• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction

    2023-11-02 08:12:30WeiTaoLu盧偉濤YueMao毛岳andQingFengSun孫慶豐
    Chinese Physics B 2023年10期
    關(guān)鍵詞:慶豐

    Wei-Tao Lu(盧偉濤), Yue Mao(毛岳), and Qing-Feng Sun(孫慶豐),3,?

    1School of Sciences,Nantong University,Nantong 226019,China

    2International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China

    3Hefei National Laboratory,Hefei 230088,China

    Keywords: valleytronics,equal-spin Andreev reflection,spin-triplet Cooper pairs,Ising superconductor junction

    1.Introduction

    Recently, valleytronics have attracted much attention in two-dimensional layered materials such as graphene and transition metal dichalcogenides(TMDs).[1-3]Analogous to spintronics, valleytronics aim to generate, control, and detect the valley degree of freedom,which have potential applications in semiconductor technologies and quantum information.Many topics of valleytronics have been reported in recent years,including valley-polarized transport,[4]quantum valley Hall effect,[5-7]spin-valley locked physics,[8,9]chiral optical selection rules,[10]etc.Because of the Berry phase difference for the two valleys induced by magnetic field, the giant valley splitting and unusual valley crossing are observed in the graphene resonators.[10]The strong spin-orbit coupling(SOC)and broken inversion symmetry of TMDs give rise to a valleydependent optical selection rule, where the right (left) circularly polarized light couples to interband transitions in theK(K')valley.[9]The transition from valley-Hall phase to anomalous Hall phase and the valley-Hall conductivity switch could occur in graphene WSe2heterostructures under off-resonant polarized light.[11]

    Andreev reflection (AR) is a process of electron-hole conversion that occurs at the interface of a normal metal(N)and superconductor(SC).[12]The incident electron in the metal is reflected at the N/SC interface as a hole,and a Cooper pair is injected into the SC.Generally,the state of Cooper pair is spin singlet.Considering the spin and valley degrees of freedom, the Cooper pair is composed of electrons from the opposite spins in opposite valleys.[13-20]Thus, it is possible to detect the valley polarization of edge states by the AR.[13]The two electrons of a Cooper pair tunneling into SC could move in opposite directions in the bilayer graphene because they belong to different valleys and the valley-chiral modes are formed at the domain walls.[16]The spin-valley switch effect can be realized between the crossed AR and the elastic cotunneling by adjusting the electric field in the antiferromagnet/SC junctions.[17]

    Due to the broken inversion symmetry of TMDs,the spin splitting is opposite at the two valleys and is pinned to the out-of-plane direction, so the SOC of TMDs is termed Ising SOC.[1,2]Recent experimental works reveal that the superconductivity could be realized in various TMDs.[21-25]With the application of gate voltage,MoS2thin films could exhibit electric field-induced superconductivity with a critical temperature 10 K.[21]Due to the Ising SOC in TMDs such as MoS2and NbSe2, the in-plane upper critical field of the superconductor is enhanced remarkably,which exceeds the Pauli paramagnetic limit by several times.[22,23]Hence, the so-called Ising SC (ISC) provides an opportunity to study the superconducting spintronics.Interestingly, the Ising SOC generates equal-spin triplet Cooper pairs in ISC and results in a topological superconductor with Majorana zero modes.[26,27]ISC can induce a robust topological superconducting gap in InSb nanowires with a strongly enlarged topological regime due to the equal-spin Cooper pairs.[28]The spin-singlet and spin-triplet pairing correlations could be manipulated by applying an in-plane magnetic field to the ISC.[29,30]In particular, the spin-triplet AR is investigated in the conductor/ISC hybrid junctions.[31-35]The equal-spin AR in ferromagnet/ISC junctions shows a strong magnetoanisotropy with periodπ, which can be enhanced by single-band ISC.[31]The equal-spin AR gives rise to the switch effect of spintriplet Josephson current and 0-πtransitions in ISC Josephson junctions.[32]The equal-spin crossed AR could take place in a ferromagnet/ISC/ferromagnet junction due to the spin-triplet Cooper pairs, and it has a significant increase for half-metal ferromagnet.[34]Furthermore, the spin transport through the N/ISC junction demonstrates that ISCs also have the characteristic of spin superconductivity.[33,35]Even so,the influence of valley degree of freedom on equal-spin AR in the ISC junction still needs to be explored.

    In this paper,we theoretically investigate the property of equal-spin AR in the ferromagnet/ISC(FM/ISC)junction with a circularly polarized light applied to the FM, as shown in Fig.1(a).It is found that although the Cooper pair is valleysinglet state in the ISC, the AR is sensitive to the valley degree of freedom due to the optical irradiation.The valleydependent equal-spin AR and normal AR happen in different regions and exhibit different behaviors.The irradiation of light destroys the symmetry of valley-dependent AR, leading to a strong magnetoanisotropy of AR with period 2π.The equalspin-triplet Cooper pairs could give rise to a valley-dependent spin supercurrent in the ISC.The results can be understood in terms of half-metal phase, Ising superconducting phase, and the symmetry of the system.

    The rest of the paper is organized as follows.In Section 2,we give the Hamiltonian of the light-irradiated FM/ISC junction and the formula for AR.The results on valley-dependent equal-spin AR and spin transport are discussed in Section 3.Finally,a summary is presented in Section 4.

    2.Theoretical model and formula

    We mainly study the character of equal-spin AR under the application of light, which is a powerful method to regulate electronic properties.Many intriguing phenomena are found in the optically driven nonequilibrium systems, such as light-induced superconductivity,[36,37]photoinitiated insulator-metal transition,[38]Floquet topological phases,[39,40]and light-induced anomalous Hall effect.[41]For the circularly polarized light irradiated onto the TMDs sheet,the corresponding electromagnetic potential may be represented byA(t)=A(±sin(Ωt),cos(Ωt)), where the signs±refer to the right/left circular polarization,Ωis the frequency of the light, andA=E0/ΩwithE0being the amplitude of the electric fieldE(t)=?A(t)/?t.The gauge potential satisfies time periodicityA(t+T)=A(t)withT=2π/Ω.When the light frequency is off resonant for any electron transitions(ˉhΩ ?tjwith the hopping energytj), the effect of such an off-resonant light can be described by a static effective Hamiltonian.Based on the Floquet theory,[42]the static Hamiltonian near the valleys has the formηλv,where the valley indexη=±is for theKandK'valleys.λv=(eAvF)2/ˉhΩis the effective energy describing the effects of the off-resonant circularly polarized light,which is positive(negative)for the right(left)circularly polarized light.In contrast with the on-resonant optical induction which can cause the photon-assisted tunneling and photon-assisted AR due to the photon absorption/emission,[43]the off-resonant light cannot generate real photon absorption/emission but can lead to the valley-dependent band structure and valley-dependent equal-spin AR.Furthermore, the off-resonant light could also induce various topological phases such as quantum spin Hall effect and quantum valley Hall effect.[11,44,45]

    The low-energy electronic properties of TMDs may be well described by a minimal band model.[9,26]Considering the magnetization vector and the off-resonant circularly polarized light, the electronic states of TMDs in the vicinity of the valleys can be approximately expressed by the two-bandk·pHamiltonian[26]

    Here,kdenotes the wave vector relative to the valleysKandK'.σ= (σx,σy,σz) is the Pauli matrix of the spin space,λsis the Ising SOC strength, andμis the chemical potential.Remarkably, the lightλvcould lift the valley degeneracy.M=M(sinθcosφ,sinθsinφ,cosθ) is the magnetization vector with the exchange energyM, the polar angleθ,and the azimuthal angleφ, which could lift the spin degeneracy and break the time-reversal symmetry.Ising SOCλshas opposite directions in opposite valleys and could induce spin-triplet pairing correlations in the in-plane directions.[26]For the FM/ISC junction,we set chemical potentialμ=μISCin the ISC region andμ=μFMin the FM region.The Ising SOC strengthλsis assumed to be zero in the FM region.The light and the magnetization are only applied to the FM region[see Fig.1(a)], where the valley degeneracy and spin degeneracy are lifted.In the ISC region, only the Ising SOC exists and there is no light field and magnetization withλv=M=0.Therefore, the time-reversal symmetry still holds in the ISC region.

    The Bogoliubov-de Gennes Hamiltonians for the FM/ISC junction can be written as

    where ˉη=-ηand ?Δ=Δeiφiσyis the s-wave superconducting order parameter with the superconducting gapΔ.The HamiltonianHη(k)describes electron excitations with certain spin at certain valley, while-H?ˉη(-k) describes hole excitations with opposite spin at opposite valley.The superconducting gapΔcouples the time-reversed electron and hole states from opposite spins and opposite valleys.The dispersion relations of the FM region and ISC region can be described as

    where±are for the particles with spin up and spin down,respectively.From Eqs.(3)and(4)one may find that it is halfmetal phase atμFM<min(M+λv,M-λv) and metal phase atμFM>min(M+λv,M-λv)in the FM region.Equation(5)implies that the phase of ISC is single-band atμISC<λsand double-band atμISC>λs.The half-metal phase and Ising superconducting phase play a key role in the AR process.

    For an incident electron from the FM lead with energyEand spins, the wave functions in the two regions of the FM/ISC junction can be written as

    withsˉ=-s.The coeffciientsand(orand)are the reflection coefficients(or transmission coefficients)for the electron and the hole, respectively.The functionsfe,s(ˉs)andfh,s(ˉs)(orge,s(ˉs)andgh,s(ˉs)) are the eigenvectors describing electron and hole with spins(ˉs)in the FM region(or ISC region),respectively.[32,34]Based on the boundary conditions

    we can obtain two AR probabilities

    whereqe,sandqh,s(ˉs)are the longitudinal wavevectors of the electron and hole states in the FM region.When an electron with spinsfrom one valley moves to the FM/ISC interface,as shown in Fig.1(b),RsˉsArepresents the normal AR for the reflected hole with opposite spin ˉs, whileRssArepresents the equal-spin AR with the same spinsdue to the spin-triplet pairing in the ISC.Note that the incident electron and the reflected hole always belong to opposite valleys,because that the Cooper pair in the ISC always forms from two electrons with opposite valleys.Below,we will show that the feature of AR probability strongly depends on the valley degree of freedom due to the irradiation of the circularly polarized light.

    3.Results and discussion

    In this section, we will discuss the valley-dependent equal-spin AR, normal AR, and spin transport controlled by the light, the chemical potential, and the magnetization direction.The superconducting gap is fixed asΔ=1.0 meV.The exchange energyMand Ising SOC strengthλsare set asM=30.0 meV andλs=10.0 meV for convenience.The symbolRηs?ˉηs(ˉs)in the following represents the AR probability that an incident election with spinsnear valleyηis reflected as a hole with spins(ˉs) near opposite valley ˉη=-η.The units ofλv,E,μFM,andμISCare meV.

    First, we discuss the normal AR process when the magnetization vector is in the out-of-plane direction with the polar angleθ= 0.All the AR probabilities are independent of the azimuthal angleφ, so we takeφ= 0 below.Figure 2 shows the AR probabilitiesRK↓?K'↑andRK↑?K'↓as functions of the potentialμFMand the lightλvatθ= 0.0,E= 0.0, andμISC= 0.0.It can be found that only the normal AR could occur and equal-spin AR does not exist,where the incident electron and reflected hole belong to opposite spins and opposite valleys, due to the Cooper pairs|KK',↓↑〉,|KK',↑↓〉 in the ISC being valley singlet with itsz-direction spin componentSz= 0.RK↓?K'↑andRK↑?K'↓take place in different areas.HereRK↓?K'↑andRK'↑?K↓are equal and occur in the same areaμFM>|λv-M| [see Fig.2(a)].In fact, considering an incident electron fromK ↓band with the incident energy in the superconducting gap,the

    Fig.2.AR probabilities(a)RK↓?K'↑and(b)RK↑?K'↓versus potentialμFM and light λv at θ=0.0,E=0.0,andμISC=0.0.The boundaries of AR probability are labelled by the dash curves λv=±μFM±M,which are the critical values of the half-metal phase.

    Next,we consider that the magnetization vector is in the in-plane direction withθ=π/2(i.e., in thex-direction).For thex-direction,both the spin-singlet andSx=±1 spin-triplet Cooper pairs can exist in ISC.This is essentially different from the case ofz-direction,where onlySz=0 Cooper pairs exist in ISC.Thus,the AR process would become intriguing.Figure 3 presents the AR probability as a function of the potentialμFMand the lightλvwhen the electron injects from(a)-(d)Kvalley and(e)-(h)K'valley atθ=π/2,E=0.0,andμISC=0.0.Interestingly, the equal-spin AR appears due to theSx=±1 spin-triplet Cooper pairs|KK',?〉,|KK',?〉 [see Figs.3(b),3(c),3(f)and 3(g)].In the equal-spin AR process,the incident electron and reflected hole possess the same spins but opposite valleys.The normal AR still survives[see Figs.3(a),3(d),3(e) and 3(h)].The equal-spin AR and normal AR include eight kinds of AR processes, which exhibit some interesting features.

    (1) Various AR processes occur in different areas, depending on the spin and valley related band structure controlled by the potentialμFMand the lightλv.Compared to the normal AR, the equal-spin AR probabilityRK(K')→?K'(K)→occurs in a wider area [see Figs.3(b) and 3(f)], whileRK(K')←?K'(K)←occurs in a narrower area[see Figs.3(c)and 3(g)], which can be changed by adjusting the magnetization and the light.

    (2) Contrary to the situation atθ=0 in Fig.2, the normal AR probabilitiesRK→?K'←andRK'←?K→(RK←?K'→andRK'→?K←)are no longer the same atθ=π/2,as shown in Figs.3(a)and 3(h)[Figs.3(d)and 3(e)].The reason is that for an incident electron with its spin in thex-direction, the four reflection processes (the normal reflection, the spin-flip reflection,the normal AR,and the equal-spin AR)occur at the FM/ISC interface,leading to that the scattering matrix is 4×4 and the matrix elements (various reflection probabilities) are in principle mutually unequal.

    (3) In the presence of the light, the equal-spin AR and normal AR become sensitive to the valley degree of freedom.Due to the influence of the left and the right circularly polarized light on the character of the two valleys,the Hamiltonians between the two valleys satisfy

    in the FM lead.Thus, the AR near the two valleys are symmetric with respect toλv=0,i.e.,

    such as the AR probabilitiesRK→?K'←andRK'→?K←[see Figs.3(a)and 3(e)].

    Fig.3.AR probability versus potential μFM and light λv for the incident electron from (a)-(d) K valley and (e)-(h) K' valley, at θ =π/2,E=0.0,andμISC=0.0.

    (4)Importantly,there exists a special area where only the equal-spin AR probabilitiesRK→?K'→andRK'→?K→could take place while other AR processes are completely suppressed [see the rhombic area encircled by the black dashed curvesλv=±μFM±Min Figs.3(b) and 3(f)], which could give rise to a spin supercurrent in ISC, as discussed in Fig.7 in the following.

    In order to see clearly the characters of AR, we plot the truncated intersection curves of AR probability as a function of (a) the lightλvand (b) the potentialμFMin Fig.4.Figure 4(a) shows the symmetry between two certain AR processes aroundλv= 0.The AR appears in different regions ofλv.The normal AR probabilitiesRK→?K'←andRK'←?K→are finite in the region-μFM+M <λv<μFM+M,whileRK←?K'→andRK'→?K←have finite value in the region-μFM-M <λv<μFM-M.The equal-spin AR probabilitiesRK→?K'→andRK'→?K→occur in a broad region-μFM-M <λv<μFM+M.As shown in Fig.4(b), the AR probability as a function ofμFMcould be divided into four regions,depending on the spin and valley related energy band in the FM region.There is no AR in the regionμFM<-M+λv,since the ISC is single-band phase and the FM region has no incident electron mode or/and no reflected hole mode at such a low chemical potentialμFM.Only equal-spin AR probabilitiesRK→?K'→andRK'→?K→are nonzero in the region-M+λv<μFM<M-λv, because onlySx=1 spin-triplet and valley-singlet Cooper pairs|KK',?〉 could be formed in ISC.Two equal-spin AR and two normal AR appear in the regionM-λv<μFM<M+λvdue to the existence of Cooper pairs|KK',?〉 and|KK',?〉.All of the eight AR can take place and all kinds of Cooper pairs can be formed in the regionμFM>M+λv.

    Fig.4.AR probability versus(a)λv atμFM=10.0 meV and(b)μFM at λv=10.0 meV.The values of the other parameters are the same as those in Fig.3.

    Figure 5 presents the AR probability as a function of incident energyEatθ=π/2 andμFM=50.0 meV.Whenλv=0 in Fig.5(a), the two valleys in the FM region are degenerate, and so the AR process is independent of valley, that isRηs?ˉηs(ˉs) =Rˉηs?ηs(ˉs).The finiteλvmay break the degeneracy of the valley, leading to the valley-dependent AR [see Fig.5(b)].All the AR probabilities increase slightly with the incident energy in the subgap energyE <Δ.WhenμISC=15.0 meV>λs, the Ising superconducting phase changes to double-band from single-band, and so the normal AR is increased by the spin-singlet Cooper pairs[comparing Figs.5(a)and 5(c)].However,the equal-spin AR is decreased,since the spin-triplet pairing is rather weak for double-band ISC.[26,31]Out of subgap energy regionE >Δ,the normal AR probability decreases rapidly from a large value with the increase of the energy, regardless of the values ofλvandμISC.On the other hand,the equal-spin AR probability increases first from zero,then decreases slowly with the increase of the energyEfromΔ.In addition,both normal AR and equal-spin AR present the resonant behavior near the superconducting gap edges,similar to the AR in N/SC junctions.[46]Particularly,the resonant normal AR exhibits a simple peak nearE=Δ,while the resonant equal-spin AR exhibits a peak followed by a dip.

    The influence of off-resonant polarized light on the magnetoanisotropy of AR is discussed in Fig.6.The AR probabilities for the incident electron fromKandK'valleys are defined as

    The total AR probability isRK+RK'.In the presence of magnetization vector, the HamiltonianHηhas the relationσzHη(θ)σ-1z=Hη(-θ), soRη(-θ) =Rη(θ), i.e.,RK(θ)andRK'(θ)are symmetric aboutθ=0,as shown in Figs.6(a)and 6(b).In the absence of the light withλv=0.0, both AR probabilitiesRKandRK'are anisotropic with respect to the magnetization directionθ, as shown in Fig.6(a).RKmainly appears in the third and fourth quadrants, whileRK'mainly occurs in the first and second quadrants.The Hamiltonians between the two valleys can be related by the spin rotation operatorσx,

    This indicates that the AR probabilities between the two valleys have the relation

    TheRKandRK'are symmetric aboutθ=π/2.As a consequence, the total AR probabilityRK+RK'is magnetoanisotropic with periodπ.In the half-metal phase withμFM= 10 meV<M-λv, only the equal-spin AR can occur (see Fig.3).When the magnetization vectorMis in thezdirection withθ=0, the equal-spin AR is prohibited, then the AR probabilitiesRKandRK'are zero[see Fig.6(a)].With the increase ofθfrom 0, the equal-spin AR occurs and the AR probabilities appear.When the right circularly polarized light is applied withλv=5.0 meV in Fig.6(b), the symmetric relation equations (13) and (14) between the two valleys are destroyed.RKis decreased butRK'is increased by the right circularly polarized light,becauseKis the minority valley andK'is the majority valley in the FM lead.Oppositely,the left circularly polarized light would increaseRKand decreaseRK'.Thus,the magnetoanisotropy of the total AR probabilityRK+RK'becomes remarkable and the period becomes 2πinstead ofπin the presence of the light.

    Fig.6.AR probability versus the magnetization direction θ at (a)λv=0.0 and(b)λv=5.0 meV.The black,red,blue curves are for RK,RK',and RK+RK'.Here,μFM=10.0 meV,E=0.0,andμISC=0.0.

    Finally,we study the spin transport in this FM/ISC junction.As discussed in Figs.3(b) and 3(f), only the equal-spin ARRK→?K'→andRK'→?K→could occur in the rhombic area.In this rhombic area,only theSx=1 spin-triplet Cooper pairs|KK',?〉 are generated by the equal-spin AR processes and inject into ISC.There is no injection of the spin-singlet and other kinds of spin-triplet Cooper pairs.As a result, only the Cooper pairs|KK',?〉with spinS=1 andSx=1 would flow alongxdirection in the ISC.This implies that a completely spin-polarized supercurrent appears in this rhombic area.If the direction of magnetization is inverted toθ= 3π/2, the spin of the moving Cooper pairs would change toS=1 andSx=-1, and the Cooper pairs|KK',?〉 would contribute to the charge current and the spin current.Observably,the direction of the spin-triplet Cooper pairs can be controlled by the magnetization and the light.

    Considering thex-direction spin biaseVat the FM/ISC junction, the spin currentIsfrom FM lead flowing into ISC can be written as[35,47]

    whereis the equal-spin AR probability,is the spinflip reflection probability,andTsNis the transmission probability.The spin indexs=→,←or+,-in Eq.(15).The Fermi distribution function requiresfL,e→=fL,h←=f(E-eV)andfL,e←=fL,h→=f(E+eV)in the FM lead andfR=f(E)in the ISC.The differential spin conductance can be obtained asGs= dIs/dV.The differential spin conductance for the incident electron fromK(K') valley is labeled asGs,K(Gs,K'),satisfyingGs=Gs,K+Gs,K'.For the FM/ISC junction, the high spin injection efficiency occurs in the particular halfmetal phase [e.g., in the rhombic area in Figs.3(b) and 3(f)]where there is no spin-flip reflection.

    Fig.7.Differential spin conductance Gs versus the finite spin bias eV at zero temperature for different values of(a)μFM,(b)μISC,and(c)λv.(d) Gs,K and Gs,K' versus eV for different values of λv.The values of parameters are set as θ =π/2, λv =0.0, μFM =0.0, and μISC =0.0,unless otherwise noted in the figure.

    Figure 7 displays the differential spin conductance as a function of finite spin biaseVwith the parametersμFMandλvin the rhombic area.Due to only the occurrence of the equal-spin AR in the rhombic area, the results are the same for thex-direction spin bias and the bias.From Fig.7, one can see that with the continuous increase of spin bias,the differential spin conductance increases slowly at first, and then decreases rapidly after reaching its peak value.In the absence of light withλv=0.0,the differential spin conductanceGs,Kis the same asGs,K'.The totalGsdecreases with the increase ofμFMand tends to zero atμFM=20.0 meV [see Fig.7(a)].As shown in Fig.7(b),Gsincreases gradually withμISCin the single-band superconducting phase(see the curves withμISC<λs).On the contrary,Gsdecreases withμISCin the double-band superconducting phase (see the curves withμISC>λs).The reason is that the differential spin conductance is mainly contributed by the equal-spin AR which mainly occurs in the single-band phase.With the appearance and increase of the light,Gsdecreases relatively[see Fig.7(c)].Remarkably, the differential spin conductanceGs,Kis no longer equal toGs,K'.It can be seen from Fig.7(d) that asλvincreases,Gs,Kdecreases gradually butGs,K'increases gradually.Atλv=20 meV, only incident electrons fromK'valley contribute to differential spin conductance.When the light changes from the right to the left circular polarization,Gs,Kwill increase andGs,K'will decrease.

    4.Conclusion

    In summary,we studied the dependence of equal-spin AR on the valley degree of freedom in the light-irradiated FM/ISC junction based on Bogoliubov-de Gennes Hamiltonians.Due to the application of circularly polarized light,the properties of equal-spin AR and normal AR strongly depend on the valley degree of freedom.The resonant behavior of equal-spin AR near the superconducting gap edges is different from that of normal AR.The valley-dependent AR presents certain symmetry about light strength and magnetization angle, which can be understood by the symmetry of the system.The existence ofSx=±1 spin-triplet Cooper pairs leads to a valleydependent spin supercurrent in ISC which can be modulated by the light.Our results should be useful to the potential applications of ISC in spintronics and valleytronics.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11974153, 12374034 and 11921005),the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302403), and the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).

    猜你喜歡
    慶豐
    最美慶豐湖
    上海慶豐彩印有限公司
    綠色包裝(2022年9期)2022-10-12 12:18:10
    給父親做一回“父親”
    A NEW ALGORITHM FOR MONOTONE INCLUSION PROBLEMS AND FIXED POINTS ON HADAMARD MANIFOLDS WITH APPLICATIONS?
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    金慶豐3D 硬金新展廳隆重開業(yè)
    中國寶玉石(2018年2期)2018-04-11 07:43:26
    山東慶豐餐飲公司侵害“慶豐”商標及不正當競爭
    “慶豐包子”案翻天大逆轉(zhuǎn)
    人民周刊(2017年10期)2017-08-04 21:31:40
    從“慶豐包子”看時評對新聞的點化魅力
    新聞傳播(2015年6期)2015-07-18 11:13:15
    AltBOC navigation signal quality assessment and measurement*
    淫秽高清视频在线观看| 97超视频在线观看视频| 国产日韩欧美在线精品| 搡老妇女老女人老熟妇| 亚洲精品久久久久久婷婷小说 | 午夜激情福利司机影院| 麻豆国产97在线/欧美| 久久欧美精品欧美久久欧美| 成人午夜精彩视频在线观看| 直男gayav资源| 国产亚洲av嫩草精品影院| 日韩精品有码人妻一区| 欧美潮喷喷水| 99热这里只有是精品50| 桃色一区二区三区在线观看| 少妇猛男粗大的猛烈进出视频 | 久久久色成人| 亚洲自拍偷在线| 日本免费在线观看一区| 成人欧美大片| 成年免费大片在线观看| 中国国产av一级| 国产三级中文精品| 日韩人妻高清精品专区| 久久这里有精品视频免费| 搡老妇女老女人老熟妇| 久久久精品94久久精品| 日本五十路高清| 真实男女啪啪啪动态图| 三级毛片av免费| 一区二区三区乱码不卡18| 亚洲精品影视一区二区三区av| 男女边吃奶边做爰视频| 色吧在线观看| 纵有疾风起免费观看全集完整版 | 1024手机看黄色片| 亚洲欧美日韩卡通动漫| 一级毛片电影观看 | 插逼视频在线观看| 国产精品野战在线观看| 精品一区二区三区视频在线| 精品久久久久久久久av| 人妻夜夜爽99麻豆av| av天堂中文字幕网| 黄色日韩在线| h日本视频在线播放| 欧美最新免费一区二区三区| 网址你懂的国产日韩在线| 国产精品.久久久| 欧美人与善性xxx| 国产成人freesex在线| 国产探花极品一区二区| 91狼人影院| 亚洲,欧美,日韩| 特级一级黄色大片| 欧美人与善性xxx| 精品酒店卫生间| 精品酒店卫生间| 色网站视频免费| 成年版毛片免费区| 国产在线男女| a级一级毛片免费在线观看| 亚洲人成网站在线观看播放| 亚洲天堂国产精品一区在线| 真实男女啪啪啪动态图| 亚洲丝袜综合中文字幕| 尤物成人国产欧美一区二区三区| 免费在线观看成人毛片| 国产单亲对白刺激| 99热这里只有是精品在线观看| 麻豆精品久久久久久蜜桃| 久久草成人影院| 91精品国产九色| 亚洲精品456在线播放app| 亚洲精品456在线播放app| 久久精品国产亚洲av天美| 乱码一卡2卡4卡精品| 又黄又爽又刺激的免费视频.| 尤物成人国产欧美一区二区三区| 99久久人妻综合| 欧美成人午夜免费资源| 午夜久久久久精精品| 别揉我奶头 嗯啊视频| 中文字幕制服av| 直男gayav资源| 精品国内亚洲2022精品成人| 国产精品野战在线观看| 日韩在线高清观看一区二区三区| 成人一区二区视频在线观看| 可以在线观看毛片的网站| 18+在线观看网站| 欧美变态另类bdsm刘玥| 久久精品熟女亚洲av麻豆精品 | АⅤ资源中文在线天堂| 亚州av有码| 床上黄色一级片| 国产av不卡久久| 欧美一区二区国产精品久久精品| 久久精品综合一区二区三区| 两个人视频免费观看高清| 一区二区三区高清视频在线| 亚洲第一区二区三区不卡| 亚洲精品aⅴ在线观看| 我的老师免费观看完整版| 网址你懂的国产日韩在线| 国产老妇女一区| ponron亚洲| 亚洲av日韩在线播放| 国产爱豆传媒在线观看| 亚洲欧美精品自产自拍| 在线观看av片永久免费下载| 国产免费一级a男人的天堂| 九草在线视频观看| 美女黄网站色视频| 国产高潮美女av| 人体艺术视频欧美日本| .国产精品久久| 国产免费福利视频在线观看| 亚洲成人中文字幕在线播放| 91av网一区二区| av免费在线看不卡| 久久精品影院6| 免费观看人在逋| 午夜福利视频1000在线观看| 欧美色视频一区免费| 乱系列少妇在线播放| 精品99又大又爽又粗少妇毛片| 丝袜喷水一区| 亚洲精华国产精华液的使用体验| 日日摸夜夜添夜夜添av毛片| 一个人看视频在线观看www免费| 精品国产露脸久久av麻豆 | 国产色婷婷99| 一个人看视频在线观看www免费| h日本视频在线播放| 日韩欧美 国产精品| 亚洲精品日韩在线中文字幕| 精华霜和精华液先用哪个| 少妇丰满av| 最近最新中文字幕免费大全7| 日本猛色少妇xxxxx猛交久久| 久久精品久久精品一区二区三区| 久久久久九九精品影院| 欧美xxxx性猛交bbbb| 免费黄网站久久成人精品| 99热精品在线国产| 欧美激情久久久久久爽电影| 日本免费在线观看一区| 男人舔奶头视频| 亚洲欧美成人综合另类久久久 | 蜜桃久久精品国产亚洲av| 日韩欧美国产在线观看| 免费一级毛片在线播放高清视频| 欧美日本视频| 亚洲欧美日韩东京热| 一级黄色大片毛片| 久久欧美精品欧美久久欧美| 久久这里只有精品中国| 一级毛片久久久久久久久女| 欧美xxxx黑人xx丫x性爽| 韩国av在线不卡| 在线播放国产精品三级| 成人一区二区视频在线观看| 国产伦在线观看视频一区| 亚洲成人av在线免费| 边亲边吃奶的免费视频| 午夜a级毛片| 亚洲av成人精品一二三区| 亚洲精品乱久久久久久| 舔av片在线| 国产成人a∨麻豆精品| 好男人在线观看高清免费视频| 女人被狂操c到高潮| 联通29元200g的流量卡| 不卡视频在线观看欧美| 国产老妇女一区| 日韩一本色道免费dvd| 日韩欧美精品v在线| 丰满人妻一区二区三区视频av| 久久久久久国产a免费观看| 卡戴珊不雅视频在线播放| 美女cb高潮喷水在线观看| 免费在线观看成人毛片| 亚洲精品一区蜜桃| 久久这里有精品视频免费| 欧美激情久久久久久爽电影| 国语自产精品视频在线第100页| 三级国产精品欧美在线观看| 亚洲精品久久久久久婷婷小说 | 亚洲av电影在线观看一区二区三区 | 只有这里有精品99| 国产av在哪里看| 美女国产视频在线观看| 国产一区二区亚洲精品在线观看| 亚洲最大成人av| 一区二区三区乱码不卡18| 久99久视频精品免费| 女人被狂操c到高潮| 秋霞伦理黄片| 色综合色国产| 在线观看av片永久免费下载| 日韩精品有码人妻一区| 少妇裸体淫交视频免费看高清| 99久久精品国产国产毛片| 国产乱来视频区| 国产av一区在线观看免费| 国产成人a区在线观看| 日韩,欧美,国产一区二区三区 | 丰满少妇做爰视频| 中文字幕制服av| 成人午夜精彩视频在线观看| 人妻夜夜爽99麻豆av| 日本wwww免费看| 国产视频首页在线观看| 97热精品久久久久久| 欧美成人午夜免费资源| kizo精华| 91久久精品电影网| 日日干狠狠操夜夜爽| 国产黄色视频一区二区在线观看 | 免费看a级黄色片| 免费av毛片视频| 男女视频在线观看网站免费| 老司机影院成人| 国产精品久久久久久久久免| 国产色婷婷99| 黄色日韩在线| 免费播放大片免费观看视频在线观看 | 亚洲欧美日韩无卡精品| 丰满乱子伦码专区| 大香蕉97超碰在线| 啦啦啦啦在线视频资源| 天堂av国产一区二区熟女人妻| 精品国产一区二区三区久久久樱花 | 麻豆乱淫一区二区| 国产乱人偷精品视频| 色5月婷婷丁香| 日日啪夜夜撸| 国产男人的电影天堂91| 欧美激情在线99| 又爽又黄无遮挡网站| 赤兔流量卡办理| 欧美一区二区精品小视频在线| 国产精品一及| 日本爱情动作片www.在线观看| 亚洲精品影视一区二区三区av| 亚洲国产色片| 国产又黄又爽又无遮挡在线| 成年女人看的毛片在线观看| 久久欧美精品欧美久久欧美| 爱豆传媒免费全集在线观看| 久久久久久大精品| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲av天美| 成年版毛片免费区| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 国产成人a区在线观看| 白带黄色成豆腐渣| 日本色播在线视频| 日韩强制内射视频| 日韩 亚洲 欧美在线| 乱码一卡2卡4卡精品| 天天一区二区日本电影三级| 亚洲自拍偷在线| av在线天堂中文字幕| 久久久久性生活片| 国产欧美日韩精品一区二区| 又粗又硬又长又爽又黄的视频| 精品免费久久久久久久清纯| 午夜精品在线福利| 久久人妻av系列| 老司机影院毛片| 久久99热这里只有精品18| 一二三四中文在线观看免费高清| 久久精品久久久久久久性| 国产亚洲精品av在线| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的 | 又爽又黄a免费视频| 熟妇人妻久久中文字幕3abv| 欧美日本亚洲视频在线播放| 一级二级三级毛片免费看| 国产片特级美女逼逼视频| 欧美高清性xxxxhd video| 亚洲精品自拍成人| 人妻夜夜爽99麻豆av| 久久精品夜夜夜夜夜久久蜜豆| 青春草亚洲视频在线观看| 少妇熟女欧美另类| 日韩欧美在线乱码| 亚洲av中文av极速乱| av在线播放精品| 真实男女啪啪啪动态图| 日韩av在线免费看完整版不卡| 99九九线精品视频在线观看视频| 晚上一个人看的免费电影| 欧美三级亚洲精品| 色综合站精品国产| 又爽又黄无遮挡网站| 国产高清不卡午夜福利| 美女黄网站色视频| videossex国产| 久久精品国产鲁丝片午夜精品| 国产精品一区二区三区四区免费观看| 婷婷色综合大香蕉| 亚洲欧美日韩卡通动漫| 午夜福利成人在线免费观看| 少妇高潮的动态图| 欧美激情在线99| 99热这里只有是精品在线观看| 国产精品人妻久久久久久| 村上凉子中文字幕在线| 69人妻影院| 国产av一区在线观看免费| 亚洲国产日韩欧美精品在线观看| 欧美一区二区精品小视频在线| 国产黄a三级三级三级人| 亚洲成人久久爱视频| 亚洲无线观看免费| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 九九爱精品视频在线观看| 小说图片视频综合网站| 97超视频在线观看视频| 国产精品久久久久久精品电影小说 | 中文字幕熟女人妻在线| 国产乱来视频区| 精品少妇黑人巨大在线播放 | 成人鲁丝片一二三区免费| 欧美人与善性xxx| 国产乱人视频| 综合色丁香网| 欧美高清性xxxxhd video| 天堂中文最新版在线下载 | 人妻系列 视频| 中文资源天堂在线| av国产免费在线观看| 一个人观看的视频www高清免费观看| 中文在线观看免费www的网站| 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 亚洲精品456在线播放app| 亚洲成人av在线免费| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说 | 久久久色成人| 国产在线一区二区三区精 | 国国产精品蜜臀av免费| 国产成人aa在线观看| 久久久久久久久久成人| 国产精品久久久久久精品电影| 欧美色视频一区免费| 精品少妇黑人巨大在线播放 | 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩综合久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 纵有疾风起免费观看全集完整版 | 精品一区二区三区人妻视频| 精品久久久久久久久av| 建设人人有责人人尽责人人享有的 | 18禁在线无遮挡免费观看视频| 黄色欧美视频在线观看| 国产三级中文精品| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 国产v大片淫在线免费观看| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 亚洲成人久久爱视频| 欧美+日韩+精品| 国产精品久久久久久精品电影| 久久久色成人| 免费观看精品视频网站| 亚洲色图av天堂| 日韩av不卡免费在线播放| 久久久成人免费电影| 超碰av人人做人人爽久久| 亚洲欧美中文字幕日韩二区| 国产精品永久免费网站| 欧美日本视频| 亚洲欧美精品自产自拍| 国产一区二区三区av在线| 国产男人的电影天堂91| 日本爱情动作片www.在线观看| 国产片特级美女逼逼视频| 免费看日本二区| 国产午夜精品一二区理论片| 午夜福利在线观看免费完整高清在| 久久久久精品久久久久真实原创| av在线天堂中文字幕| 熟女人妻精品中文字幕| 久久久a久久爽久久v久久| 免费看光身美女| 亚洲国产精品sss在线观看| 偷拍熟女少妇极品色| 日韩视频在线欧美| 国产精品无大码| 亚洲最大成人手机在线| 看黄色毛片网站| 婷婷六月久久综合丁香| 日韩高清综合在线| 久久这里有精品视频免费| 国产av在哪里看| 18禁裸乳无遮挡免费网站照片| 中国美白少妇内射xxxbb| 99热网站在线观看| 亚洲伊人久久精品综合 | 国产精品一二三区在线看| h日本视频在线播放| 亚洲最大成人av| 天堂影院成人在线观看| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 亚洲欧美成人精品一区二区| 国产成人免费观看mmmm| 麻豆精品久久久久久蜜桃| 国产高清不卡午夜福利| 成年av动漫网址| 欧美三级亚洲精品| 免费大片18禁| 大又大粗又爽又黄少妇毛片口| 精品人妻视频免费看| 禁无遮挡网站| 欧美日韩国产亚洲二区| 国产成年人精品一区二区| 午夜精品在线福利| 国产伦理片在线播放av一区| 草草在线视频免费看| 乱系列少妇在线播放| 最近中文字幕2019免费版| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 中文字幕av在线有码专区| 全区人妻精品视频| 深夜a级毛片| 一边亲一边摸免费视频| 日本免费a在线| 国模一区二区三区四区视频| 欧美xxxx性猛交bbbb| 午夜精品国产一区二区电影 | 国产久久久一区二区三区| 人妻少妇偷人精品九色| 欧美成人一区二区免费高清观看| 欧美另类亚洲清纯唯美| 国产毛片a区久久久久| 男女下面进入的视频免费午夜| 看免费成人av毛片| 免费观看在线日韩| 听说在线观看完整版免费高清| 99热这里只有是精品50| 免费看a级黄色片| 亚洲最大成人手机在线| 夫妻性生交免费视频一级片| 激情 狠狠 欧美| 99热这里只有是精品50| 少妇被粗大猛烈的视频| 午夜激情福利司机影院| 国产熟女欧美一区二区| 我要搜黄色片| 午夜视频国产福利| av免费在线看不卡| 一级av片app| 精品人妻偷拍中文字幕| 亚洲五月天丁香| 中文字幕av在线有码专区| 国产私拍福利视频在线观看| 超碰97精品在线观看| 国产高潮美女av| 亚洲高清免费不卡视频| 伊人久久精品亚洲午夜| 国产黄a三级三级三级人| 亚洲精品一区蜜桃| 精品人妻视频免费看| 水蜜桃什么品种好| 天堂中文最新版在线下载 | 午夜久久久久精精品| 久久99蜜桃精品久久| 精品一区二区三区视频在线| .国产精品久久| 日本爱情动作片www.在线观看| 在线播放无遮挡| 美女黄网站色视频| 国产精品久久电影中文字幕| 自拍偷自拍亚洲精品老妇| 精品一区二区三区视频在线| 欧美区成人在线视频| 狠狠狠狠99中文字幕| 国产午夜精品论理片| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久 | 国产一区二区三区av在线| 欧美xxxx性猛交bbbb| 国内少妇人妻偷人精品xxx网站| 美女cb高潮喷水在线观看| 亚洲色图av天堂| 免费看美女性在线毛片视频| 亚洲在线自拍视频| 久久精品夜夜夜夜夜久久蜜豆| 桃色一区二区三区在线观看| 亚洲激情五月婷婷啪啪| 男插女下体视频免费在线播放| 波野结衣二区三区在线| 一个人免费在线观看电影| 99热精品在线国产| 最近最新中文字幕免费大全7| 内地一区二区视频在线| 日本与韩国留学比较| 非洲黑人性xxxx精品又粗又长| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 国产伦在线观看视频一区| 男女国产视频网站| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 精品久久久久久电影网 | 日韩av在线免费看完整版不卡| 精品欧美国产一区二区三| 国产老妇女一区| 97热精品久久久久久| 国产精品国产高清国产av| 一级二级三级毛片免费看| 欧美变态另类bdsm刘玥| 亚洲欧洲日产国产| 欧美潮喷喷水| 又粗又硬又长又爽又黄的视频| videos熟女内射| 日韩制服骚丝袜av| 亚洲av电影不卡..在线观看| 亚洲乱码一区二区免费版| 99热全是精品| 国产精品日韩av在线免费观看| 国产亚洲av嫩草精品影院| 中文亚洲av片在线观看爽| 久久午夜福利片| 亚洲色图av天堂| 少妇猛男粗大的猛烈进出视频 | 18禁在线播放成人免费| 久久这里有精品视频免费| 欧美精品国产亚洲| 国产成人a区在线观看| 亚洲av免费在线观看| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 午夜精品国产一区二区电影 | 亚洲高清免费不卡视频| 三级经典国产精品| 少妇猛男粗大的猛烈进出视频 | 久久99热这里只频精品6学生 | 国产精品福利在线免费观看| 99热这里只有是精品在线观看| 国产极品天堂在线| 免费在线观看成人毛片| 男女啪啪激烈高潮av片| 国产黄色视频一区二区在线观看 | 一本一本综合久久| 亚洲中文字幕一区二区三区有码在线看| 欧美激情在线99| 亚洲最大成人中文| 日日摸夜夜添夜夜爱| 天天一区二区日本电影三级| 国产免费视频播放在线视频 | 国产精品.久久久| 亚洲av熟女| 亚洲成色77777| 亚洲精品国产av成人精品| 伦理电影大哥的女人| 色综合站精品国产| 久久久久久久久中文| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av涩爱| 天美传媒精品一区二区| 国产探花极品一区二区| 免费看美女性在线毛片视频| 搞女人的毛片| 两个人视频免费观看高清| 少妇高潮的动态图| 能在线免费看毛片的网站| 成年女人看的毛片在线观看| 亚洲国产精品成人久久小说| 亚洲精品自拍成人| 免费看av在线观看网站| 久久精品国产自在天天线| 在线播放国产精品三级| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人av| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 高清午夜精品一区二区三区| 毛片女人毛片| 男的添女的下面高潮视频| 久99久视频精品免费| 国产av在哪里看| 如何舔出高潮| 亚洲国产精品专区欧美| 天堂网av新在线| 一级毛片电影观看 | 自拍偷自拍亚洲精品老妇| 国产v大片淫在线免费观看| 黄片wwwwww| 99久久成人亚洲精品观看| 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 亚洲最大成人av| 欧美激情国产日韩精品一区| 我要搜黄色片|