• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NEW ALGORITHM FOR MONOTONE INCLUSION PROBLEMS AND FIXED POINTS ON HADAMARD MANIFOLDS WITH APPLICATIONS?

    2021-09-06 07:54:56張石生
    關(guān)鍵詞:慶豐

    (張石生)

    Center for General Education,China Medical University,Taichung 40402,Taiwan,China E-mail:changss2013@163.com

    Jinfang TANG (唐金芳)

    Department of Mathematics,Yibin University,Yibin 644007,China E-mail:jinfangt 79@163.com

    Chingfeng WEN (溫慶豐)

    Department of Medical Research,Kaohsiung Medical University Hospital,Kaohsiung 80708,Taiwan,China E-mail:cfwen@kmu.edu.tw

    Abstract In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds.

    Key words Monotone inclusion problem;quasi-pseudo-contractive mapping;demi-contraction mapping;maximal monotone vector field;quasi-nonexpansive mappings;Hadamard manifold

    1 Introduction

    Rockafellar[1]considered the inclusion problem of finding

    where

    B

    is a set-valued maximal monotone mapping de fined on a Hilbert space

    H

    .He developed an elegant method,known as the proximal point algorithm(PPA),to solve this inclusion problem.

    During the last two decades,inclusion problem(1.1)has been extended and generalized in many directions because of its applications to different areas in science,engineering,management and the social sciences(see,for example,[2–9]and the references therein).

    Recently,many convergence results attained by the proximal point algorithm have been extended from the classical linear spaces to the setting of manifolds(see,for examle,[10–14]).Li et al.[10]developed the proximal point method for problem(1.1)in the setting of Hadamard manifolds.Later,Li et al.[11]extended the Mann and Halpern iteration scheme for finding the fixed points of nonexpansive mappings from Hilbert spaces to Hadamard manifolds.Very recently,Ansari et al.[12]and Al-Homidan-Ansari-Babu[13]considered the problem of finding

    in a Hadamard manifold,where

    T

    is a nonexpansive mapping,

    B

    is a set-valued maximal monotone mapping,and

    A

    is a single-valued continuous and monotone mapping.They proposed some Halpern-type and Mann-type iterative methods.They proved that,under suitable conditions,the sequence generated by the algorithm converges strongly to a common element of the set of fixed points of the mapping

    T

    and the set of solutions of the inclusion problem.

    Motivated and inspired by the works in[5–8]and[11–14],in this article we consider the problem of finding

    in the setting of Hadamard manifolds,where

    S

    is a quasi-pseudo-contractive mapping,

    U

    is a demi-contractive mapping,

    B

    is a set-valued maximal monotone mapping and

    A

    is a singlevalued and monotone mapping such that

    A

    +

    B

    is maximal monotone.We propose a new type of algorithm and prove that the sequences generalized by the algorithm converge strongly to a common element of problem(1.3).As applications we apply our results to study the minimization problems and equilibrium problems in Hadamard manifolds.

    2 Preliminaries

    The Riemannian distance d(

    p,q

    )is the minimal length over the set of all such curves joining

    p

    to

    q

    ,which induces the original topology on

    M

    .A Riemannian manifold

    M

    is complete if,for any

    p

    M

    ,all geodesics emanating from

    p

    are de fined for all

    t

    ∈R.A geodesic joining

    p

    to

    q

    in

    M

    is said to be a minimal geodesic if its length is equal to d(

    p,q

    ).A Riemannian manifold

    M

    equipped with Riemannian distance d is a metric space(

    M,

    d).By the Hopf-Rinow Theorem[15],if

    M

    is complete,then any pair of points in

    M

    can be joined by a minimal geodesic.Moreover,(

    M,

    d)is a complete metric space and bounded closed subsets are compact.

    It is known that exp

    tv

    =

    γ

    (

    t,p

    )for each real number

    t

    .It is easy to see that exp0=

    γ

    (0

    ,p

    )=

    p

    ,where 0 is the zero tangent vector.Note that the exponential map expis differentiable on

    T

    M

    for any

    p

    M

    .

    De finition 2.2

    A complete simply connected Riemannian manifold of non-positive sectional curvature is called a Hadamard Manifold.

    Proposition 2.3

    ([15])Let

    M

    be a Hadamard manifold.Then,for any two points

    x,y

    M

    ,there exists a unique normalized geodesic

    γ

    :[0

    ,

    1]→

    M

    joining

    x

    =

    γ

    (0)to

    y

    =

    γ

    (1)which is in fact a minimal geodesic denoted by

    The following inequalities can be proved easily:

    Lemma 2.4

    Let

    M

    be a finite dimensional Hadamard manifold.(i)Let

    γ

    :[0

    ,

    1]→

    M

    be a geodesic joining

    x

    to

    y

    .Then we have

    (From now on d(

    x,y

    )denotes the Riemannian distance).(ii)For any

    x,y,z,u,w

    M

    and

    t

    ∈[0

    ,

    1],the following inequalities hold:

    Let

    M

    be a Hadamard manifold.A subset

    C

    ?

    M

    is said to be geodesic convex if,for any two points

    x

    and

    y

    in

    C

    ,the geodesic joining

    x

    to

    y

    is contained in

    C

    .In the sequel,unless otherwise speci fied,we always assume that

    M

    is a finite dimensional Hadamard manifold,and

    C

    is a nonempty,bounded,closed and geodesic convex set in

    M

    ,and Fix(

    S

    )is the fixed point set of a mapping

    S

    .A function

    f

    :

    C

    →(?∞

    ,

    ∞]is said to be geodesic convex if,for any geodesic

    γ

    (

    λ

    )(0≤

    λ

    ≤1)joining

    x,y

    C

    ,the function

    f

    ?

    γ

    is convex,that is,

    De finition 2.7

    A mapping

    S

    :

    C

    C

    is said to be(1)contractive if there exists a constant

    k

    ∈(0

    ,

    1)such that

    If

    k

    =1,then

    S

    is said to be nonexpansive,and(2)quasinonexpansive if Fix(

    S

    )/=?and

    (3) firmly nonexpansive[18]if for all

    x,y

    C

    ,the function

    φ

    :[0

    ,

    1]→[0

    ,

    ∞]de fined by

    is nonincreasing;

    (4)

    k

    -demicontractive[19]if Fix(

    S

    )/=?and there exists a constant

    k

    ∈[0

    ,

    1)such that

    (5)quasi-pseudo-contractive if Fix(

    S

    )/=?and

    Proposition 2.8

    ([18])Let

    S

    :

    C

    C

    be a mapping.Then the following statements are equivalent:(i)

    S

    is firmly nonexpansive;(ii)for any

    x,y

    C

    and

    t

    ∈[0

    ,

    1]

    (iii)for any

    x,y

    C

    Lemma 2.9

    If

    S

    :

    C

    C

    is a firmly nonexpansive mapping and Fix(

    S

    )/=?,then for any

    x

    C

    and

    p

    ∈Fix(

    S

    ),the following conclusion holds:

    Proof

    For given points

    x

    C,p

    ∈Fix(

    S

    )and

    Sx

    ,we consider a geodesic triangle△(

    p,Sx,x

    ).By a comparison theorem for triangle([15]Proposition 4.5),we have

    Since

    S

    :

    C

    C

    is firmly nonexpansive,taking

    y

    =

    p

    in(2.9),we have

    This,together with(2.11),shows that

    The conclusion of Lemma 2.9 is proved.

    Remark 2.10

    From De finition 2.7 and Lemma 2.9,it is easy to see that if Fix(

    S

    )/=?,then the following implications hold:

    but the converse is not true.In fact,if Fix(

    S

    )/=?and

    S

    is firmly nonexpansive,then,by(2.10),it is quasi-nonexpansive;therefore it is demicontractive and so it is quasi-pseudo-contractive.These show that the class of quasi-pseudo-contractive mappings is more general than the classes of quasinonexpansive mappings,firmly nonexpansive mappings and

    k

    -demicontractive mappings.In the sequel,we denote by X(

    M

    )the set of all set-valued vector fields

    A

    :

    M

    ?

    TM

    such that

    A

    (

    x

    )?

    T

    M

    for all

    x

    M

    ,and we let the domain D(

    A

    )of

    A

    be de fined by D(

    A

    )={

    x

    M

    :

    A

    (

    x

    )/=?}.

    De finition 2.11

    A set-valued vector field

    A

    ∈X(

    M

    )on a Hadamard manifold

    M

    is said to be(1)monotone if,for any

    x,y

    ∈D(

    A

    ),

    (2)maximal monotone if it is monotone and for all

    x

    ∈D(

    A

    )and

    u

    T

    M

    ,the condition

    implies

    u

    A

    (

    x

    );

    is called the resolvent of

    A

    of order

    λ>

    0.

    De finition 2.13

    A mapping

    T

    :

    C

    C

    is said to be demiclosed at 0 if,for any sequence{

    x

    }?

    C

    such that

    x

    x

    and d(

    x

    ,Tx

    )→0,then

    x

    ∈Fix(

    T

    ).

    3 Main Results

    First we give following Lemma,which will be needed in proving our main result:

    Lemma 3.1

    Let

    M

    be a Hadamard manifold and

    T

    :

    C

    C

    be a mapping which is

    L

    -Lipschitzian(

    L

    ≥1)and demiclosed at 0.Let

    G

    :

    C

    C

    and

    K

    :

    C

    C

    be two mappings de fined by

    (1)Fix(

    T

    )=Fix(

    T

    ?

    G

    )=Fix(

    K

    );(2)

    K

    is also demiclosed at 0;(3)

    K

    :

    C

    C

    is

    L

    -Lipschitzian;(4)In addition,if

    T

    :

    C

    C

    is quasi-pseudo-contractive,then

    K

    :

    X

    X

    is a quasinonexpansive mapping,that is,for any

    x

    C

    and

    p

    ∈Fix(

    K

    )(=Fix(

    T

    )),

    (5)In particular,in addition,if

    T

    :

    C

    C

    is

    k

    -demi-contractive and

    k

    ∈(0

    ,

    1),then the mapping

    W

    :

    C

    →de fined by

    has the following properties:

    (a)Fix(

    T

    )=Fix(

    W

    );(b)

    W

    is

    L

    -Lipschitzian;(c)

    W

    is demiclosed at(0);(d)

    W

    is a quasi-nonexpansive mapping.

    Proof

    First we prove the conclusion(1)In fact,if

    u

    ∈Fix(

    T

    ),then

    If

    u

    ∈Fix(

    T

    ?

    G

    ),then it follows from(2.4)that

    If

    u

    ∈Fix(

    K

    ),then,from(2.4),we have

    Simplifying,we have

    Since

    Lη<

    1,this implies that

    u

    ∈Fix(

    T

    ).The conclusion(1)is proved.

    Now we prove the conclusion(2)

    Simplifying,we have

    This implies that

    By the assumption(1?

    )

    >

    0 and d(

    x

    ,Kx

    )→0,this implies that d(

    x

    ,Tx

    )→0.Since

    T

    is demiclosed at 0,

    x

    ∈Fix(

    T

    ).Hence

    x

    ∈Fix(

    K

    );that is,

    K

    is demiclosed at 0.

    Next we prove the conclusion(3)

    Since

    T L

    -Lipschitzian,for any

    x,y

    C

    it follows from(2.6)that

    Similarly,from(2.6)and(3.4),we have

    Now we prove the conclusion(4)

    For any

    p

    ∈Fix(

    T

    )and any

    x

    X

    ,it follows from(2.5)that

    Since

    T

    is quasi-pseudo-contractive,we have

    From(2.5)we have

    Substituting(3.6)and(3.7)into(3.5),after simplifying,we have

    Finally we prove the conclusion(5)

    It is easy to prove that

    W

    has the properties(a)–(c).Next we prove that

    W

    has the property(d).In fact,since Fix(

    T

    )=Fix(

    W

    ),for any

    p

    ∈Fix(

    T

    )=Fix(

    W

    )and

    x

    C

    it follows from(3.3),(2.5)and the de finition of

    k

    -demicontractive mapping that

    The conclusion(d)is proved.Therefore the proof of Lemma 3.1 is completed.

    In the sequel,we always assume that

    (1)

    M

    is a finite dimensional Hadamard manifold and

    C

    is a nonempty closed and bounded geodesic convex subset of

    M

    ;(2)

    B

    :

    C

    ?

    TM

    is a set-valued maximal monotone mapping and

    A

    :

    C

    TM

    is a single-valued and monotone mapping such that

    A

    +

    B

    is a set-valued maximal monotone vector field;

    (4)

    S

    :

    C

    C

    is a quasi-pseudo-contractive mapping,

    U

    :

    C

    C

    is a

    k

    -demi-contractive mapping,

    k

    ∈(0

    ,

    1),and that

    S

    and

    U

    both are demiclosed at 0 and

    L

    -Lipschitzian,

    L

    ≥1;(5)We can let

    G

    ,K

    :

    C

    C

    and

    K

    :

    C

    C

    be the mappings de fined by

    Proof

    (I)First we observe that by the assumptions of Theorem 3.2,Lemma 2.12 and Lemma 3.1,we have that

    Since

    K

    is quasi-nonexpansive,from Lemma 2.4 and(3.11)we have that

    Similarly,from Lemma 2.4 and(3.12),we have

    This implies that

    In fact,it follows from(3.13)that

    Since

    a

    (1?

    b

    )

    >

    0,this implies that

    From(3.16)and Lemma 2.4,we have

    Furthermore,it follows from Lemma 2.9 and(3.14)that,for each

    p

    ∈?,

    The conclusion of(3.15)is proved.

    (IV)Now we prove that{

    x

    }converges strongly to some point in ?.

    This completes the proof of Theorem 3.2.

    4 Applications

    Throughout this section we assume that

    M

    is a finite dimensional Hadamard manifold,and that

    C

    is a bounded closed and geodesic convex subset of

    M

    .

    4.1 Minimization problems on Hadamard manifolds

    Let

    f

    :

    M

    →(?∞

    ,

    +∞]be a proper,lower semicontinuous and geodesic convex function.Consider the minimization problem of finding a point

    x

    M

    such that

    We denote by ?the solution set of the minimization problem(4.1),that is,

    The subdifferential

    ?f

    (

    x

    )of

    f

    at

    x

    M

    [21]is de fined by

    Lemma 4.1

    ([10])Let

    f

    :

    M

    →(?∞

    ,

    +∞]be a proper,lower semicontinuous and geodesic convex function.Then,the subdifferential

    ?f

    of

    f

    is a maximal monotone vector field,and

    From Lemma 4.1,we know that if

    f

    :

    M

    →(?∞

    ,

    +∞]

    ,i

    =1

    ,

    2

    ,

    is a proper,lower semicontinuous and geodesic convex function,and

    ?f

    is the subdifferential of

    f

    ,so

    ?

    (

    f

    +

    f

    )=

    ?f

    +

    ?f

    and

    ?

    (

    f

    +

    f

    )is a maximal monotone vector field.Hence,from Theorem 3.2 and Lemma 4.1,we have the following result:

    where{

    β

    }

    ,

    {

    δ

    }?(0

    ,

    1)such that 0

    <a

    β

    b<

    1

    ,

    ?

    n

    ≥0 and

    K

    and

    K

    are mappings de fined by(3.9).If

    then the sequence{

    x

    }converges strongly to some point

    x

    ∈?.In particular,if

    S

    =

    U

    =

    I

    (the identity mapping on

    M

    )and

    f

    =

    f,f

    =0,then the sequence{

    x

    }de fined by

    converges strongly to a solution of minimization problem(4.1).

    4.2 Equilibrium problems on Hadamard manifolds

    Let

    F

    :

    C

    ×

    C

    →R be a bifunction.We assume that the following conditions are satis fied:

    The equilibrium problem(in short,EP)is to find

    x

    C

    such that

    The solution set of equilibrium problem(4.5)is denoted by EP(F).

    Lemma 4.4

    ([13])Let

    C

    be a nonempty closed and geodesic convex subset of a Hadamard manifold

    M

    .Let

    F

    :

    C

    ×

    C

    →R be a bifunction satisfying the conditions(A1)–(A4).Let

    H

    :

    M

    ?

    TM

    be a set-valued mapping de fined by

    In Theorem 3.2,taking

    B

    =

    H

    ,

    A

    =0 and

    S

    =

    U

    =

    I

    ,the following result can be obtained from Theorem 3.2 immediately:

    Theorem 4.5

    Let

    F

    :

    C

    ×

    C

    →R be a bifunction satisfying the conditions(A1)–(A4)and let

    H

    :

    M

    M

    be the mapping de fined by(4.7).For any given

    x

    C

    ,let{

    x

    }be the sequence de fined by

    If

    EP

    (

    F

    )/=?,then the sequence{

    x

    }converges strongly to a solution of equilibrium problem(4.5).

    5 Conclusion

    In this paper,an iterative algorithm to approximate a common element of the set of fixed points of a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds has been proposed.Under suitable conditions,we proved that the sequence generated by the algorithm converges strongly to a common solution of problem(1.3).Since the quasi-pseudo-contractive mapping and the demicontractive mapping is more general than the nonexpansive mapping,firmly nonexpansive mapping and quasi-nonexpansive mapping,problem(1.3)studied in our paper is quite general.It includes many kinds of problems,such as convex optimization problems,the fixed point problem,variational inclusion problems,and equilibrium problems as its special cases.Therefore the results presented in the paper not only improve and generalize some recent results,but also provide a powerful tool for solving other problems related to(1.3).

    猜你喜歡
    慶豐
    Photoinduced valley-dependent equal-spin Andreev reflection in Ising superconductor junction
    最美慶豐湖
    上海慶豐彩印有限公司
    綠色包裝(2022年9期)2022-10-12 12:18:10
    給父親做一回“父親”
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    金慶豐3D 硬金新展廳隆重開業(yè)
    中國寶玉石(2018年2期)2018-04-11 07:43:26
    山東慶豐餐飲公司侵害“慶豐”商標(biāo)及不正當(dāng)競爭
    “慶豐包子”案翻天大逆轉(zhuǎn)
    人民周刊(2017年10期)2017-08-04 21:31:40
    從“慶豐包子”看時(shí)評(píng)對(duì)新聞的點(diǎn)化魅力
    新聞傳播(2015年6期)2015-07-18 11:13:15
    AltBOC navigation signal quality assessment and measurement*
    午夜精品久久久久久毛片777| 亚洲av第一区精品v没综合| 日韩成人在线观看一区二区三区| 亚洲五月婷婷丁香| 免费少妇av软件| 久久精品影院6| 久久伊人香网站| 黄网站色视频无遮挡免费观看| 日韩有码中文字幕| 成年版毛片免费区| 十分钟在线观看高清视频www| 久久久久久人人人人人| 香蕉丝袜av| 97人妻天天添夜夜摸| 日韩av在线大香蕉| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 19禁男女啪啪无遮挡网站| 亚洲国产看品久久| 免费久久久久久久精品成人欧美视频| 久久香蕉精品热| 黄色视频,在线免费观看| 色婷婷久久久亚洲欧美| 国产乱人伦免费视频| 十分钟在线观看高清视频www| 欧美乱妇无乱码| 久久久久久人人人人人| 91在线观看av| 日韩欧美国产一区二区入口| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 欧美午夜高清在线| 99久久久亚洲精品蜜臀av| 日本在线视频免费播放| 欧美黑人精品巨大| av免费在线观看网站| 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 黑丝袜美女国产一区| 国产男靠女视频免费网站| 夜夜看夜夜爽夜夜摸| av电影中文网址| 精品第一国产精品| 亚洲五月婷婷丁香| 身体一侧抽搐| 69av精品久久久久久| 日本五十路高清| 搞女人的毛片| 国产亚洲精品综合一区在线观看 | 精品日产1卡2卡| 国产成年人精品一区二区| 黑人巨大精品欧美一区二区mp4| 亚洲av成人一区二区三| 亚洲人成伊人成综合网2020| 国产一区二区在线av高清观看| 美女免费视频网站| 午夜免费鲁丝| 法律面前人人平等表现在哪些方面| 黄色视频,在线免费观看| 纯流量卡能插随身wifi吗| 成人手机av| 大陆偷拍与自拍| 午夜影院日韩av| 欧美不卡视频在线免费观看 | 777久久人妻少妇嫩草av网站| 国产aⅴ精品一区二区三区波| 国产高清有码在线观看视频 | 国产一区在线观看成人免费| 国产精品电影一区二区三区| 国产片内射在线| tocl精华| 国产亚洲精品久久久久5区| 19禁男女啪啪无遮挡网站| 天天躁狠狠躁夜夜躁狠狠躁| 午夜激情av网站| 色播在线永久视频| 级片在线观看| av福利片在线| 真人一进一出gif抽搐免费| 久久精品国产亚洲av高清一级| 久久人人精品亚洲av| ponron亚洲| 精品国内亚洲2022精品成人| 亚洲一区高清亚洲精品| 99国产精品一区二区蜜桃av| 久久精品国产清高在天天线| 人人妻人人澡欧美一区二区 | 少妇被粗大的猛进出69影院| 国产精品香港三级国产av潘金莲| 91在线观看av| 亚洲情色 制服丝袜| 一卡2卡三卡四卡精品乱码亚洲| 成年人黄色毛片网站| 午夜福利欧美成人| 成人av一区二区三区在线看| 亚洲人成网站在线播放欧美日韩| 50天的宝宝边吃奶边哭怎么回事| 日本三级黄在线观看| 国产精品秋霞免费鲁丝片| 亚洲熟妇中文字幕五十中出| 婷婷精品国产亚洲av在线| 亚洲最大成人中文| 国产熟女xx| 精品一区二区三区av网在线观看| 免费在线观看黄色视频的| 亚洲成av片中文字幕在线观看| 搡老岳熟女国产| 婷婷六月久久综合丁香| 九色亚洲精品在线播放| 97人妻天天添夜夜摸| 国产av又大| 90打野战视频偷拍视频| 国产黄a三级三级三级人| av有码第一页| 国产精品二区激情视频| 一二三四社区在线视频社区8| 成在线人永久免费视频| 国产精品 国内视频| 18禁裸乳无遮挡免费网站照片 | 色av中文字幕| 成年人黄色毛片网站| 久久九九热精品免费| 国产精品美女特级片免费视频播放器 | 中文字幕人妻熟女乱码| 夜夜爽天天搞| 国产精品久久久久久人妻精品电影| 久久人人精品亚洲av| 美女大奶头视频| 久久国产乱子伦精品免费另类| 亚洲欧美日韩无卡精品| www.自偷自拍.com| 午夜视频精品福利| 欧美日韩精品网址| 亚洲欧美日韩另类电影网站| 久久久久国产精品人妻aⅴ院| 亚洲午夜理论影院| 一级毛片精品| 久久国产亚洲av麻豆专区| 正在播放国产对白刺激| 色av中文字幕| 亚洲欧美精品综合久久99| 在线观看免费日韩欧美大片| 两性夫妻黄色片| 一边摸一边抽搐一进一小说| 国产午夜精品久久久久久| 美女高潮喷水抽搐中文字幕| 久久狼人影院| 久久久久久人人人人人| 国产午夜福利久久久久久| 黑人操中国人逼视频| 亚洲国产欧美网| 国产aⅴ精品一区二区三区波| 亚洲一区高清亚洲精品| 波多野结衣一区麻豆| 丝袜人妻中文字幕| 国产麻豆成人av免费视频| 操出白浆在线播放| 久99久视频精品免费| 99久久精品国产亚洲精品| 麻豆国产av国片精品| 国产熟女午夜一区二区三区| 青草久久国产| 国产成人av教育| 亚洲av电影不卡..在线观看| 久久久久久久午夜电影| 精品国产美女av久久久久小说| 国产野战对白在线观看| 免费看a级黄色片| 久久婷婷人人爽人人干人人爱 | 天天躁夜夜躁狠狠躁躁| 一区二区三区激情视频| 一二三四在线观看免费中文在| 精品少妇一区二区三区视频日本电影| 精品福利观看| 中文字幕高清在线视频| 多毛熟女@视频| www.熟女人妻精品国产| 亚洲欧美日韩高清在线视频| 人妻丰满熟妇av一区二区三区| 欧美最黄视频在线播放免费| 老司机在亚洲福利影院| 成人特级黄色片久久久久久久| 色av中文字幕| av在线天堂中文字幕| 成人免费观看视频高清| 国产精品免费一区二区三区在线| 成人免费观看视频高清| 搡老妇女老女人老熟妇| 亚洲精华国产精华精| 久久午夜亚洲精品久久| 成人国语在线视频| 欧美中文日本在线观看视频| 精品无人区乱码1区二区| 两性夫妻黄色片| 麻豆av在线久日| 亚洲性夜色夜夜综合| 91麻豆精品激情在线观看国产| 亚洲精品美女久久av网站| 满18在线观看网站| www.www免费av| 中国美女看黄片| 香蕉国产在线看| 老司机深夜福利视频在线观看| 久久久精品国产亚洲av高清涩受| 午夜精品久久久久久毛片777| 97超级碰碰碰精品色视频在线观看| 中文字幕人妻熟女乱码| 麻豆国产av国片精品| av网站免费在线观看视频| 午夜福利在线观看吧| 一进一出抽搐动态| 制服人妻中文乱码| 我的亚洲天堂| 欧美 亚洲 国产 日韩一| 国产精品1区2区在线观看.| www日本在线高清视频| 无限看片的www在线观看| 男男h啪啪无遮挡| 99久久99久久久精品蜜桃| 亚洲自偷自拍图片 自拍| 亚洲国产日韩欧美精品在线观看 | 国产xxxxx性猛交| 91麻豆精品激情在线观看国产| 在线观看一区二区三区| 日韩三级视频一区二区三区| 久久中文字幕人妻熟女| 国产一区二区三区综合在线观看| av在线天堂中文字幕| 国产高清有码在线观看视频 | 亚洲av日韩精品久久久久久密| 日韩欧美三级三区| 黄片小视频在线播放| 免费高清视频大片| 欧美激情极品国产一区二区三区| 亚洲七黄色美女视频| 1024视频免费在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲精品美女久久久久99蜜臀| 欧美一区二区精品小视频在线| 男人舔女人的私密视频| 好看av亚洲va欧美ⅴa在| 黑人巨大精品欧美一区二区mp4| 91成人精品电影| 日韩欧美国产一区二区入口| 精品人妻在线不人妻| 国产一区二区三区在线臀色熟女| 亚洲第一青青草原| 国产三级在线视频| 18禁观看日本| 一区二区三区激情视频| 日韩欧美国产一区二区入口| 久久亚洲精品不卡| 女生性感内裤真人,穿戴方法视频| 亚洲精华国产精华精| 亚洲欧美一区二区三区黑人| 大香蕉久久成人网| 亚洲第一欧美日韩一区二区三区| 国产片内射在线| 色播在线永久视频| 99国产精品99久久久久| 在线观看66精品国产| 国产精品香港三级国产av潘金莲| 91av网站免费观看| 可以在线观看的亚洲视频| xxx96com| 黄网站色视频无遮挡免费观看| 国产主播在线观看一区二区| 老汉色av国产亚洲站长工具| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 国产xxxxx性猛交| 丝袜人妻中文字幕| 午夜成年电影在线免费观看| 在线十欧美十亚洲十日本专区| 国产午夜福利久久久久久| 美女高潮喷水抽搐中文字幕| www.www免费av| 亚洲情色 制服丝袜| 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区91| 精品一区二区三区四区五区乱码| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| www.999成人在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲av五月六月丁香网| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站 | 亚洲自拍偷在线| 日韩av在线大香蕉| 多毛熟女@视频| 国产成人欧美| 亚洲激情在线av| 久久久久九九精品影院| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av成人一区二区三| 不卡一级毛片| 国产成年人精品一区二区| 麻豆国产av国片精品| 久久青草综合色| 不卡一级毛片| 精品国产美女av久久久久小说| 1024香蕉在线观看| 欧美在线一区亚洲| 久久久久久亚洲精品国产蜜桃av| 中文字幕av电影在线播放| 亚洲电影在线观看av| 日韩成人在线观看一区二区三区| av有码第一页| 亚洲人成电影免费在线| 99久久99久久久精品蜜桃| 天天躁夜夜躁狠狠躁躁| 免费高清在线观看日韩| 成熟少妇高潮喷水视频| www日本在线高清视频| 日本 av在线| 两性夫妻黄色片| 成人欧美大片| 国产成人系列免费观看| 丝袜美腿诱惑在线| 多毛熟女@视频| 老熟妇仑乱视频hdxx| 亚洲成人国产一区在线观看| a在线观看视频网站| 午夜成年电影在线免费观看| 久久精品亚洲熟妇少妇任你| 97人妻精品一区二区三区麻豆 | 韩国av一区二区三区四区| 日韩欧美国产一区二区入口| 日韩视频一区二区在线观看| 黄色视频,在线免费观看| 夜夜爽天天搞| 可以免费在线观看a视频的电影网站| 亚洲国产日韩欧美精品在线观看 | 成人亚洲精品av一区二区| 超碰成人久久| 免费av毛片视频| bbb黄色大片| 好看av亚洲va欧美ⅴa在| 国产不卡一卡二| 1024视频免费在线观看| 成人三级做爰电影| 久久久久国产精品人妻aⅴ院| 丁香欧美五月| 国产高清有码在线观看视频 | 亚洲中文日韩欧美视频| 午夜影院日韩av| 99riav亚洲国产免费| 亚洲色图综合在线观看| 国产精品影院久久| 视频区欧美日本亚洲| 亚洲人成伊人成综合网2020| 精品久久久久久久人妻蜜臀av | 97人妻精品一区二区三区麻豆 | 午夜影院日韩av| 久久中文字幕一级| 欧美丝袜亚洲另类 | 天堂动漫精品| 99在线视频只有这里精品首页| 中文字幕最新亚洲高清| 成人精品一区二区免费| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 日韩欧美国产在线观看| 亚洲人成网站在线播放欧美日韩| 日本欧美视频一区| 啪啪无遮挡十八禁网站| 国产精品一区二区在线不卡| 欧美成人午夜精品| 99国产精品免费福利视频| 操出白浆在线播放| 精品久久久久久久久久免费视频| 亚洲电影在线观看av| 两个人免费观看高清视频| 这个男人来自地球电影免费观看| 脱女人内裤的视频| 午夜两性在线视频| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 日韩 欧美 亚洲 中文字幕| 欧美激情高清一区二区三区| 国产欧美日韩综合在线一区二区| 精品国产乱子伦一区二区三区| 久久人人97超碰香蕉20202| 极品教师在线免费播放| 黄色丝袜av网址大全| 亚洲精品av麻豆狂野| 人人妻,人人澡人人爽秒播| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 又黄又粗又硬又大视频| 国产野战对白在线观看| 大陆偷拍与自拍| 欧美中文综合在线视频| 国产精品乱码一区二三区的特点 | 大型av网站在线播放| 成人国语在线视频| 欧美绝顶高潮抽搐喷水| 一区福利在线观看| 久久性视频一级片| 亚洲精品av麻豆狂野| 此物有八面人人有两片| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 久久香蕉精品热| 精品人妻在线不人妻| 久久久国产成人免费| 在线观看舔阴道视频| 波多野结衣高清无吗| 久久精品人人爽人人爽视色| 欧美色欧美亚洲另类二区 | 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 大型黄色视频在线免费观看| 长腿黑丝高跟| 国产97色在线日韩免费| 91九色精品人成在线观看| 久热这里只有精品99| 欧美在线一区亚洲| 亚洲av电影不卡..在线观看| 国产99白浆流出| 90打野战视频偷拍视频| 国产亚洲欧美98| 99精品久久久久人妻精品| 亚洲精品国产色婷婷电影| 老熟妇仑乱视频hdxx| 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看| 悠悠久久av| 满18在线观看网站| 国产精品一区二区免费欧美| 最好的美女福利视频网| av网站免费在线观看视频| 啦啦啦观看免费观看视频高清 | 国产一区二区三区在线臀色熟女| 久久久精品国产亚洲av高清涩受| 免费无遮挡裸体视频| 成人免费观看视频高清| 国产极品粉嫩免费观看在线| 人妻丰满熟妇av一区二区三区| 波多野结衣高清无吗| 国产高清有码在线观看视频 | 免费在线观看日本一区| 久久婷婷成人综合色麻豆| or卡值多少钱| 熟女少妇亚洲综合色aaa.| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| 操出白浆在线播放| 久久亚洲精品不卡| 在线国产一区二区在线| 又紧又爽又黄一区二区| 亚洲中文av在线| 亚洲av电影不卡..在线观看| 999精品在线视频| 久久久精品欧美日韩精品| 91老司机精品| 丁香欧美五月| 波多野结衣一区麻豆| 在线观看舔阴道视频| 少妇被粗大的猛进出69影院| e午夜精品久久久久久久| 久久国产精品影院| 久久久国产精品麻豆| 久久国产精品人妻蜜桃| 在线视频色国产色| 中文字幕人妻熟女乱码| 午夜激情av网站| videosex国产| 伦理电影免费视频| 亚洲伊人色综图| 国产精华一区二区三区| 国产亚洲精品一区二区www| 黄色女人牲交| aaaaa片日本免费| 亚洲精品在线美女| 中文字幕另类日韩欧美亚洲嫩草| av天堂久久9| 国产男靠女视频免费网站| 18美女黄网站色大片免费观看| 丝袜美足系列| 日韩欧美一区视频在线观看| 日本一区二区免费在线视频| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 丝袜美足系列| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区| 老汉色∧v一级毛片| 色播亚洲综合网| 国产成人精品久久二区二区免费| 国产精品免费一区二区三区在线| 久久久国产成人精品二区| 国产成人欧美| 一级片免费观看大全| 精品国产国语对白av| 十八禁网站免费在线| 日韩欧美在线二视频| 亚洲精品一区av在线观看| 一区二区三区精品91| 欧美精品啪啪一区二区三区| 亚洲狠狠婷婷综合久久图片| 日韩大尺度精品在线看网址 | 大香蕉久久成人网| 亚洲午夜精品一区,二区,三区| 国产亚洲欧美在线一区二区| www.精华液| 久久人人精品亚洲av| 国产熟女午夜一区二区三区| 搞女人的毛片| 国产一区二区三区在线臀色熟女| 一级毛片女人18水好多| 国产一区在线观看成人免费| 99久久国产精品久久久| 在线观看66精品国产| 亚洲av电影在线进入| 黄色a级毛片大全视频| 国产精品香港三级国产av潘金莲| bbb黄色大片| 999久久久精品免费观看国产| av超薄肉色丝袜交足视频| 欧美日韩瑟瑟在线播放| 91成年电影在线观看| 国内精品久久久久精免费| 国产蜜桃级精品一区二区三区| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| 一边摸一边抽搐一进一小说| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| www.精华液| 亚洲国产精品sss在线观看| 国产精品秋霞免费鲁丝片| 欧美日韩黄片免| a在线观看视频网站| 手机成人av网站| 国产精品自产拍在线观看55亚洲| 免费一级毛片在线播放高清视频 | 99久久精品国产亚洲精品| 亚洲 国产 在线| 欧美日韩一级在线毛片| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 97人妻天天添夜夜摸| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 欧美日本中文国产一区发布| 九色国产91popny在线| 两个人免费观看高清视频| 免费久久久久久久精品成人欧美视频| 一本综合久久免费| 欧美黑人欧美精品刺激| 正在播放国产对白刺激| avwww免费| 精品久久蜜臀av无| 男女午夜视频在线观看| 97超级碰碰碰精品色视频在线观看| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人看| 亚洲 国产 在线| 国产精品秋霞免费鲁丝片| 国产精品影院久久| 亚洲人成伊人成综合网2020| 色在线成人网| 久久久久久亚洲精品国产蜜桃av| 人人妻人人澡欧美一区二区 | 少妇 在线观看| 最近最新免费中文字幕在线| 美女国产高潮福利片在线看| 亚洲av熟女| 亚洲国产精品合色在线| 免费女性裸体啪啪无遮挡网站| 丝袜美足系列| 精品久久久久久久毛片微露脸| 91精品国产国语对白视频| 久久久久久久午夜电影| 久久国产亚洲av麻豆专区| videosex国产| 久久久久久久久中文| 美女高潮到喷水免费观看| 色av中文字幕| 成人三级黄色视频| 精品日产1卡2卡| 精品人妻在线不人妻| 看免费av毛片| 长腿黑丝高跟| 脱女人内裤的视频| 国产三级黄色录像| 看片在线看免费视频| 亚洲熟妇熟女久久| 精品久久久久久久久久免费视频| 亚洲av成人av| 久久 成人 亚洲| 色综合站精品国产| 黄色毛片三级朝国网站| 国产精品日韩av在线免费观看 | 一区二区日韩欧美中文字幕| 亚洲avbb在线观看| 色综合亚洲欧美另类图片| 最近最新中文字幕大全电影3 | 亚洲成人久久性| 国产国语露脸激情在线看| 少妇粗大呻吟视频| 99精品久久久久人妻精品| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| 国产野战对白在线观看| 老司机午夜福利在线观看视频| 一级a爱片免费观看的视频| 欧美中文综合在线视频| 精品国产美女av久久久久小说| 黑人欧美特级aaaaaa片|