• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Embedding any desired number of coexisting attractors in memristive system?

    2021-12-22 06:51:00ChunbiaoLi李春彪RanWang王然XuMa馬旭YichengJiang姜易成andZuohuaLiu劉作華
    Chinese Physics B 2021年12期
    關(guān)鍵詞:馬旭

    Chunbiao Li(李春彪) Ran Wang(王然) Xu Ma(馬旭)Yicheng Jiang(姜易成) and Zuohua Liu(劉作華)

    1Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science&Technology,Nanjing 210044,China

    2School of Artificial Intelligence,Nanjing University of Information Science&Technology,Nanjing 210044,China

    3State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China

    Keywords: offset boosting,attractor doubling,attractor self-reproducing,memristive system

    1. Introduction

    Memristor is regarded as a new component for circuit design,which has a specific voltage–current restriction with fingerprint characteristics of 8-like pinched hysteresis loop.[1–5]Because of the nonlinear feature,memristor brings chaos possibility even in a very simple system.[6–13]As a memory component, the dynamical states in its networks can characterize various patterns in information system. Coexisting attractors controlled by a direct switch or simple hardware configuration could be helpful for state representation and conducive to the integration of storage and calculation. As a result, it is valuable to explore the dynamics of a simple memristive node and control its states for information processing.

    Multistability in memristive systems has been exhaustedly explored,among which extreme multistability[14–20]and coexistence with infinitely many attractors[21–24]seem especially striking. In the area of information engineering, the number of coexisting attractors seems to be an important issue for effective information representation or signal acquisition. For memristive chaos-based application,there are two challenges lying in this direction,one of which is to find a simple structure for hosting a memristor to give offset boostable chaos while the other one aims to get its attractor controlled by a single knob or hardware configuration. If we ignore the real products of memristors and model a freely defined memristor with representative inherent fingerprints, such a threedimensional(3-D)memristive system is thereby not far away from our goal. In fact, people can investigate those existing systems and try to find the distinct memristor variable dependence. Following with a further nonlinear reforming, a fresh 3-D memristive system is derived for embedding coexisting attractors,as shown in Fig.1.

    Offset control is the fundamental principle for attractor doubling[25–27]and attractor self-reproducing.[28–30]By introducing multiple piecewise-like functions into a seed system,the dominant dynamics generally finds its way for attractor self-reproducing. It was pointed that the substitution of a proper absolute value function gives robust attractor doubling in the routine of symmetrization while the periodic function repeats the desired dynamics in a direct easy way for attractor self-reproducing. Attractor-doubling represents a direct double multiplication while the attractor self-reproducing is helpful for direct cumulative counting. Two regimes of attractor embedding could be applied for effective information representation or even numerical calculating. For a memristive system,system-based attractor doubling and self-reproducing preserve the fundamental system dynamics without changing the architecture and memristor component. The new born attractors stand by in system space as desired depending on the attached function substitutions and provide broad possibilities for information processing in some way.

    Fig.1. Nonlinearly reforming for embedding any number of coexisting attractors.

    In this work,any number of coexisting attractors in a 3-D memristive system are obtained from a very direct offset-based processing. In Section 2, a simple 3-D memristive system is derived from an existing variable boostable system.[31]In Section 3, any number of coexisting attractors are embedded into the derived memristive system in the dimension of system variable with two different regimes: attractor doubling and attractor self-reproducing. The former provides a direct multiplication control while the latter resorts to the combination of signum and periodic function. In Section 4,circuit simulation is completed for physical verification. In fact, coexisting attractors stand in phase space can be recognized by an exact initial condition. Corresponding discussion is wrapped in the last section.

    2. A unique offset-boostable 3-D memristive system

    It is found that system(1)(VB6)[31]could be reformed to host a memristor,which gives chaos as system(2),

    where the following memristor is introduced in the first dimension:

    Whena=0.6, the memductance and pinched hysteresis loop are plotted in Fig.2.Here the variableyis regarded as the internal variable and the introduced memristor has piecewise linear memductance.

    Whena= 0.6,b= 1, andc= 1, memristive system (2) shows chaotic oscillation with Lyapunov exponents(0.1793,0,?1.1809) and Kaplan–Yorke dimensionDKY=2.1518 under initial condition(?1,1,?1),as shown in Fig.3.Note that the internal variableyand system variablesxandzall exhibit chaotic oscillation.

    Fig.2. The memductance and pinched hysteresis loop with sinusoidal excitation under f =0.1: (a)memductance,(b)pinched hysteresis.

    System(2)is offset boostable,which can be proved with a direct substitution likex ?→x+m. Moreover, in the specifically introduced memristor the inherent property of voltagecurrent relation is determined by the two parametersaandb.It turns out that the parameterbrescales the amplitude of system variablexnegatively while the frequency proportionally in a limited region as shown in Fig. 4, which has never been reported in other memristive systems. The evolvement of amplitude and frequency can be seen directly from the waveform and frequency spectra, as shown in Fig.5. To understand the function of parameterb,here take a substitution

    Fig.3. Chaotic attractor in system(2)with a=0.6,b=1,c=1,and initial condition(?1,1,?1): (a)x–y,(b)y–z,(c)x–z.

    Fig.4. Dynamical evolvement of system(2)with a=0.6,c=1,IC=(?1,1,?1): (a)bifurcation behavior,(b)Lyapunov exponents.

    Fig.5. Chaotic oscillation of system(2)with a=0.6,c=1,IC=(?1,1,?1): (a)chaotic signal x(t),(b)frequency spectrum.

    Fig.6. Dynamics of system(2)with a=0.6,b=1,IC=(?1,1,?1): (a)bifurcation diagram,(b)Lyapunov exponents.

    Moreover, system (2) exhibits robust chaos according to the parameterc, which also rescales the amplitude of system variablexin a quasilinear way with occasionally inserted periodic windows,as shown in Fig.6. Whencincreases in region[0,15],only a couple of periodic oscillations break in triggering the collapse of the Lyapunov exponents. All the above analysis shows that system(2)is unique in terms of parameter sensitivity. Two parameters, namely, system parametercand memristor parameterbboth show their independent function of amplitude control. Memristor parameterbalso brings time rescaling for Lyapunov exponent modification.

    3. Two regimes of attractor embedding

    The coexisting attractors can be controlled by functionbased offset boosting. However, one is resort to attractor doubling,and the other is resort to attractor self-reproducing.Therefore, these two approaches bring coexisting attractors with different scales. Attractor doubling can be used to simulate the key processing for high bit generation in binary number representation while attractor self-reproducing can be applied for representation of numerical accumulation. Attractor doubling introduces more parameters for attractor embedding and resorts to system modification more violently. These parameters form control gates by which the number of coexisting attractors is determined by the series[32]if coexisting attractors are doubled more than one times. Attractor self-reproducing seems easier for embedding more attractors even more to infinity. But this seems to out of control if not sufficient control gates are planted. In fact,in both routines of attractor embedding, sufficient offset gates are necessary for controlling the number of coexisting attractors. Only by this, any one of the embedded attractors can be visited by a selected initial condition gate accordingly.

    3.1. Attractor doubling

    The direct substitution of the absolute value function can make the coexisting attractors doubled. The single linear termxin the third dimension of system (2) makes the dimensionxeasily offset boostable, leaving a convenient conversion for attractor doubling. Substitutingxwith|x|?das

    The doubled attractors are controlled with desired distance by the control gate ofd. Note that small gatedmakes the coexisting attractors be linked together forming pseudodouble-scroll. Then a pseudo-double-scroll attractor is captured when coexisting attractors get linked together because of the connected basins of attraction. The doubled coexisting attractors stand in phase space in the dimension ofx,as shown in Fig.7. As a result,the derived system(5)now turns to be a symmetrical system hatching coexisting symmetrical pairs of attractors or pseudo-multiple-scroll attractors.

    Fig. 7. Embedded attractors in system (5) with a=0.6, b=1, c=1 under various control gates. IC=(1,1,?1)is red and IC=(?1,1,?1)is green:(a) d1 =4.11 (pseudo-double-scroll attractor), (b) d2 =5, (c)d3=6.5,(d)d4=8(double coexisting attractors).

    Furthermore,this operation can be repeated in the dimensionz, but this will destroy the feedback of the originally introduced memristor. For doubling the attractors according to the dimension ofz,the derivative of internal variable turns to be associated with the absolute function with offset gatee,and the following equation is obtained:

    The substitution ofzwith|z|?echanges the original system more drastically. Doubled attractors locate in the dimension ofzas predicted, as shown in Fig. 8. Since the system variable is more controllable than the memristor,this transformation does not bring too much trouble since the derivative ofycomes from the feedback ofyand the flexible function of system variablezeven though we see that this transformation does not fully utilize the property of easy offset boosting.

    Fig. 8. Coexisting attractors in system (6) with a=0.6, b=1, c=1,IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting attractors under control gate e=4,(b)pseudo-doublescroll attractor under control gate e=2.05.

    Doubling coexisting attractors can also be executed in both dimensions ofx–z, where two control gatesdandeare necessary for settling any of the attractors to desired position as in the following equation:

    Smaller control gatedmakes coexisting attractors link together in the dimension ofxforming two pseudo-two-scroll attractors, while combined small control gateeputs the doubled pseudo-two-scroll attractors together forming a pseudofour-scroll attractor, as shown in Fig. 9. Corresponding signal waveforms are plotted in Fig. 10. Note that two control gates should be arranged with two newly introduced signum functions. The process of attractor doubling depends on the revise of the system structure. Two signum functions sgn(x),sgn(z)and two control gatesd,ein two absolute value functions embed at most four coexisting attractors. For more attractors, the substitution of the absolute value function needs to be repeated, bringing more control gates and switching functions.[32]However, attractor embedding can turn to another way, where the property of offset boosting can be used for more convenient attractor embedding. In the following,we discuss how to embed any desired number of attractors by introducing a periodic function.

    Fig. 9. Embedded attractors in system (7) with a=0.6, b=1, c=1,IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting pseudo-two-scroll attractors under control gates d=4,e=4,(b)pseudo-four-scroll attractor under d=4,e=2.

    0Fig.10.Waveform of coexisting oscillations in system(7)with a=0.6,b=1, c=1, IC=(?1,1,1)is red and IC=(?1,1,?1)is green: (a)d=4,e=4(coexisting pseudo-two-scroll attractors),(b)d=4,e=2(pseudo-four-scroll attractor).

    3.2. Attractor self-reproducing

    The above attractor embedding has a discrete scale,where the number of coexisting attractors depends on the times of absolute-value-function substitution. Each operation needs an extra function introducing. In fact, infinitely many attractors are available by introducing a periodic trigonometric function to the offset boostable variable. Based on this,further control for embedding any number of coexisting attractors is resort to the modification of the periodic function. Applying signum function,the number of coexisting attractors can be controlled by newly introduced offset gate. Memristive system(2)has a single system variablexin the right hand,and can be modified as

    WhenF(x)=1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d)+1), coexisting attractors can be controlled by the offset gate ofd. Comparing with the approach based on system(4)(with one absolute value function and one signum function)and system (7) (with two absolute value functions and two signum functions), here in system(8), a sinusoidal function modified by two signum functions provides a free control of any coexisting attractors. The principle can be clearly indicated by the curve of the control function shown in Fig.11. Here the control gatedselects the number of coexisting attractors. Positivedoutputs coexisting attractors in positive direction and vice versa. As shown in Fig. 12, a couple of coexisting attractors are controlled by control gatesd. If we want to select coexisting attractors in desired region,two independent control gatesdshould be set according to the two signum functions. More control gates pose more precise and flexible control. Mixed control can be obtained if an extra substitution of the absolute value function in the dimension ofzis made,and correspondingly the selected attractors will get doubled in thezdimension. One can do this for his convenience. Control gatedshould be selected according to the size of an attractor.

    Fig.11. The curve of the control function for attractor embedding.

    Furthermore, the functionF(x) can be replaced by a piecewise linear function and other trigonometric functions.For example, tangent function can be applied into system(8)for hatching coexisting attractors according to its period.WhenF(x) = 72tan(0.05x), infinitely many coexisting attractors are born distributing in phase space with interval of 20πbetween any of two attractors. Applying more control gates based on signum function, more than that, embedded coexisting attractors can be edited in a more flexible way. For example, whenF(x)=1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d1)+1)+4.5tan(0.05x)(sgn(x?d2)+1)(sgn(?x+d3)+1),embedded attractors are edited in region of [0,d1] with interval of 10πand [d2,d3] with interval of 20π, as shown in Fig. 13. Coexisting attractors can be selected and edited by choosing any combination of periodic trigonometric function and signum function.Control gate leaves a convenient channel for attractor group selection while initial condition gate realizes the precise positioning of a desired attractor. However,the control gate has priority over the initial condition.

    Fig. 12. Embedded coexisting attractors in system (8) with F(x) =1.25sin(0.2x)(sgn(x)+1)(sgn(?x+d)+1), a = 0.6, b = 1, c = 1,IC=(1+10π,1,?1)is green,IC=(1+20π,1,?1)is red,IC=(1+30π,1,?1)is blue and IC=(1+40π,1,?1)is cyan:(a)d=12+10π,(b)d=12+20π,(c)d=12+30π,(d)d=12+40π.

    Fig. 13. Control function and embedded coexisting attractors in system (8) with F(x) = 1.25sin(0.2x)(sgn(x) + 1)(sgn(?x + d1) + 1) +4.5tan(0.05x)(sgn(x ?d2)+1)(sgn(?x+d3)+1), d1 = 12+40π, d2 =?25 + 80π, d3 = 25 + 140π, a = 0.6, b = 1, c = 1, IC = (1 +10π/20π/30π/40π,1,?1)are red,IC=(1+80π/100π/120π/140π,1,?1)are green: (a)control function,(b)embedded attractors.

    Fig.14. The analog equivalent circuit schematic of memristor(3).

    4. Circuit implementation

    To verify the above system design for attractor embedding,circuit-based experiment is realized for further observation. To realize system(2),a memristor simulator is designed in Fig. 14. Here the derivative of internal variableyis connected with system variablez. Therefore system(5)for attractor doubling turns to be

    Circuit modules associated with the absolute value function are constructed for attractor doubling. According to the parameters combined with a time scale for attractor showing in oscilloscope, circuit parameters are selected in Fig. 15 asC1 =C2=C3=10 nF,R1=R2=R3=R4=R10=R23=R31 =R32=R33= 10 k?,R5=R6=R7=R8=R11=R12 =R13=R14=R15=R16=R17=R18=R19=R20=R21=R24=R25=R26=R27=R28=R29=R30=100 k?,R9=140 k?,R22=16.67 k?,V2=1 V. Like the attractors plotted in Fig.7,the pseudo-double-scroll attractor and coexisting attractors are captured as shown in Fig.16.

    Fig.15. Circuit schematic of memristive system(5).

    Fig. 16. Coexisting attractors in system (5) with V1 =1 V, IC=(1,1,?1) is red and IC=(?1,1,?1) is green: (a) pseudo-double-scroll attractor under V1=4.11 V,(b)–(d)a symmetric pair of coexisting attractors under V1=5 V,V1=6.5 V,and V1=8 V.

    For doubling coexisting attractors in the dimensions ofxandz, more modules are applied for absolute value function realization,the revised system(7)turns to be the circuit with the following equation:

    To realize system(10),a memristor simulator is designed in Fig. 17. According to the parameters combined with a time scale for attractor showing in oscilloscope, circuit components in Fig.18 areC1=C2=C3=10 nF,R1=R2=R3=R10=R23=R31=R32=R33=R34=R35=R36=R37=R38=R47=10 k?,R5=R6=R7=R8=R11=R12=R13=R14=R15=R16=R17=R18=R19=R20=R21=R24=R25 =R26=R27=R28=R29=R30=R39=R40=R41=R42=R43=R44=R45=R48=R49=100 k?,R4=2.5 k?,R9=R46= 140 k?,R22= 16.67 k?,V2= 1 V. Like the embedded attractors and waveform of oscillations plotted in Figs. 9 and 10, the pseudo-double-scroll attractor, pseudofour-scroll and waveform of oscillations are captured as shown in Fig.19.

    Fig.17. The analog equivalent circuit schematic of the memristor.

    Fig.18. Circuit schematic of memristive system(7).

    Fig. 19. Attractors and chaotic signals in circuit (10) with V2 =1 V, IC=(?1,1,1) is red and IC=(?1,1,?1) is green: (a) a symmetric pair of coexisting pseudo-double-scroll attractors with V3=4 V,(b)pseudo-four-scroll attractor with V3=2 V,(c)a symmetric pair of chaotic signals under V3=4 V,(d)chaotic signal under V3=2 V.

    5. Discussion and conclusion

    Flexible memristor definition can make great contribution for constructing a 3-D chaotic memristive system,where additional nonlinearity typically does not destroy the fundamental dynamics inherited from the seed system. In fact,we can construct more 3-D chaotic systems from the existing 3-D manifolds or by defining more mathematical models of memristor.Memristor introducing in a variable-boostable system brings more convenience for attractor embedding. In this work,from the view of attractor embedding,a simple 3-D memristive system is derived, in which the basic property of variable boosting is not destroyed. It brings great convenience for attractor doubling. Besides this, periodic trigonometric function substitution makes the attractor self-reproducing in the dimension of offset boostable variable more conveniently.A simple absolute value function substitution combined with a switch function realizes attractor doubling. Doubling coexisting attractors depends on the operation of function substitution in which the absolute value function determines the intervals and signum function provides necessary polarity balance. Absolute value functions and other periodic trigonometric functions can be applied for attractor embedding with any number of coexisting attractors. There is an obstacle standing in the way of attractor doubling,which is how to realize the substitution of the absolute function in a simple replicable way. Periodic trigonometric function combined with signum function provides an easy way for attractor embedding and control. Further work aiming to this direction is expected in the near future.

    猜你喜歡
    馬旭
    我與馬旭
    火花(2022年5期)2022-06-16 11:03:18
    “當(dāng)代木蘭”的初心與大愛
    “當(dāng)代木蘭”的初心與大愛
    馬旭:感動中國的傳奇女空降兵
    關(guān)鍵詞:不忘初心,不辱使命;無私忘我……
    永遠(yuǎn)赤誠的心
    奮斗(2019年15期)2019-08-27 06:22:22
    永懷一顆赤誠的心
    奶奶86歲了 畢生節(jié)儉竟捐出1000萬
    樂活老年(2019年5期)2019-07-25 01:18:18
    馬旭:分毫積攢 千萬捐贈
    新中國第一代女空降兵馬旭:“一擲千金”為桑梓
    華人時刊(2019年5期)2019-06-14 08:29:13
    侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲| 久久人人精品亚洲av| www日本在线高清视频| 99久久综合精品五月天人人| 亚洲欧美一区二区三区黑人| 99re在线观看精品视频| 亚洲欧美日韩另类电影网站| 成人欧美大片| 日本vs欧美在线观看视频| 久久久久久久久久久久大奶| 岛国视频午夜一区免费看| 久久婷婷成人综合色麻豆| av电影中文网址| 日韩欧美国产在线观看| 三级毛片av免费| 人成视频在线观看免费观看| 亚洲精品美女久久久久99蜜臀| 亚洲自拍偷在线| 美国免费a级毛片| 久久午夜综合久久蜜桃| 美女 人体艺术 gogo| 啪啪无遮挡十八禁网站| 久久精品影院6| 午夜福利18| 亚洲成人免费电影在线观看| 亚洲av片天天在线观看| 成人亚洲精品av一区二区| 国产亚洲av嫩草精品影院| 欧美日韩亚洲综合一区二区三区_| 国产精品久久久人人做人人爽| 亚洲专区中文字幕在线| 久久久久国产精品人妻aⅴ院| 精品国内亚洲2022精品成人| 桃色一区二区三区在线观看| 一个人观看的视频www高清免费观看 | 日韩精品免费视频一区二区三区| 12—13女人毛片做爰片一| 在线十欧美十亚洲十日本专区| 看免费av毛片| 国产国语露脸激情在线看| 亚洲精品中文字幕一二三四区| 宅男免费午夜| 波多野结衣高清无吗| 欧美成人午夜精品| 又黄又粗又硬又大视频| xxx96com| av片东京热男人的天堂| 亚洲一码二码三码区别大吗| 十八禁网站免费在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品亚洲一级av第二区| 欧美乱码精品一区二区三区| 91大片在线观看| 亚洲成国产人片在线观看| 欧美乱妇无乱码| 国产成人精品久久二区二区91| 国产精品九九99| 精品一品国产午夜福利视频| 国产精品影院久久| 欧美激情久久久久久爽电影 | 黄色视频不卡| 日韩中文字幕欧美一区二区| 黄色成人免费大全| 久久久国产成人精品二区| 国产av又大| 久久久久久大精品| 免费av毛片视频| 国产亚洲精品av在线| 高潮久久久久久久久久久不卡| 久久亚洲真实| 波多野结衣巨乳人妻| www.www免费av| 久久欧美精品欧美久久欧美| 麻豆成人av在线观看| 日本在线视频免费播放| 免费高清在线观看日韩| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美一区二区三区黑人| 亚洲中文字幕一区二区三区有码在线看 | 免费观看精品视频网站| 高清黄色对白视频在线免费看| 天天躁狠狠躁夜夜躁狠狠躁| 国产乱人伦免费视频| 午夜福利成人在线免费观看| 日本 欧美在线| 亚洲av日韩精品久久久久久密| av在线播放免费不卡| 欧美日韩黄片免| 久久精品亚洲熟妇少妇任你| 亚洲欧洲精品一区二区精品久久久| 久99久视频精品免费| 免费搜索国产男女视频| 人人妻人人爽人人添夜夜欢视频| 日韩欧美国产一区二区入口| 国产精品一区二区精品视频观看| 91老司机精品| 精品一区二区三区四区五区乱码| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av高清一级| 国产免费av片在线观看野外av| 好男人电影高清在线观看| www日本在线高清视频| 成熟少妇高潮喷水视频| 久久久国产成人精品二区| 亚洲精品久久国产高清桃花| av在线播放免费不卡| 天天躁狠狠躁夜夜躁狠狠躁| 999久久久精品免费观看国产| 久久国产亚洲av麻豆专区| 自拍欧美九色日韩亚洲蝌蚪91| 大香蕉久久成人网| 午夜福利一区二区在线看| 精品国产国语对白av| 极品人妻少妇av视频| 国产成人精品无人区| 天堂√8在线中文| 国产蜜桃级精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 色播在线永久视频| 日韩中文字幕欧美一区二区| 国产成+人综合+亚洲专区| www国产在线视频色| 69精品国产乱码久久久| av网站免费在线观看视频| 亚洲九九香蕉| 欧美老熟妇乱子伦牲交| 免费av毛片视频| 国产在线观看jvid| 女人被躁到高潮嗷嗷叫费观| www日本在线高清视频| 一区二区三区国产精品乱码| 午夜久久久久精精品| 国产成人欧美在线观看| 国产97色在线日韩免费| 禁无遮挡网站| 欧美激情极品国产一区二区三区| 丰满的人妻完整版| 国产一区在线观看成人免费| 天天躁夜夜躁狠狠躁躁| 夜夜看夜夜爽夜夜摸| 黑人操中国人逼视频| 高清在线国产一区| 成熟少妇高潮喷水视频| 性少妇av在线| 午夜精品久久久久久毛片777| 一个人观看的视频www高清免费观看 | av视频在线观看入口| 久久精品人人爽人人爽视色| 欧美黑人精品巨大| 男女午夜视频在线观看| 黄色 视频免费看| 麻豆成人av在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成国产人片在线观看| 国产欧美日韩综合在线一区二区| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全免费视频| 91成年电影在线观看| 99国产精品免费福利视频| 男女做爰动态图高潮gif福利片 | 精品人妻在线不人妻| 国产男靠女视频免费网站| 99久久久亚洲精品蜜臀av| 一边摸一边抽搐一进一出视频| 免费无遮挡裸体视频| 国产精品亚洲美女久久久| 亚洲中文日韩欧美视频| 国产精品电影一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品久久男人天堂| 国产区一区二久久| 黄色片一级片一级黄色片| 十八禁人妻一区二区| 中国美女看黄片| 狠狠狠狠99中文字幕| 国产精品av久久久久免费| 亚洲中文av在线| 91精品三级在线观看| 午夜免费观看网址| 久久狼人影院| 无遮挡黄片免费观看| 午夜福利欧美成人| 亚洲成人精品中文字幕电影| 午夜两性在线视频| 午夜激情av网站| 一边摸一边抽搐一进一出视频| 国产亚洲精品一区二区www| 国产成人精品久久二区二区免费| 午夜免费鲁丝| 国产成人av激情在线播放| 中文字幕最新亚洲高清| 女警被强在线播放| 久久久国产成人免费| 欧美黄色片欧美黄色片| 午夜视频精品福利| 成人av一区二区三区在线看| 亚洲精品在线美女| 久久精品亚洲熟妇少妇任你| 怎么达到女性高潮| 欧美一级a爱片免费观看看 | 无限看片的www在线观看| 国产单亲对白刺激| 这个男人来自地球电影免费观看| 午夜福利免费观看在线| 精品一区二区三区视频在线观看免费| 欧美国产精品va在线观看不卡| 日韩欧美在线二视频| 亚洲一区高清亚洲精品| 亚洲av第一区精品v没综合| 久久久久亚洲av毛片大全| 欧美日韩精品网址| 夜夜躁狠狠躁天天躁| 国产97色在线日韩免费| 18美女黄网站色大片免费观看| 淫秽高清视频在线观看| 国产91精品成人一区二区三区| 神马国产精品三级电影在线观看 | 999精品在线视频| 黄色成人免费大全| 变态另类成人亚洲欧美熟女 | 1024香蕉在线观看| 国产高清激情床上av| 一进一出抽搐gif免费好疼| 18禁观看日本| 12—13女人毛片做爰片一| 黑人巨大精品欧美一区二区蜜桃| 天天一区二区日本电影三级 | 日韩精品青青久久久久久| 国产99白浆流出| 亚洲国产高清在线一区二区三 | 欧美成人午夜精品| 午夜日韩欧美国产| 国产在线精品亚洲第一网站| 国产精品永久免费网站| 欧美另类亚洲清纯唯美| 自拍欧美九色日韩亚洲蝌蚪91| 熟女少妇亚洲综合色aaa.| 国产亚洲欧美精品永久| 亚洲色图 男人天堂 中文字幕| 久久久久国内视频| 18禁美女被吸乳视频| 日日干狠狠操夜夜爽| 亚洲五月天丁香| 日韩av在线大香蕉| 人成视频在线观看免费观看| 搡老妇女老女人老熟妇| 亚洲九九香蕉| 69av精品久久久久久| 一边摸一边抽搐一进一小说| 在线观看午夜福利视频| 成人手机av| 久久久国产成人免费| 亚洲熟妇熟女久久| 亚洲精品美女久久av网站| 免费高清在线观看日韩| 美女高潮到喷水免费观看| 欧美黄色片欧美黄色片| 亚洲成人精品中文字幕电影| 欧美乱色亚洲激情| 九色国产91popny在线| www.www免费av| 国产一区二区在线av高清观看| 宅男免费午夜| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产区一区二| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久久免费视频| 成人18禁高潮啪啪吃奶动态图| 脱女人内裤的视频| 91精品国产国语对白视频| 两个人看的免费小视频| av天堂久久9| 久久热在线av| 久久久久国产一级毛片高清牌| 精品日产1卡2卡| 久久国产精品人妻蜜桃| 中文字幕高清在线视频| 久久精品国产综合久久久| 99久久国产精品久久久| 久久久久久久久久久久大奶| 久久久精品欧美日韩精品| 色综合亚洲欧美另类图片| 老汉色av国产亚洲站长工具| 日韩视频一区二区在线观看| 亚洲,欧美精品.| 亚洲久久久国产精品| 在线免费观看的www视频| 日韩欧美三级三区| 欧美日韩中文字幕国产精品一区二区三区 | 黄色丝袜av网址大全| 中文字幕av电影在线播放| 看片在线看免费视频| 无限看片的www在线观看| 超碰成人久久| 91九色精品人成在线观看| 97人妻天天添夜夜摸| 国产午夜福利久久久久久| 人人妻人人澡欧美一区二区 | 久热爱精品视频在线9| 一二三四在线观看免费中文在| 亚洲一区二区三区色噜噜| 久久香蕉精品热| 天天一区二区日本电影三级 | 亚洲av电影不卡..在线观看| 亚洲欧洲精品一区二区精品久久久| 狂野欧美激情性xxxx| 久久伊人香网站| 亚洲天堂国产精品一区在线| 精品久久蜜臀av无| 国产精品一区二区在线不卡| 欧美乱码精品一区二区三区| 我的亚洲天堂| 看黄色毛片网站| 在线播放国产精品三级| 色av中文字幕| 国产成人啪精品午夜网站| 欧美大码av| 日韩大尺度精品在线看网址 | 久久草成人影院| 久久草成人影院| 校园春色视频在线观看| 天堂影院成人在线观看| 亚洲av电影不卡..在线观看| av天堂久久9| 成人国语在线视频| 精品欧美一区二区三区在线| 亚洲avbb在线观看| 精品午夜福利视频在线观看一区| 一进一出抽搐动态| 国产熟女午夜一区二区三区| 69精品国产乱码久久久| 亚洲色图 男人天堂 中文字幕| 中国美女看黄片| 91国产中文字幕| 亚洲人成伊人成综合网2020| 免费久久久久久久精品成人欧美视频| 免费一级毛片在线播放高清视频 | 曰老女人黄片| 欧美+亚洲+日韩+国产| 97人妻精品一区二区三区麻豆 | 日韩 欧美 亚洲 中文字幕| 久久天堂一区二区三区四区| 嫩草影院精品99| 一本久久中文字幕| 可以在线观看的亚洲视频| av福利片在线| 99久久综合精品五月天人人| 国产av一区在线观看免费| 99在线视频只有这里精品首页| 亚洲欧美激情综合另类| 最新美女视频免费是黄的| 国产区一区二久久| 大型av网站在线播放| 一区二区三区精品91| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 亚洲国产看品久久| 国产精品亚洲美女久久久| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| 一级a爱视频在线免费观看| 日韩精品中文字幕看吧| 久久久久久免费高清国产稀缺| 国产色视频综合| 亚洲avbb在线观看| 亚洲午夜精品一区,二区,三区| 一区二区三区高清视频在线| av在线播放免费不卡| 久久亚洲精品不卡| 中文字幕精品免费在线观看视频| 国产精品综合久久久久久久免费 | 久久青草综合色| 男人舔女人的私密视频| 一级a爱片免费观看的视频| 久久中文字幕一级| 99re在线观看精品视频| 亚洲av五月六月丁香网| 悠悠久久av| 国产在线观看jvid| 91成年电影在线观看| 两性夫妻黄色片| 一卡2卡三卡四卡精品乱码亚洲| 咕卡用的链子| 一区二区三区高清视频在线| 丁香欧美五月| 国产精品久久久久久精品电影 | 国产精品久久久久久人妻精品电影| 国产欧美日韩综合在线一区二区| 国产激情久久老熟女| 超碰成人久久| 欧美日韩黄片免| 亚洲第一av免费看| 91av网站免费观看| 麻豆国产av国片精品| 欧美中文日本在线观看视频| 一级毛片精品| 午夜日韩欧美国产| 日日摸夜夜添夜夜添小说| 亚洲午夜精品一区,二区,三区| 国产精品99久久99久久久不卡| 久久香蕉精品热| 男女下面进入的视频免费午夜 | 成人亚洲精品av一区二区| 热re99久久国产66热| 亚洲精品国产色婷婷电影| 欧美不卡视频在线免费观看 | 真人一进一出gif抽搐免费| 一进一出抽搐动态| 怎么达到女性高潮| 无限看片的www在线观看| 国产精品99久久99久久久不卡| 日韩 欧美 亚洲 中文字幕| 亚洲av成人av| 国产色视频综合| 国产成人欧美在线观看| 亚洲午夜理论影院| 午夜福利高清视频| 中文字幕人妻丝袜一区二区| 美女免费视频网站| 美女高潮喷水抽搐中文字幕| 午夜免费激情av| 免费看十八禁软件| 欧美成狂野欧美在线观看| www国产在线视频色| 两人在一起打扑克的视频| 精品高清国产在线一区| 一区二区三区激情视频| 自线自在国产av| 淫秽高清视频在线观看| 18禁黄网站禁片午夜丰满| 精品一区二区三区四区五区乱码| 久久人妻av系列| 又黄又爽又免费观看的视频| 丁香欧美五月| 制服丝袜大香蕉在线| 黄色视频,在线免费观看| 三级毛片av免费| 丝袜美足系列| 亚洲国产欧美日韩在线播放| 亚洲中文字幕一区二区三区有码在线看 | 叶爱在线成人免费视频播放| 男人操女人黄网站| 亚洲五月色婷婷综合| 亚洲精品av麻豆狂野| 亚洲五月色婷婷综合| 久久精品aⅴ一区二区三区四区| 国产精品久久久av美女十八| 99精品欧美一区二区三区四区| 后天国语完整版免费观看| 久久久精品国产亚洲av高清涩受| 99精品在免费线老司机午夜| 久久影院123| 久久午夜综合久久蜜桃| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩综合在线一区二区| 国产色视频综合| 国内精品久久久久精免费| 欧美不卡视频在线免费观看 | av视频在线观看入口| www.www免费av| 91av网站免费观看| 久久精品国产99精品国产亚洲性色 | 午夜福利,免费看| 国产av又大| 一级毛片高清免费大全| 9热在线视频观看99| 亚洲精品美女久久av网站| 一级,二级,三级黄色视频| √禁漫天堂资源中文www| 中文字幕最新亚洲高清| www日本在线高清视频| 美女大奶头视频| 亚洲无线在线观看| 欧美成狂野欧美在线观看| 久久热在线av| 黄色 视频免费看| 十八禁网站免费在线| 在线观看午夜福利视频| 三级毛片av免费| 欧美人与性动交α欧美精品济南到| 成人国语在线视频| 午夜日韩欧美国产| 国产亚洲精品第一综合不卡| 日韩 欧美 亚洲 中文字幕| 电影成人av| x7x7x7水蜜桃| 狂野欧美激情性xxxx| 好看av亚洲va欧美ⅴa在| 又黄又粗又硬又大视频| 日本五十路高清| 韩国av一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 精品卡一卡二卡四卡免费| 午夜两性在线视频| 国产又爽黄色视频| 国产高清有码在线观看视频 | 最好的美女福利视频网| 女生性感内裤真人,穿戴方法视频| 国产午夜精品久久久久久| www.999成人在线观看| 露出奶头的视频| 老汉色∧v一级毛片| 91成年电影在线观看| 欧美大码av| 91成人精品电影| cao死你这个sao货| 国产成人精品久久二区二区免费| 日本免费a在线| 在线观看免费视频日本深夜| 在线永久观看黄色视频| 后天国语完整版免费观看| 欧美丝袜亚洲另类 | 精品一区二区三区视频在线观看免费| 99国产精品免费福利视频| a在线观看视频网站| 精品久久久久久久人妻蜜臀av | 精品一区二区三区四区五区乱码| www日本在线高清视频| 国产蜜桃级精品一区二区三区| 久久精品国产清高在天天线| 精品熟女少妇八av免费久了| 欧美乱色亚洲激情| 亚洲欧美日韩无卡精品| 一边摸一边抽搐一进一小说| 日韩av在线大香蕉| 色综合欧美亚洲国产小说| 亚洲欧美精品综合一区二区三区| 国产av一区二区精品久久| 18美女黄网站色大片免费观看| 精品久久久久久久久久免费视频| 涩涩av久久男人的天堂| 免费女性裸体啪啪无遮挡网站| 久久人妻av系列| 亚洲精品一区av在线观看| 一级片免费观看大全| 国产1区2区3区精品| 丁香欧美五月| 国产精品久久视频播放| 制服人妻中文乱码| 一区二区三区激情视频| 亚洲美女黄片视频| 欧美黑人欧美精品刺激| 国产精品美女特级片免费视频播放器 | 欧美大码av| 男人舔女人的私密视频| 国产黄a三级三级三级人| 成人三级做爰电影| 欧美亚洲日本最大视频资源| 国产91精品成人一区二区三区| 搡老妇女老女人老熟妇| 黄片播放在线免费| 日韩欧美国产一区二区入口| 亚洲片人在线观看| 长腿黑丝高跟| 性少妇av在线| 又紧又爽又黄一区二区| 琪琪午夜伦伦电影理论片6080| 亚洲avbb在线观看| 亚洲专区字幕在线| 99精品欧美一区二区三区四区| 国产麻豆成人av免费视频| 久久热在线av| 韩国精品一区二区三区| 午夜福利在线观看吧| 操出白浆在线播放| 欧美不卡视频在线免费观看 | tocl精华| 国产高清videossex| 自线自在国产av| 男女之事视频高清在线观看| 久久青草综合色| 国产一区在线观看成人免费| 18禁美女被吸乳视频| 制服诱惑二区| 久久精品亚洲熟妇少妇任你| 一二三四在线观看免费中文在| 午夜福利影视在线免费观看| 嫩草影视91久久| 中文字幕人成人乱码亚洲影| 精品久久蜜臀av无| 色综合亚洲欧美另类图片| 91国产中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 色哟哟哟哟哟哟| 大型av网站在线播放| 欧美成人免费av一区二区三区| 脱女人内裤的视频| 亚洲一区中文字幕在线| 国产精品爽爽va在线观看网站 | 搡老岳熟女国产| 久久久久九九精品影院| 欧美人与性动交α欧美精品济南到| 老司机深夜福利视频在线观看| 91麻豆精品激情在线观看国产| 亚洲精品久久国产高清桃花| 免费在线观看视频国产中文字幕亚洲| 99在线人妻在线中文字幕| 91麻豆精品激情在线观看国产| 女人精品久久久久毛片| 亚洲 欧美 日韩 在线 免费| 日本五十路高清| 国产成人精品无人区| 首页视频小说图片口味搜索| 窝窝影院91人妻| 久久天堂一区二区三区四区| 日本a在线网址| 欧美国产日韩亚洲一区| 久久精品91无色码中文字幕| 在线观看免费视频日本深夜| 精品国产一区二区三区四区第35| 在线观看免费午夜福利视频| 欧美 亚洲 国产 日韩一| 国产一区二区三区综合在线观看| 大码成人一级视频|