(abscisic acid, ABA)積累[23]。水稻(Oryza sativa)OsCBL8受多種脅迫誘導(dǎo)表達(dá),轉(zhuǎn)基因超表達(dá)植株的耐鹽性增強(qiáng)[24]。玉米(Zea mays)ZmCBL4參與調(diào)控鹽脅迫引發(fā)的鈣信號(hào),從而提高植株對(duì)鹽脅迫的耐受性[25]。然而,目前關(guān)于CBL在防御病原菌入侵方面的研究報(bào)道較少。
本課題組前期用黃萎病致病菌V991接種陸地棉標(biāo)準(zhǔn)品系TM-1,以篩選黃萎病抗性相關(guān)基因,發(fā)現(xiàn)Gh_A01G0740受棉花黃萎病菌強(qiáng)烈誘導(dǎo)。序列比對(duì)分析表明,該基因與擬南芥AtCBL3基因高度同源,而且該基因在陸地棉TM-1基因組中共有4個(gè)同源序列,將其命名為GhCBL3-A01?;诖?,本研究進(jìn)一步分析了GhCBL3-A01的基因結(jié)構(gòu)、蛋白保守基序和啟動(dòng)子區(qū)順式作用元件,在黃萎病菌、茉莉酸甲酯(methyl jasmonate, MeJA)以及 H2O2脅迫下的轉(zhuǎn)錄水平,然后通過(guò)VIGS技術(shù)下調(diào)GhCBL3-A01的表達(dá),對(duì)該基因在棉花抗黃萎病中的功能進(jìn)行初步分析,為豐富棉花抗病基因資源提供基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)材料
1.1.1 供試植物材料及生長(zhǎng)條件。供試棉花材料為陸地棉標(biāo)準(zhǔn)品系TM-1。首先將TM-1的帶絨種子用98%的硫酸溶液浸泡,然后在清水中多次洗滌后晾干;用70%的乙醇溶液進(jìn)行表面消毒后用無(wú)菌水沖洗。每盆(直徑為7 cm,高8 cm)播種5粒,共18盆。播種后將材料移至溫室(28 ℃、16 h光照/8 h黑暗)生長(zhǎng)。
煙草材料為本氏煙(Nicotiana benthamiana),由新疆農(nóng)作物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室繁殖保存,并種植于新疆農(nóng)業(yè)科學(xué)院棉花樓光照培養(yǎng)室(28 ℃、16 h光照/8 h黑暗)。煙草每盆播種4粒,出苗后每盆留2株。
1.1.2 黃萎病菌。黃萎病菌強(qiáng)致病力的V991菌株由本實(shí)驗(yàn)室保存。用無(wú)菌去離子水將V991菌液稀釋至孢子含量為1×106~1×107mL-1,作為接種棉花的孢子懸浮液。
1.1.3 供試載體和菌株。亞細(xì)胞定位載體pCAMBIA1302、煙草脆裂病毒(tobacco rattle virus, TRV)載體、陽(yáng)性對(duì)照載體TRV-GhCLA1、大腸桿菌TOP10和農(nóng)桿菌菌株GV3101均由本課題組保存。
1.2 方法
1.2.1 GhCBL3-A01基因的克隆和序列分析。從棉花基因組數(shù)據(jù)庫(kù)網(wǎng)站(https://www.cottongen.org)[26]獲得GhCBL3-A01基因的全長(zhǎng)序列。在TM-1葉片中擴(kuò)增GhCBL3-A01的全長(zhǎng)序列。通過(guò)序列比對(duì)得到GhCBL3-A01的3個(gè)同源基因(Gh_D01G0760, Gh_A04G0051和 Gh_A13G1099)的序列。使用DNAMAN軟件對(duì)這4個(gè)同源基因的蛋白序列進(jìn)行比對(duì)分析。利用在線網(wǎng)站GSDS2.0(http://gsds.gao-lab.org/)和SMART(http://smart.embl-heidelberg.de/)分別繪制4個(gè)同源基因的基因結(jié)構(gòu)和蛋白保守結(jié)構(gòu)域。從美國(guó)國(guó)立生物技術(shù)信息中心(National Center for Biotechnology Information, NCBI)數(shù)據(jù)庫(kù)(https://www.ncbi.nlm. nih.gov/)獲得擬南芥AtCBL3、玉米ZmCBL3、小麥(Triticum aestivum)TaCBL3、水稻OsCBL3、油菜(Brassica napus)BnCBL3和煙草(Nicotiana tabacum)NtCBL3的蛋白序列,利用MEGA 5軟件進(jìn)行系統(tǒng)進(jìn)化分析,設(shè)自展值(bootstrap value)為1 000,其他參數(shù)為系統(tǒng)默認(rèn)值。
1.2.2 亞細(xì)胞定位。擴(kuò)增GhCBL3-A01編碼序列,構(gòu)建pCAMBIA1302-35S::GhCBL3-GFP融合表達(dá)載體,將該載體和空載體(pCAMBIA1302-35S-GFP)分別轉(zhuǎn)化農(nóng)桿菌菌株GV3101。按照Tamara等[27]的方法,將農(nóng)桿菌菌液接種至3周齡煙草葉片。避光處理2~5 d后在激光共聚焦顯微鏡下檢測(cè)綠色熒光蛋白(green fluorescent protein, GFP)信號(hào)并拍照。
1.2.3 植物激素與脅迫處理。用灌根法將V991懸浮液(每盆30 mL)施入4周齡棉株的培養(yǎng)盆中,采集處理后0 h、0.5 h、2 h、6 h、12 h和24 h的根系樣品。分別用200 μmol·L-1MeJA和1 mmol·L-1 H2O2噴施葉片,每盆用量均為50 mL,于處理后0 h、0.5 h、1 h 、2 h 和 3 h采集根系樣品[6]。上述所有處理均以3份樣本混合作為1個(gè)重復(fù),每個(gè)處理重復(fù)3次,以等量清水處理作為對(duì)照(Mock)。將樣品迅速放在液氮中,于-80 ℃保存用于后續(xù)提取RNA。
1.2.4 基因表達(dá)分析。采用RNAprep Pure多糖多酚植物總RNA提取試劑盒(DP441,天根生化科技有限公司)提取RNA。用反轉(zhuǎn)錄試劑盒EasyScript?? One-Step gDNA Removal和cDNA Synthesis SuperMix(北京全式金生物技術(shù)有限公司)制備cDNA。以反轉(zhuǎn)錄得到的cDNA為模板,根據(jù)ABM熒光定量試劑盒說(shuō)明書(shū),以陸地棉泛素基因GhUBQ7(DQ116441)為內(nèi)參基因,使用Applied Biosystems StepOne熒光定量?jī)x[賽默飛世爾科技(中國(guó))有限公司]進(jìn)行實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real-time polymerase chain reaction, qRT-PCR),用2-ΔΔCt法分析目的基因的相對(duì)表達(dá)量。所用引物信息見(jiàn)附表1。
1.2.5 VIGS實(shí)驗(yàn)。利用primer 5.0軟件在GhCBL3-A01基因的第303個(gè)堿基至終止子區(qū)設(shè)計(jì)擴(kuò)增長(zhǎng)度為378 bp的特異引物。將此特異片段連接至VIGS載體中。分別將TRV::GhCBL3-A01載體和陽(yáng)性對(duì)照載體TRV::GhCLA1與TRV::RNA1載體轉(zhuǎn)化至農(nóng)桿菌GV3101,并于-80 ℃儲(chǔ)存。待棉花幼苗生長(zhǎng)至子葉完全展開(kāi)時(shí),參照邵武奎等[13]的方法分別將農(nóng)桿菌菌液注射至棉花幼苗子葉中,23 ℃黑暗處理24 h后正常培養(yǎng)。重復(fù)3次以上,每次重復(fù)至少注射120個(gè)植株。
1.2.6 棉花植株抗病性分析。VIGS處理大約14 d后,當(dāng)TRV::GhCLA1陽(yáng)性對(duì)照棉株出現(xiàn)白化表型時(shí),用qRT-PCR檢測(cè)TRV::00和TRV::GhCBL3-A01葉片中GhCBL3-A01的相對(duì)表達(dá)量。選取長(zhǎng)勢(shì)一致的大約90株棉花幼苗用灌根法接種V991孢子懸浮液。接種后16 d和20 d,調(diào)查植株的發(fā)病情況,并計(jì)算病株率和病情指數(shù)(disease index, DI)。病株率=發(fā)病株數(shù)/總株數(shù)×100%。病情指數(shù)=∑(各級(jí)病株數(shù)×相應(yīng)病級(jí)值)/(調(diào)查總株數(shù)×最高病級(jí)值)×100。相應(yīng)的病級(jí)分級(jí)標(biāo)準(zhǔn)如下:0級(jí)為植株無(wú)癥狀表現(xiàn);1級(jí)為1~2片真葉發(fā)病;2級(jí)為3~4片真葉發(fā)?。?級(jí)為4片以上真葉發(fā)病或脫落;4級(jí)為全株枯死[28]。
取子葉節(jié)下方1 cm處莖段置于馬鈴薯葡萄糖瓊脂(potato dextrose agar, PDA)培養(yǎng)基培養(yǎng)5 d后,觀察莖段上黃萎病菌的生長(zhǎng)情況并統(tǒng)計(jì)被感染的莖段數(shù)量。對(duì)照植株和沉默植株分別采集30個(gè)莖段。對(duì)采集的莖段進(jìn)行剖稈,觀察維管束褐變情況并拍照。
提取對(duì)照植株和沉默植株的莖段DNA,利用真菌特異性 ITS1-F引物與V. dahliae特異性引物 ST-VE1-R進(jìn)行qRT-PCR,檢測(cè)黃萎病菌V991 DNA的相對(duì)豐度,以GhUBQ7作為內(nèi)參(引物序列見(jiàn)附表1)。
1.2.7 ROS測(cè)定和相關(guān)基因的表達(dá)分析。接種V991后24 h,取TRV::00 和 TRV::GhCBL3-A01植株的第2片真葉,每個(gè)材料至少選擇3株。參考Li等[29]的方法分別用3,3- 鹽酸二氨基聯(lián)苯胺(3,3'-Diaminobenzidine tetrahydrochloride, DAB-HCl)和臺(tái)盼藍(lán)進(jìn)行染色。在顯微鏡下觀察葉片顏色的變化情況。
取接種V991后24 h的棉花葉片,通過(guò)qRT-PCR分析目的基因的相對(duì)表達(dá)量。NPR1(Gh_A08G2190)、PDF1.2(Gh_D01G2290)、 PR1 (Gh_A12G0274)和PR4 (Gh_D13G1816)這4個(gè)抗病相關(guān)基因和JA信號(hào)通路相關(guān)基因AOS1(Gh_D05G2484)、OPR3(Gh_D05G0339)、MYC2(Gh_A08G1412)和LOX2(Gh_A05G0552)的引物序列見(jiàn)附表1,以GhUBQ7為內(nèi)參基因,方法同1.2.4,重復(fù)3次。
1.3 數(shù)據(jù)處理與分析
用Microsoft Excel 2019軟件對(duì)數(shù)據(jù)進(jìn)行整理。用SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)分析,用鄧肯氏新復(fù)極差法進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2.1 GhCBL3-A01的生物信息學(xué)分析和表達(dá)模式分析
與未接菌的對(duì)照相比,GhCBL3-A01基因在接種黃萎病菌后2 h、6 h、12 h和24 h表達(dá)量顯著升高,推測(cè)GhCBL3-A01可能參與調(diào)控棉花黃萎病抗性(圖1A)。序列分析表明,GhCBL3-A01基因編碼區(qū)全長(zhǎng)681 bp,編碼含有226個(gè)氨基酸殘基的多肽。經(jīng)預(yù)測(cè),GhCBL3-A01蛋白質(zhì)分子質(zhì)量為25.9 ku,等電點(diǎn)為4.77。GhCBL3-A01及其在陸地棉中的3個(gè)同源基因均含有8個(gè)外顯子、7個(gè)內(nèi)含子(附圖1)。這4個(gè)同源基因編碼的蛋白均含有3個(gè)典型的EF-hand(EFh)結(jié)構(gòu)域(附圖2)。蛋白序列比對(duì)分析發(fā)現(xiàn)GhCBL3-A01與GhD01G0760編碼蛋白的序列一致性為99.71%,GhCBL3-A01與擬南芥AtCBL3序列相似性也較高(附圖3)。對(duì)蛋白序列進(jìn)行系統(tǒng)進(jìn)化分析表明,與GhCBL3-A01序列最接近的蛋白是GhD01G0760編碼蛋白、BnCBL3和AtCBL3,而GhCBL3-A01的其他2個(gè)同源基因(GhA04G0051和GhA13G1099)編碼的蛋白分別與AtCBL4、AtCBL8和AtCBL5的關(guān)系更為密切(圖1B)。
利用qRT-PCR分析GhCBL3-A01在MeJA和H2O2處理后棉花幼苗根系中的轉(zhuǎn)錄水平。結(jié)果表明,GhCBL3-A01的表達(dá)量受MeJA和H2O2的影響。MeJA處理后1 h和2 h,GhCBL3-A01的表達(dá)量顯著高于對(duì)照處理(圖1C)。H2O2處理后0.5 h,GhCBL3-A01的表達(dá)量顯著低于對(duì)照處理;H2O2處理后2 h,GhCBL3-A01的表達(dá)量顯著高于對(duì)照處理(圖1D)。以上結(jié)果表明GhCBL3-A01受V991、MeJA和H2O2誘導(dǎo)表達(dá),可能通過(guò)JA信號(hào)通路參與對(duì)棉花黃萎病的防御反應(yīng)。
2.2 GhCBL3-A01亞細(xì)胞定位分析
在煙草葉片中瞬時(shí)表達(dá)GhCBL3-A01,GhCBL3-A01-GFP融合蛋白的熒光分布在煙草葉片表皮細(xì)胞質(zhì)膜,對(duì)照處理的熒光分布在細(xì)胞質(zhì)膜(圖2),表明GhCBL3-A01蛋白定位于細(xì)胞質(zhì)膜上。
2.3 沉默GhCBL3-A01增強(qiáng)棉花對(duì)黃萎病的抗性
為進(jìn)一步探究GhCBL3-A01在棉花黃萎病抗性中的功能,采用VIGS技術(shù)降低GhCBL3-A01的表達(dá)。侵染后14 d,陽(yáng)性對(duì)照TRV::GhCLA1棉株新展開(kāi)的真葉出現(xiàn)白化表型,表明VIGS系統(tǒng)在本實(shí)驗(yàn)條件下是有效的(圖3A)。通過(guò)qRT-PCR檢測(cè)GhCBL3-A01在TRV::00和TRV::GhCBL3-A01植株葉片中的轉(zhuǎn)錄水平,發(fā)現(xiàn)TRV::GhCBL3-A01植株中GhCBL3-A01的表達(dá)量極顯著降低(圖3B)。
棉花三葉期接種黃萎病菌V991。接種病原菌后16 d,TRV::00植株葉片萎蔫和黃化的程度比TRV::GhCBL3-A01植株更嚴(yán)重(圖3C)。接種V991后16 d,TRV::00和TRV::GhCBL3-A01的病株率分別為50.55%和36.54%,病情指數(shù)分別為34.55和22.74,均存在顯著差異;接種V991后21 d,TRV::00和TRV::GhCBL3-A01的病株率分別為72.05%和47.45%,病情指數(shù)分別為67.79和39.77,差異均極顯著(圖 3D~E)。TRV::00植株莖稈維管束褐化程度比TRV::GhCBL3-A01植株更明顯(圖3F)。莖段培養(yǎng)發(fā)現(xiàn),TRV::GhCBL3-A01有病菌繁殖的莖段數(shù)明顯低于TRV::00植株(圖3G)。黃萎病菌豐度檢測(cè)顯示,在TRV::GhCBL3-A01植株中檢測(cè)到的黃萎病真菌DNA水平極顯著低于TRV::00植株(圖3H)。以上結(jié)果表明,沉默GhCBL3-A01增強(qiáng)了棉花對(duì)黃萎病的抗性,GhCBL3-A01是棉花黃萎病抗性的負(fù)調(diào)控因子。
2.4 GhCBL3-A01基因抗病機(jī)制分析
根據(jù)以上研究結(jié)果,GhCBL3-A01受H2O2誘導(dǎo)表達(dá),且該基因負(fù)調(diào)控棉花對(duì)黃萎病菌的抗性。由此推測(cè),沉默GhCBL3-A01可能影響ROS積累和細(xì)胞的氧化狀態(tài),進(jìn)而增強(qiáng)棉株的黃萎病抗性。為證實(shí)這一推測(cè),用DAB 進(jìn)行染色,檢測(cè)黃萎病菌侵染后TRV::00和TRV::GhCBL3-A01幼苗葉片的ROS積累情況,發(fā)現(xiàn)TRV::GhCBL3-A01的葉片中褐色斑點(diǎn)更多(圖4A)。臺(tái)盼藍(lán)染色發(fā)現(xiàn)相較TRV::GhCBL3-A01,TRV::00的葉片出現(xiàn)更多的藍(lán)色斑點(diǎn)聚集(圖4B)。表明GhCBL3-A01基因沉默棉株葉片中ROS積累增多,細(xì)胞死亡減少。這進(jìn)一步證實(shí)沉默GhCBL3-A01會(huì)影響黃萎病菌侵染后棉花葉片中ROS積累,進(jìn)而有助于提高棉花的抗病性。
與清水處理相比,接種V991后TRV::00及TRV::GhCBL3-A01植株中NPR1、PDF1.2、PR1和PR4這4個(gè)防御相關(guān)基因的表達(dá)量均增加。接種V991后,與對(duì)照TRV::00相比,NPR1、PDF1.2、PR1和PR4 這4個(gè)防御相關(guān)基因在TRV:: GhCBL3-A01棉株中的表達(dá)水平顯著升高。而清水處理下,TRV::00和TRV::GhCBL3-A01植株中PDF1.2、PR1和PR4的表達(dá)量無(wú)顯著差異,TRV::GhCBL3-A01植株中NPR1的表達(dá)量顯著高于TRV::00(圖 4C~F)。與清水處理相比,接種V991后TRV::00與TRV::GhCBL3-A01植株中JA信號(hào)通路相關(guān)基因AOS1、OPR3 和MYC2的表達(dá)量增加,而LOX2的表達(dá)量降低。在清水處理及接種V991后,TRV::GhCBL3-A01植株中AOS1、OPR3、MYC2和LOX2的表達(dá)量均顯著高于TRV::00植株(圖 4G~J)。上述結(jié)果表明在黃萎病菌處理下,沉默GhCBL3-A01導(dǎo)致防御相關(guān)基因和JA信號(hào)通路相關(guān)基因的表達(dá)上調(diào),從而增強(qiáng)了棉花植株的抗病性。
3 討論
Ca2+作為1種重要的次級(jí)信使,廣泛參與非生物和生物應(yīng)激反應(yīng)中的細(xì)胞信號(hào)傳導(dǎo)。Ca2+傳感器蛋白CBL參與不同的生物學(xué)過(guò)程[21]。本研究發(fā)現(xiàn)GhCBL3-A01參與調(diào)節(jié)棉花對(duì)黃萎病菌的抗性。黃萎病菌V991侵染后,GhCBL3-A01的表達(dá)水平先升高后降低,表明GhCBL3-A01是黃萎病菌的應(yīng)答基因。JA和H2O2處理均可誘導(dǎo)GhCBL3-A01的表達(dá)。已有研究表明JA在植物對(duì)病原菌侵染的先天性免疫應(yīng)答中起著重要作用[30],JA信號(hào)的改變可影響植株對(duì)黃萎病菌的抗性[31]。鈣依賴蛋白激酶GhCPK33可以磷酸化GhOPR3導(dǎo)致后者的穩(wěn)定性降低,從而抑制JA的生物合成,負(fù)調(diào)控黃萎病抗性[6]。BIN2與JAZ蛋白相互作用并在植物對(duì)黃萎病菌的防御反應(yīng)中起負(fù)調(diào)控作用[32]。外源施用JA可誘導(dǎo)擬南芥葉片中胞質(zhì)游離Ca2+濃度增加[33]。由于JA通常誘導(dǎo)產(chǎn)生系統(tǒng)獲得性抗性,推測(cè)GhCBL3-A01可能參與棉花對(duì)黃萎病的響應(yīng)并通過(guò) JA信號(hào)途徑發(fā)揮作用。植物免疫應(yīng)答涉及ROS信號(hào)通路,激活細(xì)胞外ROS的產(chǎn)生,引起激酶級(jí)聯(lián)反應(yīng)與局部細(xì)胞死亡,即超敏反應(yīng)[34]。CDPK可以感知細(xì)胞質(zhì)Ca2+信號(hào),CDPK5和激酶BIK1不僅正調(diào)控flg22引發(fā)的Ca2+內(nèi)流,而且直接磷酸化還原型煙酰胺腺嘌呤二核苷酸磷酸(reduced nicotinamide adenine dinucleotide phosphate, NADPH)氧化酶RBOHD以激活ROS的產(chǎn)生[35]。本研究中,與對(duì)照相比,GhCBL3-A01基因沉默棉花葉片在黃萎病菌侵染后ROS的積累明顯增加,細(xì)胞死亡減少。因此,GhCBL3-A01在棉花黃萎病抗性響應(yīng)中的功能可能與ROS的積累有關(guān)。
接種V991后,與TRV::GhCBL3-A01植株相比,TRV::00植株的萎蔫和黃化更為嚴(yán)重,維管束褐化明顯,且病株率和病情指數(shù)顯著升高,TRV::00植株中檢測(cè)到的黃萎病真菌DNA水平顯著高于TRV::GhCBL3-A01植株,說(shuō)明GhCBL3-A01負(fù)調(diào)控棉花黃萎病抗性。研究發(fā)現(xiàn),植物一旦感知到入侵的病原體,就會(huì)分泌蛋白質(zhì)進(jìn)入外質(zhì)體,植物免疫系統(tǒng)可識(shí)別保守的分子模式進(jìn)而引發(fā)一系列的免疫反應(yīng)[36]。病原相關(guān)蛋白PR1與煙草對(duì)卵菌病原菌的抗性有關(guān)[37]。幾丁質(zhì)酶PR4是1種內(nèi)源性植物防御酶,參與產(chǎn)生防御相關(guān)的信號(hào)分子[38]。本研究發(fā)現(xiàn),TRV::GhCBL3-A01棉花植株受到黃萎病菌侵染后,抗病相關(guān)基因PR1、PR4、NPR1和PDF1.2的表達(dá)水平明顯上升。MeJA處理后,GhCBL3-A01的表達(dá)量明顯上調(diào)。接種V991后,TRV::GhCBL3-A01植株中JA信號(hào)通路相關(guān)基因AOS1、OPR3和MYC2的表達(dá)量增加,而LOX2的表達(dá)量降低,但均顯著高于對(duì)照TRV::00植株,表明沉默GhCBL3-A01可能會(huì)影響JA信號(hào)通路相關(guān)基因的表達(dá)及JA信號(hào)通路,但GhCBL3-A01參與JA信號(hào)通路的具體機(jī)制仍有待進(jìn)一步研究。
4 結(jié)論
黃萎病菌、MeJA及H2O2處理均可誘導(dǎo)GhCBL3-A01表達(dá)。利用VIGS技術(shù)抑制GhCBL3-A01的表達(dá)可提高棉花對(duì)黃萎病的抗性,導(dǎo)致葉片ROS積累量增加,接種V991后防御相關(guān)基因和JA信號(hào)通路相關(guān)基因的表達(dá)水平顯著高于對(duì)照植株。說(shuō)明GhCBL3-A01通過(guò)調(diào)節(jié)ROS積累、防御相關(guān)基因和JA信號(hào)通路相關(guān)基因的表達(dá)負(fù)調(diào)控棉花黃萎病抗性。
附圖附表:
詳見(jiàn)本刊網(wǎng)站(http://journal.cricaas.com.cn/)本文網(wǎng)頁(yè)版。
附表1 本研究所用的引物序列
Table S1 Primer sequences used in this study
附圖1 GhCBL3-A01及其同源基因的結(jié)構(gòu)
Fig. S1 Structures of GhCBL3-A01 and its homologous genes
附圖2 GhCBL3-A01及其同源蛋白的保守結(jié)構(gòu)域
Fig. S1 Conserved domains of GhCBL3-A01 and its homologous proteins
附圖3 GhCBL3-A01同源蛋白的多序列比對(duì)
Fig. S3 Multiple sequence alignment of GhCBL3-A01 homologous proteins
參考文獻(xiàn):
[1] 林玲, 張昕, 鄧晟. 棉花黃萎病研究進(jìn)展[J/OL]. 棉花學(xué)報(bào), 2014, 26(3): 260-267[2023-11-10]. https://doi.org/10.11963/cs140310.Lin Ling, Zhang Xin, Deng Sheng. Research advances in cotton Verticillium wilt[J/OL]. Cotton Science, 2014, 26(3): 260-267[2023-11-10]. https://doi.org/10.11963/cs140310.
[2] Shaban M, Miao Y H, Ullah A, et al. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae[J/OL]. Plant Physiology and Biochemistry, 2018, 125: 193-204[2023-11-10]. https://doi.org/10.1016/j.plaphy.2018.02.011.
[3] Li T G, Wang B L, Yin C M, et al. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt[J/OL]. Molecular Plant Pathology, 2019, 20(6): 857-876[2023-11-10]. https://doi.org/10.1111/mpp.12797.
[4] Gao X Q, Xin C X, Lin W W, et al. Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases[J/OL]. PLoS Pathogens, 2013, 9(1): e1003127[2023-11-10]. https://doi.org/10.1371/journal.ppat.1003127.
[5] Yang C L, Liang S, Wang H Y, et al. Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliae[J/OL]. Molecular Plant, 2015, 8: 399-411[2023-11-10]. https://doi.org/10.1016/j.molp.2014.11.023.
[6] Hu Q, Zhu L F, Zhang X N, et al. GhCPK33 negatively regulates defense against Verticillium dahliae by phosphorylating GhOPR3[J/OL]. Plant Physiology, 2018, 178(2): 876-889[2023-11-10]. https://doi.org/10.1104/pp.18.00737.
[7] 賀浪, 張華崇, 司寧, 等. 陸地棉GhBZR1基因的克隆及功能研究[J/OL]. 棉花學(xué)報(bào), 2021, 33(6): 435-447[2023-11-10]. https://doi.org/10.11963/cs20200083.He Lang, Zhang Huachong, Si Ning, et al. Cloning and functional analysis of GhBZR1 in Gossypium hirsutum L.[J/OL]. Cotton Science, 2021, 33(6): 435-447[2023-11-10]. https://doi.org/10.11963/cs20200083.
[8] 周雪慧, 高二林, 王鈺靜, 等. GhROP6通過(guò)調(diào)控茉莉酸合成與木質(zhì)素代謝參與棉花抗黃萎病反應(yīng)[J/OL]. 棉花學(xué)報(bào), 2022, 34(2): 79-92[2023-11-10]. https://doi.org/10.11963/cs20210047.Zhou Xuehui, Gao Erlin, Wang Yujing, et al. GhROP6 involved in cotton resistance to Verticillium wilt through regulating jasmonic acid synthesis and lignin metabolism[J/OL]. Cotton Science, 2022, 34(2): 79-92[2023-11-10]. https://doi.org/10.11963/cs20210047.
[9] 李秀青, 王倩, 胡子曜, 等. GhMAPKKK2基因在棉花抗黃萎病中的功能分析[J/OL]. 棉花學(xué)報(bào), 2022, 34(1): 1-11[2023-11-10]. https://doi.org/10.11963/cs20210068.Li Xiuqing, Wang Qian, Hu Ziyao, et al. Functional analysis of GhMAPKKK2 gene in cotton resistance to Verticillium wilt[J/OL]. Cotton Science, 2022, 34(1): 1-11[2023-11-10]. https://doi.org/10.11963/cs20210068.
[10] 沈吉麗, 肖勝華, 惠慧, 等. GhMYB43負(fù)調(diào)控木質(zhì)素的生物合成和茉莉酸信號(hào)[J/OL]. 棉花學(xué)報(bào), 2020, 32(6): 522-537[2023-11-10]. https://doi.org/10.11963/1002-7807.sjlzlf.20200907.Shen Jili, Xiao Shenghua, Xi Hui, et al. GhMYB43 negatively regulates lignin biosynthesis and jasmonic acid signaling[J/OL]. Cotton Science, 2020, 33(6): 435-447[2023-11-10]. https://doi.org/10.11963/1002-7807.sjlzlf.20200907.
[11] Gao X Q, Wheeler T, Li Z H, et al. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt[J/OL]. The Plant Journal, 2011, 66: 293-305[2023-11-10]. https://doi.org/10.1111/j.1365-313X.2011.04491.x.
[12] Gao X Q, Li F J, Li M Y, et al. Cotton GhBAK1 mediates Verticillium wilt resistance and cell death[J/OL]. Journal of Integrative Plant Biology, 2013, 55(7): 586-596[2023-11-10]. https://doi.org/10.1111/jipb.12064.
[13] 邵武奎, 趙準(zhǔn), 胡文冉, 等. 陸地棉鈣依賴蛋白激酶GhCDPK28-A10參與抗黃萎病的功能分析[J/OL]. 棉花學(xué)報(bào), 2023, 35(1): 17-28[2023-11-10]. https://doi.org/10.11963/cs20220047.Shao Wukui, Zhao Zhun, Hu Wenran, et al. Functional analysis of cotton calcium-dependent protein kinase GhCDPK28-A10 involved in resistance to Verticillium wilt[J/OL]. Cotton Science, 2023, 35(1): 17-28[2023-11-10]. https://doi.org/10.11963/cs20220047.
[14] Wu Y J, Zhang L, Zhou J L, et al. Calcium-dependent protein kinase GhCDPK28 was identified and involved in Verticillium wilt resistance in cotton[J/OL]. Front Plant Sciences, 2021, 12: 772649[2023-11-10]. https://doi.org/10.3389/fpls.2021.772649.
[15] 趙付安, 房衛(wèi)平, 楊曉杰, 等. 陸地棉D(zhuǎn)irigent-like基因 (GhDIR) 的克隆與分析[J/OL]. 華北農(nóng)學(xué)報(bào), 2011, 26(5): 29-33[2023-11-10]. https://doi.org/10.7668/hbnxb.2011.05.007.Zhao Fuan, Fang Weiping, Yang Xiaojie, et al. Cloning and analysis of upland cotton (Gossypium hirsutum) dirigent-like gene (GhDIR) [J/OL]. Acta Agriculturae Boreali-Sinica, 2011, 26(5): 29-33[2023-11-10]. https://doi.org/10.7668/hbnxb.2011.05.007.
[16] Sun Y D, Zhong M M, Li Y B, et al. GhADF6-mediated actin reorganization is associated with defense against Verticillium dahliae infection in cotton[J/OL]. Molecular Plant Pathology, 2021, 22(12): 1656-1667[2023-11-10]. https://doi.org/10.1111/mpp.13137.
[17] Zhao Y P, Shen J L, Li W J, et al. Evolutionary and characteristic analysis of RING-DUF1117 E3 ubiquitin ligase genes in Gossypium discerning the role of GhRDUF4D in Verticillium dahliae resistance[J/OL]. Biomolecules, 2021, 11(8): 1145[2023-11-10]. https://doi.org/10.3390/biom11081145.
[18] Yang J, Wang X F, Xie M X, et al. Proteomic analyses on xylem sap provides insights into the defense response of Gossypium hirsutum against Verticillium dahliae[J/OL]. Journal of Proteomics, 2020, 213: 103599[2023-11-10]. https://doi.org/10.1016/j.jprot.2019.103599.
[19] Yang J, Zhang Y, Wang X F, et al. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation[J/OL]. BMC Plant Biology, 2018, 18: 339[2023-11-10]. https://doi.org/10.1186/s12870-018-1565-1.
[20] Bender K W, Snedden W A. Calmodulin-related proteins step out from the shadow of their namesake[J/OL]. Plant Physiology, 2013, 163: 486-495[2023-11-10]. https://doi.org/10.1104/pp.113.221069.
[21] Manik S M N, Shi S J, Mao J J, et al. The calcium sensor CBL-CIPK is involved in plants response to abiotic stresses[J/OL]. International Journal of Genomics, 2015, 2015: 493191[2023-11-10]. https://doi.org/10.1155/2015/493191.
[22] Cheong Y H, Kim K N, Pandey G K, et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis[J/OL]. The Plant Cell, 2003, 15: 1833-1845[2023-11-10]. https://doi.org/10.1105/tpc.012393.
[23] Pandey G K, Cheong Y H, Kim K N, et al. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis[J/OL]. The Plant Cell, 2004, 16: 1912-1924[2023-11-10]. https://doi.org/10.1105/tpc.021311.
[24] Gu Z M, Ma B J, Jiang Y, et al. Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses[J/OL]. Gene, 2008, 415: 1-12[2023-11-10]. https://doi.org/10.1016/j.gene.2008.02.011.
[25] Wang M Y, Gu D, Liu T S, et al. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance[J/OL]. Plant Molecular Biology, 2007, 65: 733-746[2023-11-10]. https://doi.org/10.1007/s11103-007-9238-8.
[26] Zhang T Z, Hu Y, Jang W K, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J/OL]. Nature Biotechnology, 2015, 33: 531-537[2023-11-10]. https://doi.org/10.1038/nbt.3207.
[27] Tamara P, Roman P, Viktor Z. Subcellular localization of Arabidopsis pathogenesis-related 1 (PR1) protein[J/OL]. International Journal of Molecular Sciences, 2017, 18: 825[2023-11-10]. https://doi.org/10.3390/ijms18040825.
[28] 中華人民共和國(guó)農(nóng)業(yè)部種子管理局. 棉花黃萎病抗性鑒定技術(shù)規(guī)程: NY/T 2952-2016[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2016.Seed Administration of the Ministry of Agriculture of the Peoples Republic of China. Technical specification for evaluating resistance to Verticillium wilt of cotton: NY/T 2952-2016[S]. Beijing: China Standards Press, 2016.
[29] Li Y B, Han L B, Wang H Y, et al. The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Verticillium dahliae infection in cotton[J/OL]. Plant Physiology, 2016, 170(4): 2392-2406[2023-11-10]. https://doi/10.1104/pp.15.01930.
[30] Zhu Y T, Hu X Q, Wang P, et al. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway[J/OL]. International Journal of Biological Macromolecules, 2022, 201: 580-591[2023-11-10]. https://doi.org/10.1016/j.ijbiomac.2022.01.120.
[31] Jiang Y, Yu D Q. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise botrytis cinerea resistance[J/OL]. Plant Physiology, 2016, 171: 2771-2782[2023-11-10]. https://doi.org/10.1104/pp.16.00747.
[32] Song Y, Zhai Y H, Li L X, et al. BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton[J/OL]. Plant Biotechnology Journal, 2021, 19: 2097-2112[2023-11-10]. https://doi.org/10.1111/pbi.13640.
[33] Sun Q P, Guo Y, Sun Y, et al. Influx of extracellular Ca2+involved in jasmonic-acid-induced elevation of [Ca2+]cyt and JR1 expression in Arabidopsis thaliana[J/OL]. Journal of Plant Research, 2006, 119: 343-350[2023-11-10]. https://doi.org/10.1007/s10265-006-0279-x.
[34] Locato V, De Gara L. Programmed cell death in plants: an overview[J/OL]. Methods Molecular Biology, 2018, 1743: 1-8[2023-11-10]. https://doi.org/10.1007/978-1-4939-7668-3_1.
[35] Dubiella U, Seybold H, Durian G, et al. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 8744-8749[2023-11-10]. https://doi.org/10.1073/pnas.1221294110.
[36] Doehlemann G, Hemetsberger C. Apoplastic immunity and its suppression by filamentous plant pathogens[J/OL]. New Phytologist, 2013, 198: 1001-1016[2023-11-10]. https://doi.org/10.1111/nph.12277.
[37] Hugot K, Rivière M P, Moreilhon C, et al. Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes[J/OL]. Plant Physiology, 2004, 134: 858-870[2023-11-10]. https://doi.org/10.1104/pp.103.034173.
[38] van Loon L C, Rep M, Pieterse C M. Significance of inducible defense related proteins in infected plants[J/OL]. Annual Review Phytopathology, 2006, 44: 135-162[2023-11-10]. https://doi.org/10.1146/annurev.phyto.44.070505.143425.
(責(zé)任編輯:王小璐? ? 責(zé)任校對(duì):秦凡)
收稿日期:2023-11-23? ? ? ? ? ?第一作者簡(jiǎn)介:高升旗(1984―),男,助理研究員,gaoshengqi@xaas.ac.cn。? ?*通信作者:hquansheng@126.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金——新疆聯(lián)合基金(U1703114);中央引導(dǎo)地方科技發(fā)展專項(xiàng)資金項(xiàng)目(ZYYD2022B07)