• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoluminescence of green nanophosphors Sr2MgSi2O7 doped with Tb3+under 374-nm excitation?

    2021-12-22 06:42:12BoShiMu牟博石YiZhang張熠QingFengBian邊慶豐ChengRenLi李成仁ZhiChaoLi李志超YunTingChu褚云婷FengZhao趙峰andJingChangSun孫景昌
    Chinese Physics B 2021年12期
    關(guān)鍵詞:慶豐

    Bo-Shi Mu(牟博石) Yi Zhang(張熠) Qing-Feng Bian(邊慶豐) Cheng-Ren Li(李成仁) Zhi-Chao Li(李志超)Yun-Ting Chu(褚云婷) Feng Zhao(趙峰) and Jing-Chang Sun(孫景昌)

    1School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,China

    2School of Science,Qiqihar University,Qiqihar 161006,China

    Keywords: Sr2MgSi2O7:Tb3+ nanophosphor, green emission, 374-nm excitation, electric dipole–electric dipole interaction

    1. Introduction

    The electrons occupied in outer shell of trivalent terbium ion is 4f85s25p6electrons, and thus the spectrum produced by f–f transition of Tb3+ion is a sort of atom-like spectrum due to the shielding effect of double closed shells 5s25p6. In addition,Tb3+ion also has abundant energy levels and a broad emission range from ultraviolet to infrared because of the large orbital angular momentuml=3. Therefore, trivalent terbium ion is an excellent down-conversion active ion and attracts more and more attention.[1–6]For example, dos Santoset al.prepared Tb3+-doped low silica calcium aluminosilicate glasses and analyzed their luminescence properties;[7]Gaoet al.synthesized Zn2GeO4:Tb3+nanophosphors and studied their photoluminescence (PL)characteristics under a deep ultraviolet (DUV) excitation at 265 nm.[8]In particular,they also discussed the energy transfer mechanism from Zn2GeO4host to Tb3+ion. Although some existing matrix materials, for instance, KSr(Cd,Y)(PO4)2,[9]Ca3Al2Si6O18,[10,11]BiOCl,[12]Y2O3,[13–16]MgAl-NO3,[17]β-PbF2glass-ceramics,[18]Ba2SiO4,[19,20]etc, are all excellent hosts for Tb3+ion, their optimal excitation wavelengths are in the deep ultraviolet (200 nm–280 nm) region. As is well known,the semiconductor chips in DUV region are very expensive,which is undoubtedly unconducive to wider applications of nanophosphor-doped Tb3+ion in the field of lightemitting diode (LED) illumination. So it is important to explore some new host materials used to dope Tb3+ion in order to extend the excitation wavelength toward a long wavelength. The Sr2MgSi2O7is of a typical pyrosilicate crystal structure belonging to the tetragonal system, especially it has stable chemical and physical properties and lower phonon energy. Therefore,Sr2MgSi2O7has attracted more and more interest and attention in recent years.[21–24]For example,Tshabalalaet al.synthesized Sr2MgSi2O7:Tb3+, Eu3+co-doped phosphor and realized simultaneously the blue and green emissions from Tb3+ions and the red emission from Eu3+ions,eventually resulting in the white emission;[25]Sahu prepared Sr2MgSi2O7:Dy3+and Sr2MgSi2O7:Dy3+,R(R=Li,Na and K)and observed near white light emission, moreover, the PL intensity was obviously enhanced through incorporating alkali metal as charge compensator ions.[26]Wanget al.synthesized Sr2MgSi2O7:Ce3+, Tb3+and proved that the phosphor is promising candidate for WLED.[27]Most of previous researches choosing Sr2MgSi2O7as hosts, however, focused mainly on the long afterglow luminescence materials.[28–30]Few researches were involved with the investigating PL characteristics of Sr2MgSi2O7:Tb3+nanophosphor, particularly under a longer wavelength excitation.

    In this work, we prepare a series of Sr2MgSi2O7:Tb3+nanophosphors through using the high-temperature solid-state reaction. The crystal structures and morphologies of representative samples are analyzed by x-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that the crystal structure is not significantly affected by Tb3+ions.However, the average size of nanoparticles becomes larger with the increase of Tb3+concentration. The intense green emission at 545 nm is observed under a near ultraviolet(NUV)excitation at 374 nm, indicating that the price of semiconductor chips used for pumping can be significantly lowered once the excitation wavelength is selected in NUV region instead in DUV region. The PL characteristics of Sr2MgSi2O7nanophosphors doped under different Tb3+concentrations are investigated and the optimal concentration is 1.6 mol%. The mechanism of concentration quenching is analyzed and driven mainly by the electric dipole–electric dipole interaction. It is predictable that Sr2MgSi2O7:Tb3+nanophosphor can play a more important role in fields of special lighting, WLED, and so on.

    2. Experimental details

    A series of Sr2MgSi2O7:Tb3+nanophosphors were prepared by high-temperature solid-state reaction. The raw materials include MgO, SrCO3, SiO2, Tb2O3and they are all analytical reagents (AR). All raw materials were weighed,mixed, fully ground, and placed into a corundum crucible.The heating rate of the high-temperature furnace was set to be 20?C/min and the reaction of mixture raw materials was kept for 180 min at 1300?C in air environment. The stoichiometric ratio was chose to be(1?0.05?x)Sr2MgSi2O7:xTb3+(x=0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,and 2.2 mol%)and the chemical reaction equation in the preparation process is

    Note that 5-mol% boric acid with a function of fusion agent was additionally mixed into the raw materials of every sample to make the reaction more thorough.

    Figure 1 illustrates the x-ray diffraction patterns of Sr2MgSi2O7:xTb3+nanophosphors measured by XRD-6000(Shimadzu Corporation, Japan). The radiation source is CuKα1 and its wavelength is 0.154178 nm. The scan speed and scan range were set to be 2?/min and 10?–80?,respectively. It can be found from Fig.1 that the main diffraction peaks of synthesized Sr2MgSi2O7matrix powder are basically consistent with those in the standard card(PFD#75-1736).There were no new diffraction peaks appearing when Tb3+ions were doped into the matrix. However, some diffraction peaks gradually weakened or even disappeared (e.g., peaks at 31.34?, 39.46?,and 45.39?),whereas others(at 25.0?,30.4?,35.3?,and 44.1?)become stronger with the increase of Tb3+concentration,implying that the incorporation of terbium ions improves the crystal quality of Sr2MgSi2O7:Tb3+nanophosphors.

    The morphologies of Sr2MgSi2O7:Tb3+nanophosphors were characterized by SU8000 SEM (Hitachi, Japan), and the results are shown in Fig. 2. Figure 2(a) refers to the Sr2MgSi2O7matrix and figures 2(b)–2(d)show the nanophosphors doped with 0.6-, 1.0-, and 1.6-mol% terbium ions, respectively. It can be seen that the morphologies of nanoparticles are all spherical and the distributions of the particle sizes are shown in the insets of Fig.2. It can be seen that there exist the gaps in Figs. 2(c) and 2(d) because the few particles are chosen in order to make the morphology of nanophosphor clearer and more visual. The average sizes in Figs.2(a)–2(d)are different and they are 28,46,68,and 84 nm in turn,implying that the particle size of the nanophosphor gets larger with the Tb3+doping concentration increasing. And the above result is consistent with XRD diffraction patterns according to the following Debye–Scherer formula[31]

    whereDhklrepresents the grain diameter,kis the Scherer constant (about 0.89),λ,β, andθdenote the x-ray wavelength,the full width at half maximum (FWHM) of the diffraction peak, and the diffraction angle, respectively. It can be seen from Fig.1 that the higher the doping concentration, the narrower the FWHM of the diffraction peak is.In other words,theβvalue becomes smaller with the Tb3+concentration increasing and therefore the grain diameterDhklof Sr2MgSi2O7:Tb3+nanophosphor turns larger as indicated from Eq.(2).

    Fig.1. XRD patterns of Sr2MgSi2O7:Tb3+.

    Fig.2. SEM images of Sr2MgSi2O7:Tb3+.

    3. Results and discussion

    The excitation spectrum (green line) and emission spectra(fill area under curve with violet)of Sr2MgSi2O7:1.6Tb3+nanophosphor are measured using F4600 Fluorescence Spectrmeter(Hitachi,Japan),and the results are shown in Fig.3.

    Fig.3. Excitation and emission spectra of Sr2MgSi2O7:1.6Tb3+ nanophosphor.

    It can be found from Fig. 3 that there exist four intense excitation peaks at 245, 352, 374, and 483 nm, respectively,when the monitored wavelength is chosen to be 545 nm. What needs explaining is that the Break from 263 nm to 300 nm at the transverse axis is to avoid the influence of the harmonic wave generated from the monitored wavelength. Although the optimal excitation wavelength for obtaining the strongest green emission is 245 nm, the wavelength is in the deep ultraviolet region. It is known that the semiconductor chip of LED in DUV region is very expensive, and hence the price of LED product applying trivalent terbium as the active ion will be very high if 245 nm is selected as the excitation wavelength. Fortunately,for our Sr2MgSi2O7:Tb3+nanophosphor,the second-best excitation wavelength is 374 nm and, compared with DUV 245 nm,it extends for about 130 nm toward a long wavelength. Furthermore,the peak intensity at 374 nm is about 82%of that at 245 nm. Therefore,we can predict that the strong green emission from Sr2MgSi2O7:Tb3+nanophosphor can also be gained under 374-nm excitation. Especially,the cost of semiconductor chips of LED used as excitation sources will be lowered significantly.

    We can also know from the emission spectra in Fig. 3 that there exist six PL peaks at 415, 437, 490, 545, 585, and 624 nm. All the center wavelengths of PL peaks are the same even under different excitations, but the intensities excited by 245 nm are more intense than those pumped by 374 nm,which coincides with the excitation spectrum in Fig. 3. The sketch map of levels and transitions of Tb3+ion under 245-nm and 373-nm excitations, respectively, is shown in Fig. 4,and the peaks correspond respectively to transitions of Tb3+ions5D3→7F5,5D3→7F4,5D4→7F5,5D4→7F4,5D4→7F3,and5D4→7F2. Thereinto,the green emission at 545 nm is the strongest,followed by the 490-nm blue emission. We need to emphasize here that the reason for the spectra at 490-nm and 585-nm bands to be split lies in the influence of the crystal field on Tb3+ions, leading the energy levels of Tb3+ions to be split.

    Fig. 4. Sketch map of levels and transitions of Tb3+ ion under 245-nm or 374-nm excitations nanophosphors.

    Fig.5. Changes of PL intensities with varied Tb3+doping concentration.

    Photos in Fig.3 demonstrate that the PL intensity of the Sr2MgSi2O7:1.6Tb3+nanophosphor pumped by 245 nm is a little stronger than that of the same sample pumped by 374 nm.Such a situation coincides with the measurement result of the excitation spectrum,i.e.,the excitation peak in DUV region is higher than that in NUV region. It should be noted that there are white-light areas in the photos. The main reason is that the emissions in those areas are too intense, resulting in the overexposure and saturation of the camera(Canon EOS 60D,Japan). In fact, the intense green emissions can still be observed by naked eyes from the so-called white-light areas in nanophosphor samples. Figure 5 shows that the PL intensities of all emission peaks vary with Tb3+doping concentration and the optimal concentration is 1.6 mol%. It can also be seen from Fig. 5 and the inset of Fig. 6 that there exist clear fluctuations. The main reasons lie in some errors appear inevitably in the preparation and measurement process although we try our best to ensure the uniformity in the experiments. on the other hand,the optimal Tb3+concentrations in the various hosts may take different forms, that is, single peak or double peaks.[32,33]The two factors result in the fluctuations of curves as shown in Figs.5 and 6.

    Fig.6. Decay curves of different emissions of Sr2MgSi2O7:Tb3+ nanophosphor.

    Six decay curves corresponding to different spontaneous radiations of Sr2MgSi2O7:1.6Tb3+nanophosphor are shown in Fig. 6. It can be known that the decay rates of 415-nm and 437-nm emissions are obviously faster than those of 490, 545, 585, and 624 nm, indicating that the lifetime of5D3energy level is shorter than that of5D4energy level(see Fig. 4). After further fitting the decay curves of six emission peaks, it is found that they belong to biexponential decay functions,that is,I=I0+A1exp(?t/τ1)+A2exp(?t/τ2),

    whereτ1= [4.55,4.44,5.46,5.78,5.69,5.89] ms andτ2=[5.35,5.62,6.54,6.43,6.37,6.02] ms corresponding respectively to 415-, 437-, 490-, 545-, 585-, and 624-nm emission peaks. The inset in Fig.6 shows changes of the lifetime corresponding to the 545-nm green emission of Sr2MgSi2O7:xTb3+nanophosphor with Tb3+doping concentration and its range is in [6.24, 6.63] ms. For the Sr2MgSi2O7:1.6Tb3+nanophosphor with the optimal doping concentration, however, the value is not the longest but the second-shortest,which is worth investigating and exploring in depth in the future study.

    According to Blasse theory,[34]the critical distanceRcfor energy transfer can be expressed as the following formula:

    wherexcdenotes the critical concentration,Vis the volume of unit cell, andZrefers to the number of chemical units in the unit cell. For Sr2MgSi2O7:Tb3+nanophosphor,V=0.402 nm3andZ=2,and thusRc=0.602 nm. Therefore,the nonradiative energy transfer among Tb3+ions belongs to the electric multipole–electric multipole interaction becauseRcis larger than the critical interaction distanceRc0=0.5 nm. In other words,the electric multipole interaction will get stronger with the increase of the concentration,resulting in the decrease of PL intensity. Furthermore,the reason for the concentration quenching of Sr2MgSi2O7:Tb3+nanophosphor can be further analyzed based on Zhang’s theory, that is, the relationship between the luminescent intensityIand the concentrationxobeys the following expression:[35]

    wherekandβare the constants,Sis an electric multipole index and it represents the electric dipole–electric dipole interaction, the electric dipole–electric quadrupole interaction,and the electric quadrupole–electric quadrupole interaction forS=2, 4, and 6, respectively. ConsideringβxS/3?1, equation (4) can be rewritten as a linear equation with dual logarithm coordinates. Figure 7 illustrates the lg(I/x)~lg(x)fitting curve of 545-nm green emission under 374-nm excitation and the slope is about?1.847. HenceS=5.54 is closer to 6,implying that the quenching mechanism of Sr2MgSi2O7:Tb3+nanophosphors is the electrical dipole–electric dipole interaction of the luminescent centers under 374-nm excitation.

    Fig.7. The lg(I/x)–lg(x)fitting curve of Sr2MgSi2O7:Tb3+ phosphor.

    4. Conclusion

    In this work, a series of Sr2MgSi2O7:Tb3+nanophosphors is prepared by a high temperature solid-state reaction.The crystal structures and morphologies of representative samples are analyzed using XRD and SEM.And the results show that the main diffraction peaks of Sr2MgSi2O7matrix are basically consistent with those in the standard card, especially the crystal quality of Sr2MgSi2O7:Tb3+powder is improved through the incorporation of Tb3+ions. It can be found from the SEM images that Sr2MgSi2O7:Tb3+nanoparticles possess all spherical structures and the average grain size becomes larger with the Tb3+ion concentration increasing. The excitation spectrum shows that 374 nm is also an ideal excitation wavelength and the strong green emission at 545 nm is observed under 374-nm excitation. In addition, other PL peaks including 382, 415, 437, 490, 585, and 624 nm can also be obtained at an optimal doping concentration of 1.6 mol%. The measurement results of decay curves indicate that the lifetime of5D3energy level is shorter than that of5D4energy level.The concentration quenching of the samples prepared in our work is because of the electrical dipole–electric dipole interaction of the luminescent centers.

    猜你喜歡
    慶豐
    Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction
    上海慶豐彩印有限公司
    綠色包裝(2022年9期)2022-10-12 12:18:10
    給父親做一回“父親”
    A NEW ALGORITHM FOR MONOTONE INCLUSION PROBLEMS AND FIXED POINTS ON HADAMARD MANIFOLDS WITH APPLICATIONS?
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    金慶豐3D 硬金新展廳隆重開(kāi)業(yè)
    山東慶豐餐飲公司侵害“慶豐”商標(biāo)及不正當(dāng)競(jìng)爭(zhēng)
    “慶豐包子”案翻天大逆轉(zhuǎn)
    人民周刊(2017年10期)2017-08-04 21:31:40
    從“慶豐包子”看時(shí)評(píng)對(duì)新聞的點(diǎn)化魅力
    新聞傳播(2015年6期)2015-07-18 11:13:15
    AltBOC navigation signal quality assessment and measurement*
    免费黄色在线免费观看| 国产高清三级在线| 中文资源天堂在线| 欧美精品一区二区大全| 亚洲国产欧美人成| 能在线免费看毛片的网站| 免费黄网站久久成人精品| 小蜜桃在线观看免费完整版高清| 全区人妻精品视频| 热99在线观看视频| 国产精品久久久久久av不卡| av线在线观看网站| 欧美区成人在线视频| 国产 一区精品| 国产视频首页在线观看| 大香蕉97超碰在线| 极品少妇高潮喷水抽搐| 在线天堂最新版资源| 国内揄拍国产精品人妻在线| 一个人观看的视频www高清免费观看| 91精品国产九色| 国产午夜精品一二区理论片| 国产精品国产三级专区第一集| 国产 亚洲一区二区三区 | 免费大片18禁| 国产乱来视频区| 午夜免费观看性视频| 欧美三级亚洲精品| 国产精品一区二区三区四区久久| 精品一区二区三区视频在线| 联通29元200g的流量卡| av在线蜜桃| 美女黄网站色视频| 国产老妇伦熟女老妇高清| 亚洲av在线观看美女高潮| 欧美激情久久久久久爽电影| 国产真实伦视频高清在线观看| or卡值多少钱| 国产精品一区www在线观看| 成人美女网站在线观看视频| 久久久久久九九精品二区国产| 日韩欧美三级三区| 亚洲va在线va天堂va国产| 日本三级黄在线观看| 久久久久国产网址| 精品一区二区免费观看| 午夜福利在线观看吧| 狠狠精品人妻久久久久久综合| 精品少妇黑人巨大在线播放| 最新中文字幕久久久久| 日韩欧美精品免费久久| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 亚洲精品成人av观看孕妇| 免费黄色在线免费观看| 久久久久久久久久成人| 国产黄频视频在线观看| 一二三四中文在线观看免费高清| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 26uuu在线亚洲综合色| 最近中文字幕高清免费大全6| 亚洲精品中文字幕在线视频 | 爱豆传媒免费全集在线观看| 免费观看的影片在线观看| 亚洲天堂国产精品一区在线| 中文天堂在线官网| 麻豆国产97在线/欧美| 精品人妻熟女av久视频| 欧美潮喷喷水| 午夜福利高清视频| 久久久久久国产a免费观看| 精品一区二区三区视频在线| 高清视频免费观看一区二区 | 极品少妇高潮喷水抽搐| 日韩欧美 国产精品| 国产一区二区亚洲精品在线观看| 日韩一区二区三区影片| 国产午夜精品论理片| 只有这里有精品99| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 欧美xxⅹ黑人| 一级片'在线观看视频| 亚洲最大成人手机在线| 97超碰精品成人国产| 只有这里有精品99| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 午夜福利高清视频| 啦啦啦中文免费视频观看日本| 免费看日本二区| 免费看光身美女| 黄片wwwwww| 国产成人a∨麻豆精品| 久久精品国产亚洲av天美| .国产精品久久| 日韩制服骚丝袜av| 久久久久网色| 亚洲av中文字字幕乱码综合| 国产真实伦视频高清在线观看| 久久6这里有精品| 成年av动漫网址| 白带黄色成豆腐渣| 又粗又硬又长又爽又黄的视频| 久久久久网色| 亚洲欧美成人精品一区二区| 在线观看一区二区三区| 亚洲va在线va天堂va国产| 国产免费又黄又爽又色| 久久久午夜欧美精品| 偷拍熟女少妇极品色| 美女高潮的动态| 不卡视频在线观看欧美| 99热网站在线观看| 亚洲欧美中文字幕日韩二区| 国产精品99久久久久久久久| 美女国产视频在线观看| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱| 日韩精品有码人妻一区| 啦啦啦中文免费视频观看日本| 国产淫片久久久久久久久| 乱码一卡2卡4卡精品| 欧美精品一区二区大全| 国产av国产精品国产| 尤物成人国产欧美一区二区三区| 大话2 男鬼变身卡| 日日干狠狠操夜夜爽| 人妻系列 视频| 日日摸夜夜添夜夜添av毛片| 久久久成人免费电影| 国模一区二区三区四区视频| 精品国内亚洲2022精品成人| 哪个播放器可以免费观看大片| 六月丁香七月| 男女那种视频在线观看| 日日啪夜夜撸| 久久精品久久精品一区二区三区| 成人综合一区亚洲| 美女大奶头视频| 一个人观看的视频www高清免费观看| av黄色大香蕉| 天天躁夜夜躁狠狠久久av| 一级二级三级毛片免费看| 97精品久久久久久久久久精品| 亚洲无线观看免费| 免费av毛片视频| 一本一本综合久久| 久久久久免费精品人妻一区二区| 久久精品国产自在天天线| 成人无遮挡网站| 国产成人精品一,二区| 国产极品天堂在线| 综合色丁香网| 免费黄网站久久成人精品| 亚洲欧美精品自产自拍| 校园人妻丝袜中文字幕| 国产 一区 欧美 日韩| 日韩欧美 国产精品| 久久综合国产亚洲精品| 久久久a久久爽久久v久久| 永久免费av网站大全| 久久久精品欧美日韩精品| 中文字幕亚洲精品专区| 中文天堂在线官网| 精品久久久久久久末码| 免费av观看视频| 看非洲黑人一级黄片| 国语对白做爰xxxⅹ性视频网站| 亚洲av中文字字幕乱码综合| 亚洲伊人久久精品综合| 一级黄片播放器| 欧美激情国产日韩精品一区| 亚洲国产欧美在线一区| 婷婷色av中文字幕| 日本黄大片高清| 听说在线观看完整版免费高清| 亚洲美女搞黄在线观看| 国内少妇人妻偷人精品xxx网站| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 国产精品无大码| 69人妻影院| 日韩欧美国产在线观看| 久久99蜜桃精品久久| 毛片一级片免费看久久久久| 中国美白少妇内射xxxbb| 精品久久久久久电影网| 青春草国产在线视频| 夫妻性生交免费视频一级片| 最近视频中文字幕2019在线8| 高清毛片免费看| 两个人的视频大全免费| 色播亚洲综合网| av专区在线播放| 91久久精品国产一区二区成人| 国产日韩欧美在线精品| 草草在线视频免费看| 国产人妻一区二区三区在| 十八禁网站网址无遮挡 | 国产又色又爽无遮挡免| 精品一区二区免费观看| 国产v大片淫在线免费观看| 天堂中文最新版在线下载 | 一区二区三区乱码不卡18| 80岁老熟妇乱子伦牲交| 日本色播在线视频| 国产片特级美女逼逼视频| 少妇熟女aⅴ在线视频| 免费不卡的大黄色大毛片视频在线观看 | 真实男女啪啪啪动态图| 欧美日韩精品成人综合77777| 午夜精品在线福利| 国产在线男女| 九九久久精品国产亚洲av麻豆| 精品欧美国产一区二区三| 亚洲性久久影院| 国产精品一及| 少妇熟女欧美另类| 91久久精品电影网| 国产免费视频播放在线视频 | 亚洲欧美日韩卡通动漫| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 中文乱码字字幕精品一区二区三区 | 精品久久国产蜜桃| 老女人水多毛片| 亚洲自拍偷在线| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 最近视频中文字幕2019在线8| 免费黄频网站在线观看国产| 欧美bdsm另类| 最近2019中文字幕mv第一页| 国产精品1区2区在线观看.| 国产精品爽爽va在线观看网站| 亚洲美女搞黄在线观看| 亚洲成人精品中文字幕电影| 99久国产av精品国产电影| 国产成人午夜福利电影在线观看| 高清av免费在线| 99久国产av精品| ponron亚洲| 国模一区二区三区四区视频| 欧美不卡视频在线免费观看| 国产精品精品国产色婷婷| 成人美女网站在线观看视频| 热99在线观看视频| 欧美日韩亚洲高清精品| 自拍偷自拍亚洲精品老妇| 国模一区二区三区四区视频| 成年版毛片免费区| 搡老妇女老女人老熟妇| 尾随美女入室| 欧美精品国产亚洲| 丝袜喷水一区| 日本午夜av视频| 日韩 亚洲 欧美在线| 国产精品1区2区在线观看.| 一级二级三级毛片免费看| 中文字幕久久专区| 日韩大片免费观看网站| 99久国产av精品| 男人舔奶头视频| 日本av手机在线免费观看| 亚洲美女搞黄在线观看| 一级毛片黄色毛片免费观看视频| 777米奇影视久久| 国产精品一区www在线观看| 人人妻人人看人人澡| 亚洲精品久久久久久婷婷小说| 乱人视频在线观看| 97精品久久久久久久久久精品| 亚洲精品一二三| 久久99蜜桃精品久久| 国产高清有码在线观看视频| 午夜福利成人在线免费观看| 色综合色国产| eeuss影院久久| 午夜福利在线观看吧| 国产成人精品一,二区| 22中文网久久字幕| 偷拍熟女少妇极品色| 欧美成人精品欧美一级黄| 黄色日韩在线| 97超视频在线观看视频| 一级黄片播放器| www.av在线官网国产| 最近最新中文字幕免费大全7| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| av在线观看视频网站免费| 国产永久视频网站| 床上黄色一级片| 99久久精品国产国产毛片| 91精品一卡2卡3卡4卡| 亚洲熟女精品中文字幕| 亚洲国产精品成人综合色| 国产色爽女视频免费观看| 日韩人妻高清精品专区| 午夜亚洲福利在线播放| 亚洲av电影不卡..在线观看| 精品不卡国产一区二区三区| 精品久久国产蜜桃| 久久草成人影院| 在线a可以看的网站| 国产黄a三级三级三级人| 色视频www国产| 欧美日韩综合久久久久久| 国产一区二区亚洲精品在线观看| 国产精品伦人一区二区| 国产老妇女一区| 亚洲最大成人av| 成人亚洲精品av一区二区| 身体一侧抽搐| 免费大片18禁| 免费av观看视频| 男女边吃奶边做爰视频| 波多野结衣巨乳人妻| 九色成人免费人妻av| 国产一区有黄有色的免费视频 | 性色avwww在线观看| 欧美不卡视频在线免费观看| 卡戴珊不雅视频在线播放| 十八禁网站网址无遮挡 | 国产男女超爽视频在线观看| 91精品伊人久久大香线蕉| 免费大片黄手机在线观看| 欧美性猛交╳xxx乱大交人| 少妇的逼水好多| 国产精品三级大全| 日韩一区二区视频免费看| 国产成年人精品一区二区| 国产 一区 欧美 日韩| 国产成人91sexporn| 亚洲不卡免费看| 男人舔女人下体高潮全视频| 中文字幕制服av| 欧美日韩在线观看h| 久久精品国产亚洲网站| 国产精品福利在线免费观看| 久久99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 国产麻豆成人av免费视频| 男的添女的下面高潮视频| 精品一区二区三区视频在线| 日韩人妻高清精品专区| 99热6这里只有精品| 人妻系列 视频| 永久免费av网站大全| 久久久久网色| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品成人久久小说| 男女啪啪激烈高潮av片| 国产乱来视频区| 蜜臀久久99精品久久宅男| 亚洲成人久久爱视频| 成人毛片a级毛片在线播放| 久久久久网色| ponron亚洲| 亚洲成人久久爱视频| 国产乱人视频| 国产麻豆成人av免费视频| 久久精品人妻少妇| 韩国高清视频一区二区三区| 亚洲成人精品中文字幕电影| 晚上一个人看的免费电影| 日本午夜av视频| 18禁动态无遮挡网站| eeuss影院久久| 精品99又大又爽又粗少妇毛片| 国产不卡一卡二| 久久久久久久大尺度免费视频| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 搡女人真爽免费视频火全软件| 高清毛片免费看| 精品一区二区免费观看| 99热这里只有是精品50| 日本猛色少妇xxxxx猛交久久| 久久这里有精品视频免费| 国产精品日韩av在线免费观看| 欧美变态另类bdsm刘玥| 亚洲av一区综合| 高清视频免费观看一区二区 | 亚洲电影在线观看av| 国产在视频线精品| 国内精品美女久久久久久| 亚洲国产色片| 亚洲av国产av综合av卡| 久久草成人影院| 在线观看一区二区三区| 中文在线观看免费www的网站| 最近最新中文字幕免费大全7| 国产成人a区在线观看| 亚洲av男天堂| 亚洲av电影不卡..在线观看| 三级男女做爰猛烈吃奶摸视频| 网址你懂的国产日韩在线| 国产视频首页在线观看| 别揉我奶头 嗯啊视频| 91午夜精品亚洲一区二区三区| 免费观看无遮挡的男女| 亚洲av中文字字幕乱码综合| 一级毛片 在线播放| 国产单亲对白刺激| 两个人的视频大全免费| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 久久久久久久国产电影| 国产精品福利在线免费观看| 亚洲国产色片| 美女脱内裤让男人舔精品视频| 免费看美女性在线毛片视频| 一级毛片aaaaaa免费看小| 久久久成人免费电影| 蜜桃亚洲精品一区二区三区| 国产亚洲5aaaaa淫片| 毛片女人毛片| h日本视频在线播放| 日韩欧美精品免费久久| 国产高潮美女av| 秋霞在线观看毛片| 哪个播放器可以免费观看大片| 内地一区二区视频在线| 亚洲18禁久久av| 波多野结衣巨乳人妻| 久久综合国产亚洲精品| 国产精品一区二区在线观看99 | 黄色欧美视频在线观看| 激情五月婷婷亚洲| 亚洲最大成人中文| 国模一区二区三区四区视频| 欧美精品一区二区大全| 久久精品久久久久久久性| 亚洲精品日韩av片在线观看| 精品亚洲乱码少妇综合久久| 九色成人免费人妻av| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品成人综合色| 国产av码专区亚洲av| 男人和女人高潮做爰伦理| 亚洲精品视频女| 成年免费大片在线观看| 99久久精品热视频| 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 亚洲色图av天堂| 大片免费播放器 马上看| 亚洲欧美日韩东京热| 一个人免费在线观看电影| 久久久久精品性色| 亚洲成人一二三区av| 国产精品久久久久久久电影| 国产精品女同一区二区软件| 十八禁国产超污无遮挡网站| 国产精品久久久久久精品电影| 国产精品蜜桃在线观看| 亚洲精品久久久久久婷婷小说| 一本一本综合久久| h日本视频在线播放| 美女高潮的动态| 亚洲av国产av综合av卡| 国产精品美女特级片免费视频播放器| 全区人妻精品视频| 美女cb高潮喷水在线观看| 中文天堂在线官网| 99久国产av精品| 丰满人妻一区二区三区视频av| 一级毛片aaaaaa免费看小| 欧美日韩视频高清一区二区三区二| 三级经典国产精品| 五月天丁香电影| 国产三级在线视频| 极品少妇高潮喷水抽搐| 男女国产视频网站| 网址你懂的国产日韩在线| 精品欧美国产一区二区三| 免费看a级黄色片| 亚洲av电影不卡..在线观看| 亚洲av成人av| 一个人看视频在线观看www免费| 欧美日韩国产mv在线观看视频 | 国产成人一区二区在线| 好男人视频免费观看在线| 男女国产视频网站| 三级经典国产精品| 能在线免费观看的黄片| 日产精品乱码卡一卡2卡三| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 人人妻人人澡欧美一区二区| 久久久久网色| 身体一侧抽搐| 一个人免费在线观看电影| 国产高清有码在线观看视频| 国产在线男女| 天堂√8在线中文| 国产精品麻豆人妻色哟哟久久 | 亚洲av电影不卡..在线观看| 国产不卡一卡二| 亚洲精品国产av蜜桃| 久久精品久久久久久噜噜老黄| 欧美 日韩 精品 国产| 深夜a级毛片| 午夜精品国产一区二区电影 | 日韩欧美 国产精品| av女优亚洲男人天堂| 国产精品久久久久久久电影| 精品久久久久久久末码| 人体艺术视频欧美日本| 国产精品熟女久久久久浪| 在线天堂最新版资源| 亚洲最大成人手机在线| 日本与韩国留学比较| 最近2019中文字幕mv第一页| 亚洲av国产av综合av卡| 麻豆乱淫一区二区| 国产精品无大码| 九九爱精品视频在线观看| 美女主播在线视频| 久久精品久久久久久久性| 国产黄频视频在线观看| 99热全是精品| 国产亚洲5aaaaa淫片| 青春草国产在线视频| 久久久午夜欧美精品| 一级黄片播放器| 日韩欧美精品v在线| 亚洲av不卡在线观看| 国产精品久久久久久精品电影| 国产成人精品一,二区| 亚洲国产欧美人成| 人妻一区二区av| 嫩草影院入口| 在线天堂最新版资源| 亚洲国产色片| 国产黄色免费在线视频| 国产精品久久久久久久久免| 欧美bdsm另类| 国产高清三级在线| 日本猛色少妇xxxxx猛交久久| 免费av观看视频| 成人午夜高清在线视频| 人人妻人人澡人人爽人人夜夜 | 99热这里只有是精品50| 久久久久久国产a免费观看| 欧美变态另类bdsm刘玥| 免费观看性生交大片5| 欧美+日韩+精品| 一夜夜www| 插逼视频在线观看| 亚洲av免费高清在线观看| 日韩av在线免费看完整版不卡| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 老师上课跳d突然被开到最大视频| 国产精品人妻久久久影院| 国产高清三级在线| 五月玫瑰六月丁香| 日韩电影二区| 深爱激情五月婷婷| 久久久久久久久久久免费av| 性色avwww在线观看| 天堂中文最新版在线下载 | 国产高清国产精品国产三级 | 精品久久久精品久久久| 免费观看在线日韩| 99久久精品国产国产毛片| 日本黄大片高清| 韩国av在线不卡| 精品人妻视频免费看| 中文字幕亚洲精品专区| www.色视频.com| 亚洲三级黄色毛片| 乱人视频在线观看| 免费大片黄手机在线观看| 日韩欧美精品免费久久| 中文天堂在线官网| 色视频www国产| 亚洲美女视频黄频| 亚洲在线观看片| 成人特级av手机在线观看| 熟妇人妻久久中文字幕3abv| 嫩草影院入口| 成人毛片60女人毛片免费| 韩国av在线不卡| 国内揄拍国产精品人妻在线| 成人美女网站在线观看视频| 亚洲最大成人av| 亚洲色图av天堂| 男人和女人高潮做爰伦理| 亚洲精品久久久久久婷婷小说| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 国产探花在线观看一区二区| 欧美zozozo另类| 日韩精品青青久久久久久| 国产色爽女视频免费观看| 欧美zozozo另类| 免费高清在线观看视频在线观看| 免费黄频网站在线观看国产| 免费观看无遮挡的男女| 亚洲真实伦在线观看| 联通29元200g的流量卡| 丰满少妇做爰视频| 亚洲国产精品sss在线观看| 午夜视频国产福利| 18禁裸乳无遮挡免费网站照片| 日本午夜av视频| 亚洲精品一二三| 麻豆成人午夜福利视频|