金龍飛 李睿 曹紅星 顏彥
摘 ?要:油棕(Elaeis guineensis Jacq.)原產(chǎn)非洲,是重要的熱帶木本油料作物,產(chǎn)油效率極高。目前油棕廣泛種植在東南亞、非洲、中南美洲和我國的海南、云南、廣東、廣西等省(區(qū)),油棕果實壓榨的棕櫚油是重要的食用油和工業(yè)原料。脂肪酸在植物質體中合成,然后轉運到內(nèi)質網(wǎng)上進行加工和修飾。為了研究油棕脂肪酸的轉運機制,以‘熱油4號’油棕為研究對象,采用生物信息學和熒光定量PCR挖掘控制油棕脂肪酸轉運的關鍵基因。脂肪酸外運蛋白1(fatty acid export 1, FAX1)是植物脂肪酸轉運蛋白,介導細胞內(nèi)脂肪酸從質體向外運輸,在脂質合成中起著重要的調(diào)控作用。本研究從油棕中克隆了3個EgFAX1基因(EgFAX1-1,EgFAX1-2,EgFAX1-3),對其氨基酸長度、分子量、等電點、蛋白不穩(wěn)定指數(shù)、脂肪族系數(shù)、總平均親水性、染色體定位、基因結構、保守功能域、進化關系和表達特征進行分析。結果表明:3個EgFAX1基因編碼的肽鏈氨基酸長度分別為189、231和232,分子量分別為20.43、24.85、24.92 kDa,等電點為分別9.82、9.82和9.93,蛋白不穩(wěn)定指數(shù)分別為48.01、49.71和50.09,脂肪族系數(shù)分別為81.06、84.07和83.28,總平均親水性分別為為0.071、0.121和0.106,分別含有2、5、7個外顯子,都含有FAX1的特征結構Tmemb_14蛋白結構域。將油棕與擬南芥、水稻、大豆、油菜、番茄、綠藻、紅藻、盤藻、團藻、長囊水云、細小微胞藻和小球藻的FAX1氨基酸序列做進化分析,發(fā)現(xiàn)EgFAX1與大豆和番茄的親緣關系較近。采用熒光定量PCR分析3個EgFAX1基因EgFAX1在油棕根、莖、葉、花和果中的表達特征,發(fā)現(xiàn)EgFAX1在花和果實中的表達量較高;同時分析3個EgFAX1基因油棕花后15周、17周、21周和23周果實中的表達特征,發(fā)現(xiàn)3個EgFAX1基因均在油棕果實發(fā)育過程中先升高,到達峰值后逐漸降低,其中EgFAX1-1在花后17周的果實達到峰值,EgFAX1-2和EgFAX1-3在花后21周的果實中達到峰值。本研究為進一步探索EgFAX1調(diào)控油棕脂肪酸運輸?shù)臋C制奠定基礎。
關鍵詞:脂肪酸;FAX1;油棕;生物信息學;基因表達
中圖分類號:Q949.748.5 ? ? ?文獻標識碼:A
Identification and Expression Analysis of Fatty Acid Export Gene FAX1 in Oil Palm (Elaeis guineensis)
JIN Longfei1, LI Rui1*, CAO Hongxing1, YAN Yan2
1. Coconut Research Institute of Chinese Academy of Tropical Agricultural Science / Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan 571339, China; 2. Institute of tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture & Rural Affairs, Haikou, Hainan 571101, China
Abstract: Oil palm (Elaeis Guineensis Jacq.), originated in Africa, is an important tropical woody oil crop with high oil production efficiency. It is widely planted in Southeast Asia, Africa, Central and South America and Hainan, Yunnan, Guangdong, Guangxi of China. Palm oil squeezed from oil palm fruits is an important edible oil and industrial raw material. Fatty acids are synthesized in plant plastids and then transported into the endoplasmic reticulum for processing and modification. In order to study the transport mechanism of fatty acids in oil palm, the key genes controlling transportion of fatty acids were extracted by bioinformatics and fluorescence quantitative PCR using ‘Reyou 4’ oil palm. Fatty acid export 1 (FAX1) is a plant fatty acid transporter, which mediates the fatty acids export in plastids, and plays an important role in the regulation of lipid biosynthesis. In this study, three EgFAX1 genes (EgFAX1-1, EgFAX1-2, EgFAX1-3) were cloned from oil palm, and the amino acid length, protein instability index, aliphatic coefficient, the total mean hydrophilicity, chromosomal localization, gene structure, conserved functional domain, evolutionary relationship and expression characteristics were analyzed. The amino acid length of the peptide of EgFAX1 was 189, 231 and 232. The molecular weight was 20.43, 24.85 and 24.92 kDa. The isoelectric point was 9.82, 9.82 and 9.93. The protein instability index was 48.01, 49.71 and 50.09. The aliphatic coefficient was 81.06, 84.07 and 83.28. The total mean hydrophilicity was 0.071, 0.121 and 0.106, respectively. Sequence and amino acid domain characterization analysis showed that EgFAX1 contained 2, 5 and 7 exons, and contained Tmemb_14 protein domain. Phylogenetic analysis of FAX1 in oil palm, Arabidopsis, rice, soybean, rapeseed, tomato, green algae, red algae, Gonium pectorale, Volvox carteri, Ectocarpus siliculosus, Micromonas pusilla and Chlorella variabilis showed that oil palm was closely related to soybean and tomato. The gene expression characteristics analysis in root, shoot, leaf, flower and fruit showed that EgFAX1 was highly expressed in flowers and fruits. The gene expression characteristics analysis in different fruit development stage including 15 weeks, 17 weeks, 21 weeks and 23 weeks after anthesis (WAA) showed that the expression level of three EgFAX1 increased during fruit development and then decreased gradually after reaching the peak value. The expression level of EgFAX1-1 peaked at 17 WAA and the expression level of EgFAX1-2 and EgFAX1-3 peaked at 21 WAA. The results would provide useful information for further investigation mechanism of EgFAX1 regulating fatty acid transportation in oil palm.
Keywords: fatty acid; FAX1; oil palm; bioinformatics; gene expression
DOI: 10.3969/j.issn.1000-2561.2022.01.004
脂肪酸是植物重要的貯能物質,也是生物膜的重要組分以及一些信號分子的前體,在植物生長發(fā)育過程中發(fā)揮著重要的功能;同時脂肪酸是植物表面蠟質和角質合成的前體,參與調(diào)控植物表皮滲透、水分散失和抵御病蟲害等生理過程[1]。植物細胞中的脂肪酸首先在質體中合成,運輸?shù)絻?nèi)質網(wǎng)中進行加工和修飾,再運輸?shù)劫|體中合成脂質[2]。脂肪酸的運輸在植物脂質合成過程中起著重要的作用[3-4],參與脂肪酸運輸?shù)牡鞍字饕兄舅嵬膺\蛋白(fatty acid export 1,F(xiàn)AX1)[5]、長鏈脂肪酸輔酶A合成酶(long chain long-chain acyl-CoA synthetase LACS)[6]、腺苷三磷酸結合盒轉運蛋白(ATP-binding cassette transporter,ABC transporters)[7]、半乳糖基二甘油酯(trigalactosy-ldiacylglycerol,TGD)蛋白[8]等。
在質體中合成的脂肪酸約60%將被運出質體用于磷脂和三酰甘油的合成[1, 9]。FAXl能夠調(diào)控脂肪酸在葉綠體和內(nèi)質網(wǎng)間的運輸。擬南芥的研究中發(fā)現(xiàn),AtFAX1編碼一種Tmemb-14家族轉運蛋白,定位在葉綠體的內(nèi)膜上,該基因突變后內(nèi)質網(wǎng)的脂質含量降低,葉綠體中脂質含量增加;超量表達該基因后內(nèi)質網(wǎng)和葉綠體脂質含量的變化則呈現(xiàn)相反的趨勢[5, 10]。在綠藻中也鑒定了AtFAX1的同源基因CrFAX1和CrFAX2,超量表達這2個基因顯著提高細胞中的脂質積累量[11];在紅藻中也研究發(fā)現(xiàn)超量表達CmFAX1顯著提高細胞內(nèi)三酰甘油的含量[12]。這些結果均表明,促進脂肪酸的跨膜運輸可能是提高植物細胞產(chǎn)油效率的一種有效策略。油棕是產(chǎn)油效率最高的熱帶木本油量作物,每公頃產(chǎn)油量高達4.17 t,其果實壓榨的棕櫚油廣泛應用于食品加工、化工和生物能源上[13-14]。果肉是油棕脂肪酸主要的貯藏器官,但其脂肪酸轉運的機制還不明晰,陳紅[15]在油棕果肉中克隆了EgLACS1和EgLACS9,發(fā)現(xiàn)這2個基因均具有吸收外源脂肪酸的功能,而關于油棕脂肪酸外運的研究尚未見報道。本研究從油棕中克隆了3個AtFAX1的同源基因EgFAX1-1、EgFAX1-2和EgFAX1-3,對其理化性質、基因結構、染色體定位、序列特征和進化關系進行分析,同時采用熒光定量PCR對其在油棕果實發(fā)育中的表達特征進行分析,為后續(xù)研究EgFAX1的生物學功能和油棕遺傳改良奠定基礎。
1 ?材料與方法
1.1 ?材料
實驗材料采自中國熱帶農(nóng)業(yè)科學院椰子研究所基地(19°33′ N,110°47′ E)。采集8年生的‘熱油4號’油棕(Elaeis guineensis)的根、莖尖、葉、花(開花期的雄花和雌花)和花后15周、17周、21周和23周的果肉。樣品采集后液氮速凍,儲存在–80 ℃冰箱中以備RNA提取。
主要試劑:植物總RNA提取試劑盒(北京天根)、HiScript II 1st Strand cDNA Synthesis試劑盒(北京全式金)、Taq PCR預混液(上海生工)、PMD18-T載體(大連寶生物)、DH5α感受態(tài)細胞(北京全式金)、SYBR? Select Master Mix(賽默飛世爾科技)。主要儀器設備:移液器(Eppendorf,德國)、NanoDrop分光光度計(Thermo,美國)、高速冷凍離心機(Thermo,美國)、Labcycler PCR儀(SensoQuest,德國)、水平電泳槽(DYCP-32B,北京六一儀器廠)、電泳儀(DYY-6C,北京六一儀器廠),QuantStudio 6 Flex熒光定量PCR儀(ABI,美國)。
1.2 ?方法
1.2.1 ?基因挖掘及生物信息學分析 ?從擬南芥基因組數(shù)據(jù)庫(https://www.arabidopsis.org/)中下載擬南芥AtFAX1(At3g57280)的氨基酸序列。在油棕基因組數(shù)據(jù)庫中采用BLASTP進行比對分析獲得與AtFAX1高度同源的候選基因,利用Batch Web CD-search Tool進行保守結構域分析[16]。候選基因的全長及熒光定量PCR的引物設計均采用NCBI的Primer-Blast在線工具(https://www. ncbi.nlm.nih.gov/tools/primer-blast/)進行,以油棕果肉cDNA為模板,利用全長克隆引物進行PCR擴增,反應體系參照Taq PCR預混液的操作說明進行。PCR產(chǎn)物純化后,連接PMD18-T載體,熱激法轉化DH5α感受態(tài)細胞,進行測序。油棕FAX1基因的蛋白質分子量、等電點、蛋白不穩(wěn)定指數(shù)、脂肪族指數(shù)和總平均親水性等理化性質采用在線工具ExPASy(http://www.expasy.org)分析。染色體定位和基因結構均采用Tbtool[17]進行分析。采用ClustalW軟件[18]對油棕、擬南芥、綠藻和紅藻的AtFAX1蛋白質序列進行多重比對,采用MEGA 6.0軟件的Neighbor-joining法構建系統(tǒng)發(fā)生樹[19],分析進化關系,校驗值bootstrap設置為1000。
1.2.2 ?RNA提取及基因表達分析 ?油棕不同組織樣品總RNA采用植物總RNA提取試劑盒進行提取,cDNA采用HiScript II 1st Strand cDNA Synthesis試劑盒進行合成,實時熒光定量PCR采用SYBR? Select Master Mix進行分析,以β-actin作為內(nèi)參基因,反應體系及操作步驟參照試劑盒的操作說明進行,引物見表1,采用2-ΔΔCT法計算目標基因的相對表達量。
1.3 ?數(shù)據(jù)處理
采用SPSS 13.0軟件進行數(shù)據(jù)分析,用Ducan’s檢測法進行基因表達的差異顯著性分析。
2 ?結果與分析
2.1 ?EgFAX1的克隆及基本信息分析
以AtFAX1的氨基酸序列在油棕基因組進行BLASTP比對獲得3條高度同源的序列,對獲得的候選氨基酸序列進行保守域分析,發(fā)現(xiàn)都含Tmemb_14保守結構(Pfam|PF03647)。以油棕果實cDNA為模板,進行油棕FAX1全長克隆,獲得3條單一條帶(圖1),長度在750 bp左右,分別命名為EgFAX1-1、EgFAX1-2和EgFAX1-3。測序結果表明EgFAX1-1全長為656 bp,其中開放閱讀框長度為570 bp,編碼189個氨基酸;EgFAX1-2全長為823 bp,其中開放閱讀框長度為696 bp,編碼231個氨基酸;EgFAX1-3全長為715 bp,其中開放閱讀框長度為699 bp,編碼232個氨基酸(表2)。染色體定位發(fā)現(xiàn)EgFAX1-1和EgFAX1-2未能定位在染色體上,EgFAX1-3定位在Chr13上。基因結構分析發(fā)現(xiàn)EgFAX1-1有2個外顯子,EgFAX1-2有5個外顯子,EgFAX1-3有7個外顯子。蛋白不穩(wěn)定指數(shù)分別為48.01、49.71和50.09,均為不穩(wěn)定蛋白;脂肪族系數(shù)分別為81.06、84.07和83.28;總平均親水性為0.071、0.121和0.106,均為正值,呈疏水性。
2.2 ?EgFAX1的序列比對及進化分析
將擬南芥、綠藻、紅藻和油棕的FAX1氨基酸序列進行比對分析發(fā)現(xiàn),4個物種完全相同的
氨基酸序列占26.7%,都含有4個疏水α-螺旋組成的Tmemb_14蛋白結構域(圖2),這是FAX1的典型結構域。將油棕FAX1序列與擬南芥、水稻、大豆、油菜、番茄、綠藻、紅藻、盤藻、團藻、長囊水云、細小微胞藻和小球藻的FAX序列進行比對,并采用MEGA 6.0軟件進行進化關系分析。結果發(fā)現(xiàn),物種內(nèi)3個EgFAX1聚在一起,在物種間與大豆的GmFAX1和GmFAX2、番茄的SlFAX1和SlFAX2聚在一個枝上,同時與功能明確的AtFAX1、CmAFX1和CrFAX1聚在一起(圖3)。
2.3 ?EgFAX1的表達特征分析
采用實時熒光定量PCR對3個EgFAX1基因在油棕根、莖、葉、花、花后15、17、21、23周的果中的表達特征進行分析。EgFAX1-1在果實和花中的表達量顯著高于根、莖和葉;在果實發(fā)育過程中EgFAX1-1的表達量隨著果實的成熟逐漸升高,在花后17周達到最大值,然后逐漸降低。EgFAX1-2在花中的表達量最高,在果實發(fā)育過程中EgFAX1-2的表達量隨著果實的成熟逐漸升高,在花后21周達到最大值,然后逐漸降低。EgFAX1- 2在果實和花中的表達量顯著高于根、莖和葉;在果實發(fā)育過程中EgFAX1-3的表達量隨著果實的成熟逐漸升高,在花后21周達到最大值,然后逐漸降低(圖4)。
3 ?討論
植物脂肪酸的合成主要在質體中進行,以糖酵解產(chǎn)生的丙酮酸為底物進行從頭合成,然后運輸?shù)絻?nèi)質網(wǎng)進行折疊和加工[1]。及時將合成的脂肪酸轉運出質體是保證脂肪酸高效合成的前提,參與植物脂肪酸轉運的蛋白主要有FAX1、ABC轉運蛋白、TGD、LACS[3]。定位在葉綠體內(nèi)膜上的FAX1和定位在葉綠體外膜上LACS能夠調(diào)控脂質在葉綠體和內(nèi)質網(wǎng)間的運輸,將合成的脂肪酸外運出葉綠體[5-6];定位在內(nèi)質網(wǎng)膜上的ABC轉運蛋白介導脂肪酸轉運進入內(nèi)質網(wǎng)[6],定位在質體膜上的TGD則介導脂肪酸從細胞質轉運進入葉綠體[7]。在擬南芥基因組中FAX家族有7個成員,其中AtFAX1的功能已經(jīng)明確,其他成員的功能還不明晰。AtFAX2和AtFAX3在fax1突變體中顯著上調(diào)表達,可能與AtFAX1具有相似的功能[5]。FAX1在脂肪酸合成的前期調(diào)控質體中的脂肪酸向外運輸,對植物脂質積累起著關鍵性的作用。在擬南芥的研究中發(fā)現(xiàn)AtFAX1突變后,內(nèi)質網(wǎng)合成的脂質含量顯著降低,進而導致植物體內(nèi)脂肪酸代謝紊亂、生物量減少、育性降低[5]。本研究從油棕中克隆了3個編碼FAX1的基因,分別命名為EgFAX1-1、EgFAX1-2和EgFAX1-3(圖1)。序列分析發(fā)現(xiàn)3個EgFAX1基因都含有典型的4個疏水α-螺旋組成的Tmemb_14蛋白結構域(圖2),總平均親水性均為正值(表2),呈疏水性,表明克隆的基因均為編碼FAX1外運蛋白的基因。進化分析發(fā)現(xiàn)3個EgFAX1與擬南芥、綠藻和紅藻的FAX1聚在一起(圖3),表明其可能具有相似的功能。AtFAX1和CmFAX1在酵母實驗中證明具有脂肪酸轉運的功能[5, 12],進而推測EgFAX1可能也具有脂肪酸轉運的功能。
基因表達分析發(fā)現(xiàn)3個EgFAX1在根、莖、葉、花、果中都有表達,但在花和果實中的表達量顯著高于根、莖和葉(圖4),表明EgFAX1在油棕的花和果實發(fā)育中起重要調(diào)控作用。在擬南芥的研究中發(fā)現(xiàn)AtFAX1參與花粉的細胞壁形態(tài)建成,該基因突變后植物缺少用于合成花粉外壁和花粉外被的脂質,花粉細胞壁不完整,育性降低[5, 20-21]。3個EgFAX1在花中高表達,表明FAX1可能通過控制脂肪酸的轉運調(diào)控油棕的花發(fā)育。油棕果肉是重要的貯油器官,成熟油棕果肉脂質含量高達50%;油棕果肉脂質含量與成熟度密切相關,果肉脂質含量從花后17周開始迅速積累,在花后23周達到峰值[22]。在本研究中EgFAX1-1在花后17周的果肉中表達量最高,EgFAX1-2和EgFAX1-3在花后21周的果肉中表達量最高(圖4),F(xiàn)AX1的表達量的峰值略早于脂質積累量的峰值,這可能是因為轉運出質體的脂肪酸還要在內(nèi)質網(wǎng)中進行折疊和加工,最后以油體的形式貯藏在細胞質中[23]。FAX1的表達量與植物的產(chǎn)油量密切相關,在擬南芥、綠藻和紅藻中的研究發(fā)現(xiàn)超量表達FAX1能夠顯著提高產(chǎn)油量[10-12]。在本研究中克隆了3個編碼油棕FAX1外運蛋白的基因,而且都在果實發(fā)育中高表達,該基因在果實中的高表達可能是油棕產(chǎn)油效率高的主要原因。綜上,本研究從油棕中克隆了3個編碼脂肪酸外運蛋白基因,表達分析發(fā)現(xiàn)EgFAX1在花和成熟過程的果實中高表達,表明其在油棕花發(fā)和果實發(fā)育過程中的脂肪酸積累中起重要調(diào)控作用。EgFAX1的脂肪酸外運功能和調(diào)控脂肪酸積累的分子機制還有待進一步的研究。
參考文獻
[1] LI-BEISSON Y, SHORROSH B, BEISSON F, ANDER-SSON M X, ARONDEL V, BATES P D, BAUD S, BIRD D, DEBONO A, DURRETT T P, FRANKE R B, GRAHAM I A, KATAYAMA K, KELLY A A, LARSON T, MARKHAM J E, MIQUEL M, MOLINA I, NISHIDA I, ROWLAND O, SAMUELS L, SCHMID K M, WADA H, WELTI R, XU C C, ZALLOT R, OHLROGGE J. Acyl-lipid metabolism[J]. The Arabidopsis Book, 2010, 8: e133.
[2] OHLROGGE J, BROWSE J. Lipid biosynthesis[J]. The Plant Cell, 1995, 7(7): 957-970.
[3] LI N N, XU C C, LI-BEISSON Y, PHILIPPAR K. Fatty acid and lipid transport in plant cells[J]. Trends in Plant Science, 2016, 21(2): 145-158.
[4] 韓二琴, 李健春, 李英雙, 韓 ?麗, 王曉珠, 孫麗萍, 孫萬梅, 馬義峰, 曾 ?柳, 鄒錫玲, 王邦俊. 轉運蛋白調(diào)控植物脂質運輸研究進展[J]. 中國油料作物學報, 2017, 39: 260-268.
HAN E Q, LI J C, LI Y S, HAN L, WANG X Z, SUN L P, SUN W M, MA Y F, ZENG L, ZOU X L, WANG B J. Research advance in the regulation of plant lipid trafficking by transporters[J]. Chinese Journal of Oil Crop Sciences, 2017, 39: 260-268. (in Chinese)
[5] LI N, GüGEL I L, GIAVALISCO P, ZEISLER V, SCHREIBER L, SOLL J, PHILIPPAR K. FAX1, a novel membrane protein mediating plastid fatty acid export[J]. PLoS Biology, 2015, 13(2): e1002053.
[6] JESSEN D, ROTH C, WIERMER M, FULDA M. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis[J]. Plant Physiology, 2015, 167(2): 351-366.
[7] KIM S, YAMAOKA Y, ONO H, KIM H, SHIM D, MAESHIMA M, MARTINOIA E, CAHOON E B, NISHIDA I, LEE Y. AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum[J]. Proceedings of the National Academy of Sciences, 2013, 110(2): 773-778.
[8] FAN J L, ZHAI Z Y, YAN C S, XU C C. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids[J]. The Plant Cell, 2015, 27(10): 2941-2955.
[9] BOUDIèRE L, MICHAUD M, PETROUTSOS D, RéBEILLé F, FALCONET D, BASTIEN O, ROY S, FINAZZI G, ROLLAND N, JOUHET J, BLOCK M A, MARéCHAL E. Glycerolipids in photosynthesis: Composition, synthesis and trafficking[J]. Biochimica et Biophysica Acta, 2014, 1837(4): 470-480.
[10] TIAN Y S, LV X Y, XIE G L, ZHANG J, XU Y, CHEN F. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2018, 500(2): 370-375.
[11] LI N N, ZHANG Y, MENG H J, LI S T, WANG S F, XIAO Z C, CHANG P, ZHANG X H, LI Q, GUO L, IGARASHI Y, LUO F. Characterization of Fatty Acid Exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii[J]. Biotechnol Biofuels, 2019, 12: 14.
[12] TAKEMURA T, IMAMURA S, TANAKA K. Identification of a chloroplast fatty acid exporter protein, CmFAX1, and riacylglycerol accumulation by its overexpression in the unicellular red alga Cyanidioschyzon merolae[J]. Algal Research, 2019, 38: 101396.
[13] MAHLIA T M I, ISMAIL N, HOSSAIN N, SILITONGA A S, SHAMSUDDIN A H. Palm oil and its wastes as bioenergy sources: a comprehensive review[J]. Environmental Science and Pollution Research International, 2019, 26(15): 14849-14866.
[14] MBA O I, DUMONT M, NGADI M. Palm oil: Processing, characterization and utilization in the food industry - A review[J]. Food Bioscience, 2015, 10: 26-41.
[15] 陳 ?紅. 油棕長鏈脂肪?;鵆oA合成酶(LACS)基因克隆及功能分析[D]. ??冢?海南大學, 2018.
CHEN H. Cloning and functional characterization of long-chain acyl-CoA synthetase 1 and long-chain acyl-CoA synthetase 9 from the mesocarp of African oil pam (Elaeis guineensis Jacq.) [D]. Haikou: Hainan University. (in Chinese)
[16] LU S L, WANG J Y, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, MARCHLER G H, SONG J S, THANKI N, YAMASHITA R A, YANG M Z, ZHANG D C, ZHENG C J, LANCZYCKI C J, MARCHLER-BAUER A. CDD/ SPAR?CLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(1): 265-268.
[17] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
[18] EDGAR R C, BATZOGLOU S. Multiple sequence alignment[J]. Current Opinion in Structural Biology, 2006, 16(3): 368-373.
[19] KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
[20] 劉艷艷, 陳雨沁, 石 ?壘, 石建新. 擬南芥脂肪酸外運蛋白FAX1影響雄性生殖發(fā)育的機制[J]. 植物生理學報, 2018, 54: 145-156.
LIU Y Y, CHEN Y Q, SHI L, SHI J X. Investigations into the mechanisms underlying the effects of Arabidopsis thaliana fatty acid export 1 (FAX1) in male reproductive development[J]. Plant Physiology Communications, 2018, 54: 145-156. (in Chinese)
[21] ZHU L, HE S Y, LIU Y Y, SHI J X, XU J. Arabidopsis FAX1 mediated fatty acid export is required for the transcriptional regulation of anther development and pollen wall formation[J]. Plant Molecular Biology, 2020, 104(1/2): 187- 201.
[22] TRANBARGER T J, DUSSERT S, JO?T T, ARGOUT X, SUMMO M, CHAMPION A, CROS D, OMORE A, NOUY B, MORCILLO F. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism[J]. Plant Physiology, 2011, 156(2): 564-584.
[23] MORCILLO F, CROS D, BILLOTTE N, NGANDO- EBONGUE G F, DOMONHéDO H, PIZOT M, CUéLLAR T, ESPéOUT S, DHOUIB R, BOURGIS F. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration[J]. Nature Communications, 2013, 4: 2160.