• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    REGULARITY OF WEAK SOLUTIONS TO A CLASS OF NONLINEAR PROBLEM?

    2021-11-13 01:11:15周建豐

    (周建豐)

    School of Mathematical Sciences,Peking University,Beijing 100871,China E-mail:jianfengzhou xmu@163.com

    Zhong TAN (譚忠)

    School of Mathematical Sciences,Xiamen University,Xiamen 361005,China E-mail:ztan85@163.com

    Abstract We study the regularity of weak solutions to a class of second order parabolic system under only the assumption of continuous coefficients.We prove that the weak solution u to such system is locally Hlder continuous with any exponent α∈(0,1)outside a singular set with zero parabolic measure.In particular,we prove that the regularity point in QTis an open set with full measure,and we obtain a general criterion for the weak solution to be regular in the neighborhood of a given point.Finally,we deduce the fractional time and fractional space differentiability of Du,and at this stage,we obtain the Hausdorff dimension of a singular set of u.

    Key words Parabolic system;regularity;weak solution;Hausdorff dimension

    1 Introduction

    Letting ??Rn(n≥2)be a bounded domain,we aim in this paper to study the regularity of a weak solution to the inhomogeneous parabolic system

    withz=(x,t)∈?×(?T,0)≡QT,andT>0.a(·):QT×RN×RNn→RNn,u:QT→RN,b:QT×RN×RNn→RN,N∈Z+,N≥1.In general,the solution of parabolic system(1.1)cannot be expected to be regular everywhere on the domain,even the homogeneous case

    It is worth noting that everywhere regularity can be obtained only with a special structure ona(z,u,Du),such as the evolutionaryp?Laplacian system

    for which the regularity problem was settled by the fundamental contributions of Dibenedetto and Friedman[19–21],otherwise it fails in general(see[44–46],for example).

    One can,however,expect partial regularity results;this is regularity away from a singular set that is in some sense small.The partial regularity for general parabolic(1.2)was a longstanding open problem until it was solved by Duzaar and Mingione[28],Duzaar,Mingione and Steffen[29],C.Scheven[40]and also Duzaar et al.[8,9,25];their proofs are based on theAcaloric approximation method to the parabolic setting.Subsequently,Scheven[40]derived an analogous result for the subquadratic case of(1.2).Moreover,Baroni[3]showed the continuity of the gradientDuwhile only assuming the Dini continuity ofa(·,·,Du).Under the assumption of continuous coefficients,Bgelein-Foss-Mingione[11]proved partial Hlder continuity results for(1.2)with polynomial growth.When considering the boundary regularity of the parabolic system,the same authors[8,9]showed that almost every parabolic boundary point is a Hlder continuity point forDu.There have been many research articles on the regularity of weak solutions to parabolic system,for example,[1,12,34,39,47]and the reference therein.

    The above results for parabolic problems are analogous to results for the elliptic case(see[37]),the application of the so called harmonic approximation to prove regularity theorems goes back to Simon[41,43]and Duzaar et al.[26,27].In terms of related results for problems with continuous coefficients,Campanato[17](see also[16])derived the Hlder continuity of the solutions of some nonlinear elliptic system in R.For higher dimension cases,Foss-Mingione[31]proved the partial Hlder continuity for solutions to the elliptic system,and the proof relies upon an iteration scheme of a decay estimate for a new type of excess functional measuring the oscillations in the solution and its gradient.Afterwards,Beck[4]showed the boundary regularity of the elliptic system with a Dirichlet condition.When considering the Dini continuous coefficients,Duzzar-Gastel[24]presented a general low-order partial regularity theory.In particular,for the system with variable exponentp(x),Habermann[33](see also[2])derived the partial Hlder continuity for a weak solution to a nonlinear problem with a continuous growth exponent.For more details,one can also refer to[5,7,22,30,32,35,48,50]and the reference therein.

    Turning to the technically more challenging case of(1.1),as far as we are aware,there has been no previous work addressing the partial regularity of a weak solutionuto(1.1)with continuous coefficients(cf.[11]for the homogeneous case(1.2)).Thus,in the present paper,we aim to fill a gap in the partial regularity theory of the quasi-linear parabolic system(1.1).This turns out to be a difficult task,since the inhomogeneous termb(z,u,Du)will lead to several new difficulties:

    1.When establishing the Poincarinequality in Section 4,we are not able to obtain(4.13)directly,due to the lack of a zero-boundary condition ofuon?Bρfor anyBρ??.In order to avoid this flaw,a iteration argument will be needed;

    2.For proving Caccioppoli’s inequality(3.1),the key point is boundingb(z,u,Du)in terms ofDu?Dloru?l(lis an affine function,which will be de fined in later).However,one cannot use the inequalityl(z)≤l(z0)+Dl≤Mdirectly for a.e.z∈Qρ,ρ≤1 withM≥1 being a constant;otherwise,the constant after(5.12)would depend onMwithM=Hλ(see(5.7)and(Aj)).As a consequence,all constants in Lemma 5.3 depend onλso that the estimates could blow up during the iteration process.At this stage,we shall use a weighted Sobolev interpolation inequality(see[6,13]).For a suitable functionw(·):??→R+satis fing

    wherecdepends onp0,p1,n,q,r,k.Here,we have de fined

    withs1∈N,k1,s2≥1 ands∈R.

    The main result of this paper is as follows:

    Theorem 1.1Letp≥2 andu∈C0(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))be a weak solution of the parabolic system(1.1)inQTunder the assumptions(2.1)–(2.5).Then,there exists an open subsetQ0?QTsuch that

    for everyα∈(0,1).Moreover,we have the singular set satis fingQTQ0?Σ1∪Σ2,where

    The main technique we have used in the proof of Theorem 1.1 is theA-caloric approximation lemma.Here,Ais a bilinear form on RNn×RNnwith constant coefficients.IfAsatis fies certain growth and ellipticity conditions,then the weak solutionhto(5.6)isA-caloric and has good decay properties.In order to look for such a‘good’function,we shall use theA-caloric approximation lemma(see Lemma 2.7),which enables us to transfer the property of theAcaloric to some‘bad’function(target function).When applying theA-caloric approximation lemma,we need to pay attention to three necessary conditions:

    i)the target function is bounded from above on the scale of theL2-norm and theLp-norm;

    ii)the target function satis fies a linearized system;

    iii)the target function satis fies the smallness condition in the sense of distribution.

    To justify such conditions,we will establish the Caccioppoli inequality and linearize the system(1.1)in Section 3 and Section 5.On the other hand,with the help of a linearization lemma(see Lemma 5.1),we shall show thatw:=u?lρa(bǔ)pproximately solves

    From this,we are able to measure the oscillation inuwith respect to an affine mapping.Moreover,in order to provide a bilinear form that satis fies the growth and ellipticity bounds needed to apply theA-caloric approximation lemma,we may need the integral estimate on intrinsic cylinders,that is,parabolic cylinders stretched according to the size of the solutionuitself.The rough asymptotic is given by

    According to Theorem 1.1,we immediately deduce that

    whereK:=Σ1∪Σ2and 1K=1 forx∈K;otherwise,1K=0.Then we have the following result:

    whereγ≤min{α,2θ}.

    The rest of this paper is organised as follows:in Section 2,we state some assumptions about the structure functiona(·)and the inhomogeneity termb(·).Moreover,we present some notation,de finition of a weak solution to(1.1),and some useful lemmas which will be used in our proof.Next,in Section 3 and Section 4,we provide some preliminary material which will be quite useful in the proof of main result.The first step of our proof is to establish a Caccioppoli’s type inequality.Subsequently,we establish a Poincartype inequality in Section 4,from which we will be in a position to show the boundness of|Dl|.In Section 5,we first provide a linearizati on strategy for context,then we show a decay estimate of Φλj(?jρ),and finally obtain a Campana to type estimate.This,combined with a standard argument,implies Theorem 1.1.Finally,in Section 6,we derive the fractional time and space differentiability ofDu,from which we estimate the Hausdorff dimension of a singular set of a weak solutionuto(1.1).

    2 Preliminaries

    2.1 Notation

    Lettingx0∈Rn,t0∈R,z0=(x0,t0),we denote

    as an open ball in Rn,and let

    as a cylinder in Rn+2.LetBρ(x0),Qρ(z0)?QT,andf(x,t)be integrable onBρ(x0)andQρ(z0).Then the average integrals offoverBρ(x0)andQρ(z0)are de fined by

    In what follows,we shall repeatedly use the scaled parabolic cylinders of the form

    with radiusρ>0,scaling factorλ>0,and

    Based on the parabolic metric,the spacesCk;α1,α2(QT)are those of functionsu∈Ck(QT)which areα1-Hlder continuous in the space variables andα2-Hlder continuous in the time variables.More precisely,we say thatu∈Ck;α,α/2(?T;RN)(k≥0 being an integer)if

    We say thatu(QT;RN)if and only if,for allA?QT,it holds thatu∈Ck;α,α/2(A;RN).Finally,throughout the paper,we use the notation(·,·)to denote the inner product.Fors∈[0,n+2]andE?Rn+1,we de fine the(parabolic)Hausdorffmeasure as

    From above,the Hausdorff dimension is usually de fined by

    Moreover,in this paper we useDor?to denote the‘gradient’,and we will use the following notations:

    Here,ei=(0,...0,1i?th,0,...,0),i=1,...,n.Finally,let us recall the de finition of parabolic fractional Sobolev space(refer to[36]for details).We say thatu∈L2(QT)belongs to the fractional Sobolev spaceWα,θ;2(QT),α,θ∈(0,1)if

    2.2 Assumptions about the structure functions a(·)and b(·)

    We impose the condition on the structure functionsa(z,u,F)andb(z,u,F)forp≥2 as follows:

    ?The growth condition

    with(z,u,F)∈QT×RN×RNn,L≥1 being a constant.

    ?The ellipticity condition

    for all(z,u,F)∈QT×RN×RNn,∈RNn,0<ν≤1≤Lbeing a constant.

    Moreover,we also need the following two continuity conditions:

    ?The continuity of lower order term

    ?The continuity of higher order term

    for allz,z0∈QT,u,u0∈RNandF,F0∈RNn.Here,ω,μ:[0,∞)→[0,1]are two bounded,concave,and non-decreasing functions satisfying

    The termb(z,u,F)satis fies a controllable growth condition

    2.3 Definition of weak solution

    Lettingp≥2,we say thatu∈C0(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))is a weak solution to(1.1)if and only if the identity

    From[19](see also[36]),we recall the definition of the Steklov averages that allow us to restate(2.6)in an equivalent way.Lettingv∈L1(QT)and 0

    respectively,for allt∈(?T,0).We note that ifv∈Lr(?T,0;Lq(?))withr,q≥1,thenvh?→vinLr(?T+ε,0;Lq(?))ash?→0 for everyt∈(?T+ε,0)andε∈(0,T),and the same result holds forvˉh.

    By virtue of the convergence properties of the Steklov averages,we have the following equivalent definition of weak solution to(1.1):

    Definition 2.1(An equivalent definition of a weak solution)Let 2≤p<∞andu0∈L2(?).Thenu∈L∞(?T,0;L2(?))∩Lp(?T,0;W1,p(?))is called a weak solution to(1.1)if

    Employing(2.1)and(2.2),we have

    Lemma 2.2Letting 2≤p<∞,there exists a constantc=c(L,n,p)>0 such that,for anyF1,F2∈RNn,it holds that

    The following lemma,as an auxiliary tool,will be heavily used in the remainder of the paper(see[14]).

    Lemma 2.3LetA,B∈Rk,k≥1 andσ>?1.Then there exists a constantc=c(σ),such that

    As a consequence,from Lemma 2.3 and(2.2),it follows that the monotonicity ofa(z,u,·)is

    wherec=c(n,p,ν).

    In the next proposition we recall the parabolic version of the well known relation between Nikolski spaces and Fractional Sobolev spaces(see[42]).

    Proposition 2.4Lettingu∈L2(QT;RN),suppose that

    for allγ∈(0,θ).Furthermore,suppose that

    From Proposition 2.4,we can see that in order to prove the fractional differentiability ofDuin Theorem 1.2,it is only needed to prove

    On the other hand,for estimating the Hausdorff dimension of singular set ofude fined in Theorem 1.1,we shall use the following arguments(see[23,38]):

    2.4 Minimizing affine function

    amongst all affine functionl(z)=l(x)independent oft.We note that such a unique minimizing affine function exists and takes the form

    for anya(x)=ξ+A(x?x0)withξ∈RN,A∈RNn.This implies,in particular,that

    Furthermore,we need the following argument,which can be proven analogously to[49]:for anyξ∈RnandA∈RNn,it holds that

    2.5 A-caloric approximation

    A strongly elliptic bilinear formAon RNnmeans that

    In order to obtain the decay estimate(5.11),we introduce the followingA-caloric approximation lemma(see[29]).

    Lemma 2.7There exists a positive functionδ0=δ0(n,p,ν,L,ε)∈(0,1]with the property that,for eachγ∈(0,1],and each bilinear formAin RNnwith ellipticity constantνand upper boundL,εis a positive number wheneveru∈Lp(Λρ(t0);W1,p(Bρ(x0);RN))satisfying

    is approximatelyA-caloric,in the sense that for eachδ∈(0,δ0]it holds that

    3 Caccioppoli Type Inequality

    In this section,we propose to derive a Caccioppoli type inequality under the conditions(2.1)–(2.3)and(2.5).Such a result provides a bridge between theA-caloric approximate lemma and Lemma 5.1.

    Lemma 3.1(Caccioppoli type inequality)Letu∈C0(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))be a weak solution to(1.1)under the assumptions(2.1)–(2.3)and(2.5),and letbe a scaled parabolic cylinder with reference pointz0=(x0,t0)and 0<ρ≤1 being suitably small,with scaling factorλ≥1 and affine functionl:Rn→RNsuch thatλ≤1+|Dl|.Then it holds that

    Thus,inserting(3.3)–(3.4)into(3.2)and noting thatl(z)=l(x),we arrive at

    Firstly,we focus our attention on estimating the term on the left side of(3.5).Appealing to(2.2)and Lemma 2.3,we infer that

    Now,we turn to estimating the termsI?Vin(3.5).For the termI,we first note that,from(2.1),it holds that

    whereε∈(0,1)will be specified later,and in the previous inequality,we have taken into account that|Du|≤|Dl|+|Du?Dl|.

    Next,using(2.3),we deduce that

    For termIV,note thatλ≤1+|Dl|,so we have

    Finally,we estimate termV.From(2.5),we have

    By Young’s inequality,it is clear that

    withε1∈(0,1)to bespeci fied later.

    For termV2,first we divideBσinto two parts:and

    Therefore,by the weighted Sobolev interpolation inequality(1.3)and Hlder’s inequality,we are in a position to obtain

    whereε2∈(0,1)will be specified in later.

    This implies that

    As a consequence,from(3.12)–(3.13),it follows that

    Inserting(3.6)–(3.11)and(3.14)into(3.5),we conclude that

    and lettingδ1→0,we have(3.1).

    4 Poincar Type Inequality

    In this section,we aim to establish a Poincartype inequality of a weak solution to(1.1)under the assumptions(2.1),(2.3)and(2.5).We note that such an inequality plays a key role in this paper,especially in Section 5,where we will show that for everyz0∈QT(Σ1∪Σ2)and suitable 0≤ρ0≤1,the assumption of Lemma 5.3 is valid.

    Lemma 4.1(Poincartype inequality)Letu∈Lp(?T,0;W1,p(?;RN))∩C0(?T,0;L2(?;RN))be a weak solution of(1.1)inQTunder the assumptions(2.1),(2.3)and(2.5),withQρ(z0)?QTbeing a parabolic cylinder with referencez0=(x0,t0)and 0<ρ≤1.Then,it holds that

    wherec=c(n,N,p,L).

    ProofFor simplicity,we may also omit the reference pointz0ofQρ(z0),Bρ(z0)and Λρ(z0),using insteadQρ,Bρa(bǔ)nd Λρ,respectively,as long as there is no danger of any confusion.Letbe a nonnegative weight function satisfying

    wherecη=cη(n),and de fine

    as a weighted mean ofu(x,t)onBρfor a.e.t∈(?T,0).To begin with,we shall show the following argument for a.e.t,τ∈Λρ:

    wherec=c(n,N,p,L).

    Now,we concentrate our attention on the proof of(4.3)–(4.4).Without loss of generality,we may assume thatt>τ,and letξθ(s)∈((τ,t))be a cut-offfunction,de fined by

    withθ∈(0,(t?τ)/2).We now choose?θ:Rn+2→RNto be a test function in the weak formulation(2.6)with(?θ)i=ηξθand(?θ)j=0 forj/=iandi,j∈{1,...,N},which implies that

    Taking intoaccount the Steklov arguments and the definition of(u)η(t),we first deduce that

    Next,lettingθ→0 in the right side of(4.5),we arrive at

    By virtue of(2.5),(4.6),and noting thatt,τ∈Λρ,we infer that

    Now we focus our attention on estimating the rightmost term in(4.7).Employing an interpolation inequality(G-N-S inequality),it holds that

    where in the last inequality we have taken into account that

    It is clear that the termW1can be split as

    where Λρ=J1∪J2,and

    Thus,we are in a position to obtain

    and,by iteratively estimating,we have

    Plugging(4.10)–(4.12)into(4.8),we conclude that

    Now,combining(4.13)and(4.7),and summing up overi=1,...,N,we have(4.3).Hence,it remains to prove(4.4).

    Observing that

    and making use of(4.6),we infer that

    Applying(2.1)and Lemma 2.3,for the termK1we have

    In addition,making use of(2.3)and Jensen’s inequality,the termsK2andK3can be estimated as

    For the termK4,in view of(4.6)–(4.7)and(4.13),we have

    Inserting(4.15)–(4.17)into(4.14),and summing up overi=1,...,N,we get(4.4).

    Now,we turn to proving(4.1)–(4.2).First,appealing to(4.3),Poincar’s inequality with a weighed function,and Hlder’s inequality,we infer that

    where=(x,τ)andc=c(n,N,p,L).Thus,we have(4.1).

    withc=c(n,N,p,L),where in the second inequality,we have used Poincar’s inequality for a.e.t∈Λρa(bǔ)nd the fact that

    Taking into account the concavity ofω(·),and(4.1)forq=2,implies that

    Thus,combining(4.18)and(4.19),we are in a position to obtain

    whence we get(4.2).

    5 Partial Regularity of u

    According to Lemma 3.1,we now de fine some excess functionals.For reference pointz0=(x0,t0)∈QT,u∈Lp(?T,0;W1,p(?;RN)),affine functionl:Rn→RN,andl(z)=l(x),in what follows we denote

    and hybrid excess functional

    5.1 Linearization

    The following lemma is a prerequisite for applying theA-caloric approximation technique:

    Then,from weak formulation(2.6),we deduce that

    Now we start to estimateI1–I4.For the termI1,applying(2.4),as well as the Hlder and Young inequalities,we have

    wherec=c(n,p,ν,L).

    wherec=c(n,p,L,ν)andθ2∈(0,1)is the same as withθ1in(4.9).

    Plugging(5.3)–(5.5)into(5.2),we have

    wherec=c(n,p,ν,L).By a general scaling argument,we have(5.1).

    5.2 Decay estimate

    The aim of this section is to provide a decay estimate of Φλj(z0,?jρ,lj),withλj,?,ljto be speci fied in later,from which we can obtain a Campanato type estimate of a weak solutionuto(1.1),then derive the regularity ofuby a standard argument from Campanato space.First,we introduce a standard estimate for a weak solution to linear parabolic systems with constant coefficients(see[15]Lemma 5.1),which is necessary in the proof of the decay estimate of‖u?(u)z0,r‖L2(Qr(z0)).

    Lemma 5.2Leth∈L2(Λρ(t0);W1,2(Bρ(x0);RN))be a weak solution inQρ(z0)of the following linear parabolic system with constant coefficients:

    for any∈RNn.Then,his smooth inQρ(z0),and for alls≥1,θ∈(0,1],it holds that

    for a constantcpa=cpa(n,N,L/ν)≥1.

    TheA-caloric approximation lemma(Lemma 2.7)allows one to translate these decay estimates onhinto a certain excess functional.This eventually allows one to derive the partial regularity ofu.Based on Lemmas 5.1–5.2,we have the following result:

    and the smallness condition

    and for anyr∈(0,ρ],it holds that

    wherec=c(n,N,p,ν,L,H,α).

    ProofIn virtue of(3.1)we can see that

    wherec=c(n,p,ν,L),and.At this stage,by Lemma 5.1,Lemma 5.2 and an iteration argument,one can prove(5.7)–(5.11);the process is similar to the proof of main theorem in[11],here we just skip it.

    According to Lemma 4.1 and Lemma 5.3,we now are able to prove Theorem 1.1.

    Proof of Theorem 1.1Letz0∈QT(Σ1∪Σ2).Then by the de finitions of Σ1and Σ2,there exist some constantsε2∈(0,1],M0≥1 such that

    Now,in virtue of(2.12),(5.13),(5.14)and(4.1),we are in a position to obtain

    Sinceε2≤1≤M0,the previous inequality implies that

    Furthermore,by the minimality oflz0,ρ,(4.2)and(5.13)–(5.14),we can see that

    withc=c(n,N,p,L).

    Appealing to(5.15)–(5.16),for suitably smallε2∈(0,1),we can deduce the existence ofH≥1 and 0<ρ≤ρ0(H)such thatQ2ρ(z0)?QT,and at this stage,we further obtain that

    Note that the mappings

    are continuous.Thus,there existssuch that

    withc=c(n,N,p,ν,L,H,α).By the Campanato space argument(see[18]),we haveu∈C0;α,α/2in a neighborhood of any pointz0∈QT(Σ1∪Σ2),and we further obtain|Σ1∪Σ2|=0,which means|Q0|=|QT|.

    6 Estimate of the Singular Set

    In this section,with Theorem 1.1 in hand,we proceed to prove Theorem 1.2.This will be achieved by combining the fractional time and fractional space differentiability of the gradient of weak solutionuto(1.1).

    6.1 Fractional time differentiability

    In this subsection,we aim to prove the fractional time differentiability ofDuforp=2.First,we estimate theL2-norm ofτhu.

    ProofFirst,we restrict ourselves to the caseh>0.Choosingη2τhuas a test function in the Steklov averages formulation of(2.7),and integrating with respect tot∈(t0,t1),we deduce

    Taking into account(2.1),(2.3)and Young’s inequality,it holds that

    For the termI2,from Hlder’s inequality,it follows that

    Similarly,forp=2,by applying(4.8)–(4.13),the termI3can be estimated as

    Finally,we note that the estimation in the other one is the same usinguˉhinstead ofuh.Now,inserting(6.3)–(6.5)into(6.2),we obtain

    wherec=c(L).Thus,we have(6.1).

    From Lemma 6.1,we have the following direct result:

    Remark 6.2Letu∈L∞(?T,0;L2(?;RN))∩L2(?T,0;H1(?;RN))be a weak solution to(1.1).Let(t0,t1)??(?T,0)and ?′???.Then,whenever,it holds that

    wherec=c(L,dist(?′,??)).

    Based on Lemma 6.1,we now propose to estimate the time derivative ofDu,which will be regarded as the starting point of an iteration process.

    ProofWe chooseχε:R[0,1]to be a continuous affine function satisfying

    approximating the characteristic function of(?∞,l)withl∈(?T,0).Letξ(t)andη(x)be cut-offfunctions in the time and space variables,respectively,such that

    We takeφ(x,t)=τh(η2(x)ξ2(t)χε(t)τ?huλ(x,t))as a test function in(2.7),and integrating in time respect to(?T,0)yields that

    We first note that

    This,combined with(6.9),implies that

    Recalling the de finition ofχε,we find that

    Moreover,note thatH4=0.Then,by passing to the limit forλ?→0 in(6.8),we obtain

    By the aid of(2.8),it holds that

    wherec1depends onν.Furthermore,applying(2.3),(1.4)and Young’s inequality,it holds that

    For the termH51,making use of(6.6),we obtain

    Applying the properties ofξ(t)andη(x),and lettingε?→0 andl?→0,we have(6.7).

    According to(6.7),we can re-estimate the termI2in(6.4)as follows:

    From(6.15),and noting that|h|<1,we can rewrite(6.6)as

    wherec2=c2(L,ν,dist(supp(η),??)).

    Similarly,in the proof of Lemma 6.3,we can use(6.16)instead of(6.6)to arrive at

    As with the estimation of(6.15)–(6.17),by an iteration argument,we finally obtain

    6.2 Fractional space differentiability

    In this subsection,we propose to deduce the fractional space differentiability of the gradient of the weak solutionuto(1.1).To begin with,we discuss the general case forp≥2.

    Lemma 6.4Let ??Rn(n=2,3)be a bounded domain.Letu∈L∞(?T,0;L2(?;RN))∩Lp(?T,0;W1,p(?;RN))(p≥2)be a weak solution to(1.1).Then,we have

    and for anyQ2ρ(z0)?QT,it holds that

    ProofFirst,replace the test function?in(2.6)byτ?h?with

    Then we infer that

    By approximation,we choose?≡φτhuin the previous equation with.Thus,we are in a position to obtain that

    Now,let us chooseφ(x,t)=(t)χ(t)ψ2(x)withχ∈W1,∞((?T,0)),χ(?T)=0,?tχ≥0 and 0≤χ≤1,,0≤ψ≤1 andχˉ:(?T,0)?→R being a Lipschitz continuous function,de fined by

    with?T0.Lettingδ?→0,(6.21)then becomes

    whereQt0:=Bρ(x0)×(?T,t0).

    We observe that

    Then,applying(2.2)and Lemma 2.3,we can find that

    Here we have used abbreviated notation

    Thus,we conclude that

    Moreover,from(2.3)and(1.4),it follows that

    Using(2.1),we further obtain that

    Therefore,applying(6.25)and Young’s inequality,we have

    Furthermore,by virtue of(2.3),it holds that

    wherec=c(n,L,p,ν).

    LetQρ(z0)?QTwithρsuitably small such that 2ρ

    Note that,for anyθ∈(0],the right-most term of(6.28)can be estimated as

    Employing(6.28)and(6.29),we finally obtain

    By Lemma 2.2,the previous inequality implies that

    Dividing both sides in(6.30)by|h|2θ,we can see that

    Using the standard estimate for difference quotients and letting|h|?→0,we then have(6.20)and(6.19).

    Proof of Theorem 1.2Taking into account Proposition 2.4,(2.9)and Section 6.1,forp=2,we have proved the fractional time differentiability ofDu.Hence,what remains is to prove the fractional space differentiability ofDu.From(6.20)we can see that,forp=2,

    This,combined with(2.10),implies the fractional space differentiability ofDu.Finally,applying Lemma 2.5,we obtain(1.5).Thus,we have completed the proof of Theorem 1.2.

    国产精品久久久久久亚洲av鲁大| 麻豆成人av在线观看| 亚洲 欧美 日韩 在线 免费| 在线观看一区二区三区| 色老头精品视频在线观看| 成人特级黄色片久久久久久久| 巨乳人妻的诱惑在线观看| 19禁男女啪啪无遮挡网站| 夜夜爽天天搞| 免费在线观看成人毛片| 免费在线观看日本一区| 一级黄色大片毛片| 在线视频色国产色| 国产又色又爽无遮挡免费看| 亚洲狠狠婷婷综合久久图片| 久久久国产精品麻豆| a级毛片在线看网站| 久久精品国产99精品国产亚洲性色| 日日夜夜操网爽| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜| 嫩草影院精品99| 好男人在线观看高清免费视频| 亚洲第一电影网av| 国产精品一区二区三区四区免费观看 | 色精品久久人妻99蜜桃| 精品久久蜜臀av无| 亚洲一区二区三区不卡视频| 婷婷精品国产亚洲av在线| 一二三四社区在线视频社区8| 精品免费久久久久久久清纯| 欧美一级毛片孕妇| 国产精品亚洲美女久久久| 12—13女人毛片做爰片一| 午夜免费观看网址| 男人的好看免费观看在线视频| 老司机福利观看| 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网| 久久久久久大精品| 在线免费观看不下载黄p国产 | 亚洲精品美女久久av网站| 亚洲国产精品成人综合色| 亚洲五月婷婷丁香| 亚洲在线观看片| 黑人巨大精品欧美一区二区mp4| 国产一区在线观看成人免费| 久久久久久久精品吃奶| 亚洲第一欧美日韩一区二区三区| 搞女人的毛片| 巨乳人妻的诱惑在线观看| 我要搜黄色片| 欧美极品一区二区三区四区| 精品福利观看| 国产不卡一卡二| 少妇裸体淫交视频免费看高清| 精品一区二区三区四区五区乱码| 久久精品亚洲精品国产色婷小说| 美女大奶头视频| 叶爱在线成人免费视频播放| 成年免费大片在线观看| 亚洲欧美日韩东京热| 成人三级黄色视频| 热99re8久久精品国产| 男女那种视频在线观看| 日本黄大片高清| 欧美黄色片欧美黄色片| 别揉我奶头~嗯~啊~动态视频| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 国产免费av片在线观看野外av| 色播亚洲综合网| 欧美中文日本在线观看视频| 国产精品免费一区二区三区在线| 综合色av麻豆| 首页视频小说图片口味搜索| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 久久亚洲真实| 久久久久久久久免费视频了| 12—13女人毛片做爰片一| 长腿黑丝高跟| 成人午夜高清在线视频| 好男人在线观看高清免费视频| 久久久精品大字幕| 中文字幕最新亚洲高清| 欧美不卡视频在线免费观看| 一进一出好大好爽视频| 麻豆成人午夜福利视频| 国产亚洲精品av在线| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 欧美日韩一级在线毛片| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| 91久久精品国产一区二区成人 | 国产v大片淫在线免费观看| 国产伦一二天堂av在线观看| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 国产高清videossex| 欧美精品啪啪一区二区三区| 中文字幕人成人乱码亚洲影| 亚洲国产欧美一区二区综合| 欧美3d第一页| 欧美日本视频| 国产三级在线视频| 国产伦人伦偷精品视频| 少妇的丰满在线观看| 亚洲午夜理论影院| 欧美av亚洲av综合av国产av| 色播亚洲综合网| 国产激情久久老熟女| 亚洲自偷自拍图片 自拍| 国产男靠女视频免费网站| 黄色视频,在线免费观看| 欧美色视频一区免费| 亚洲av电影不卡..在线观看| 免费av不卡在线播放| 成人三级黄色视频| 亚洲av第一区精品v没综合| 成人鲁丝片一二三区免费| 亚洲成av人片在线播放无| 男人舔女人的私密视频| 老汉色av国产亚洲站长工具| 好男人在线观看高清免费视频| 亚洲在线自拍视频| 小说图片视频综合网站| 12—13女人毛片做爰片一| 亚洲18禁久久av| av女优亚洲男人天堂 | 亚洲精品美女久久久久99蜜臀| 嫁个100分男人电影在线观看| 黑人欧美特级aaaaaa片| 99视频精品全部免费 在线 | 中出人妻视频一区二区| 一本综合久久免费| 亚洲片人在线观看| 18美女黄网站色大片免费观看| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 一级a爱片免费观看的视频| 我要搜黄色片| 老司机福利观看| 搞女人的毛片| 国产私拍福利视频在线观看| 夜夜爽天天搞| 国内精品久久久久精免费| 久久久久久人人人人人| 国产精品精品国产色婷婷| 麻豆国产av国片精品| 脱女人内裤的视频| 女人高潮潮喷娇喘18禁视频| 免费搜索国产男女视频| 国产精品 欧美亚洲| 小说图片视频综合网站| 亚洲国产欧美人成| 99久久国产精品久久久| 又黄又粗又硬又大视频| 精华霜和精华液先用哪个| 日本免费a在线| 久久久久国产一级毛片高清牌| 免费在线观看视频国产中文字幕亚洲| 少妇人妻一区二区三区视频| 精品久久久久久久末码| 脱女人内裤的视频| 91av网一区二区| 日韩av在线大香蕉| 成熟少妇高潮喷水视频| 18禁观看日本| 天天躁日日操中文字幕| 麻豆一二三区av精品| 在线视频色国产色| 久9热在线精品视频| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 国产美女午夜福利| 超碰成人久久| 丰满人妻一区二区三区视频av | 色视频www国产| 黄色日韩在线| 亚洲精品粉嫩美女一区| 日本黄色片子视频| 精品国产亚洲在线| 欧美zozozo另类| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 亚洲无线观看免费| 五月玫瑰六月丁香| 美女扒开内裤让男人捅视频| 男人舔奶头视频| av视频在线观看入口| 久久伊人香网站| 悠悠久久av| 久久中文字幕一级| 天堂网av新在线| 欧美av亚洲av综合av国产av| 美女cb高潮喷水在线观看 | 免费人成视频x8x8入口观看| 国产伦精品一区二区三区四那| 天天躁狠狠躁夜夜躁狠狠躁| 欧美色视频一区免费| 久久精品亚洲精品国产色婷小说| 国产欧美日韩精品亚洲av| 国产97色在线日韩免费| 在线观看66精品国产| 麻豆国产97在线/欧美| 精品久久蜜臀av无| 免费在线观看影片大全网站| 黄频高清免费视频| 一级毛片精品| 国产主播在线观看一区二区| 免费在线观看成人毛片| 999精品在线视频| 久久中文字幕人妻熟女| 一级毛片女人18水好多| 精品国产三级普通话版| 国产成人aa在线观看| 757午夜福利合集在线观看| 男女床上黄色一级片免费看| 成人亚洲精品av一区二区| 不卡一级毛片| 天天躁日日操中文字幕| 好看av亚洲va欧美ⅴa在| 免费av毛片视频| 99热6这里只有精品| 精品久久久久久久久久免费视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人免费| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av免费在线观看| 97超级碰碰碰精品色视频在线观看| 麻豆成人av在线观看| 中文字幕熟女人妻在线| 男女那种视频在线观看| 国产高清激情床上av| 国产成人av教育| 国产精品一区二区三区四区免费观看 | 国产三级黄色录像| 天堂影院成人在线观看| 亚洲精品一区av在线观看| 久久久久九九精品影院| 亚洲无线观看免费| 久久久久久国产a免费观看| 日本三级黄在线观看| 日韩人妻高清精品专区| 午夜福利视频1000在线观看| 日本熟妇午夜| 国产三级黄色录像| 久久久精品大字幕| 1024香蕉在线观看| 国产精品久久电影中文字幕| 日本与韩国留学比较| 亚洲五月婷婷丁香| 一二三四在线观看免费中文在| 亚洲av日韩精品久久久久久密| svipshipincom国产片| 久久久久亚洲av毛片大全| 在线观看免费视频日本深夜| 制服丝袜大香蕉在线| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 可以在线观看的亚洲视频| 在线十欧美十亚洲十日本专区| 一二三四社区在线视频社区8| 人妻久久中文字幕网| 国产高清视频在线播放一区| 一本久久中文字幕| 黄色日韩在线| 69av精品久久久久久| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆| 在线免费观看不下载黄p国产 | tocl精华| 国产精品1区2区在线观看.| 国产精品九九99| 一卡2卡三卡四卡精品乱码亚洲| 我的老师免费观看完整版| 国产成人精品久久二区二区91| 国产伦精品一区二区三区四那| 免费av毛片视频| 成年女人毛片免费观看观看9| 三级国产精品欧美在线观看 | 999精品在线视频| 免费搜索国产男女视频| 在线观看舔阴道视频| 国产高清视频在线观看网站| 欧美大码av| 国产一区在线观看成人免费| 国产成人欧美在线观看| 男女午夜视频在线观看| 亚洲国产色片| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 日韩av在线大香蕉| 无人区码免费观看不卡| 我的老师免费观看完整版| 母亲3免费完整高清在线观看| 看黄色毛片网站| 亚洲,欧美精品.| 婷婷丁香在线五月| 久久欧美精品欧美久久欧美| 国产美女午夜福利| 亚洲成人久久性| 18禁裸乳无遮挡免费网站照片| 不卡av一区二区三区| 淫秽高清视频在线观看| 国产激情欧美一区二区| 五月玫瑰六月丁香| 精品一区二区三区av网在线观看| 亚洲,欧美精品.| 蜜桃久久精品国产亚洲av| 村上凉子中文字幕在线| 美女 人体艺术 gogo| 三级国产精品欧美在线观看 | 成人av一区二区三区在线看| 毛片女人毛片| 亚洲精品在线美女| 一本久久中文字幕| 国产精品久久久久久久电影 | 欧美国产日韩亚洲一区| 午夜a级毛片| 少妇的丰满在线观看| 日韩精品青青久久久久久| 亚洲色图 男人天堂 中文字幕| 小说图片视频综合网站| 国产精品久久久久久人妻精品电影| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| 精品国产乱子伦一区二区三区| 国产精品久久久久久精品电影| 久久草成人影院| 91字幕亚洲| 1024手机看黄色片| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 99视频精品全部免费 在线 | 此物有八面人人有两片| 午夜激情福利司机影院| 999久久久国产精品视频| 两性夫妻黄色片| 亚洲精品一卡2卡三卡4卡5卡| 两个人视频免费观看高清| 国产精品亚洲美女久久久| 久久久精品欧美日韩精品| 麻豆一二三区av精品| 亚洲精品美女久久av网站| 日本一本二区三区精品| 亚洲18禁久久av| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 人妻丰满熟妇av一区二区三区| 黄片小视频在线播放| 国产高清videossex| 婷婷六月久久综合丁香| av黄色大香蕉| 岛国视频午夜一区免费看| 亚洲天堂国产精品一区在线| 97超视频在线观看视频| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 国产av一区在线观看免费| 热99在线观看视频| 日韩欧美在线二视频| 99re在线观看精品视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人中文字幕在线播放| 一卡2卡三卡四卡精品乱码亚洲| 18禁黄网站禁片免费观看直播| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| 久久这里只有精品19| 成人av一区二区三区在线看| 亚洲人与动物交配视频| 男人舔奶头视频| 午夜激情欧美在线| 亚洲精品在线观看二区| 欧美黄色淫秽网站| 搡老岳熟女国产| 中出人妻视频一区二区| av欧美777| 亚洲精品乱码久久久v下载方式 | 中国美女看黄片| 变态另类成人亚洲欧美熟女| 男人的好看免费观看在线视频| 亚洲熟女毛片儿| 又大又爽又粗| 国产极品精品免费视频能看的| 桃红色精品国产亚洲av| 麻豆久久精品国产亚洲av| 最近在线观看免费完整版| 999精品在线视频| 最近在线观看免费完整版| 亚洲成人久久性| 欧美日韩一级在线毛片| 国产精品影院久久| 桃色一区二区三区在线观看| 国产精品久久久av美女十八| 美女扒开内裤让男人捅视频| 欧美午夜高清在线| 国产成人av激情在线播放| 国产精品一区二区三区四区久久| 99热精品在线国产| 久久久久久大精品| 特级一级黄色大片| 老鸭窝网址在线观看| 久久国产精品影院| 免费观看的影片在线观看| 亚洲 欧美 日韩 在线 免费| 精品熟女少妇八av免费久了| 久久欧美精品欧美久久欧美| 性欧美人与动物交配| 18禁黄网站禁片免费观看直播| 欧美日韩亚洲国产一区二区在线观看| 欧美午夜高清在线| 日韩大尺度精品在线看网址| 成人特级av手机在线观看| 欧美日本视频| 成人午夜高清在线视频| 欧美日韩综合久久久久久 | 国产精品国产高清国产av| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 欧美成狂野欧美在线观看| 日韩欧美 国产精品| 亚洲国产色片| 亚洲乱码一区二区免费版| 中出人妻视频一区二区| 在线永久观看黄色视频| 国产在线精品亚洲第一网站| 麻豆国产97在线/欧美| 在线国产一区二区在线| 一夜夜www| 亚洲午夜精品一区,二区,三区| 国产精品久久视频播放| 欧美三级亚洲精品| 亚洲av五月六月丁香网| 色播亚洲综合网| 在线观看免费视频日本深夜| 99精品久久久久人妻精品| 嫩草影视91久久| 亚洲一区高清亚洲精品| 国产精品av视频在线免费观看| 中文字幕最新亚洲高清| 亚洲精品粉嫩美女一区| 成人永久免费在线观看视频| 国产成人aa在线观看| 亚洲无线观看免费| 亚洲av电影在线进入| 亚洲成av人片在线播放无| 午夜亚洲福利在线播放| 黄色成人免费大全| 好男人在线观看高清免费视频| 久久精品人妻少妇| 99久久综合精品五月天人人| 国产真人三级小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 他把我摸到了高潮在线观看| 免费在线观看日本一区| 国产精品自产拍在线观看55亚洲| 国产亚洲精品一区二区www| 男女床上黄色一级片免费看| 日韩欧美在线乱码| 久久久久久久精品吃奶| 欧美三级亚洲精品| 老司机午夜十八禁免费视频| 五月伊人婷婷丁香| 久久国产精品人妻蜜桃| 90打野战视频偷拍视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 女警被强在线播放| 国产精品影院久久| www.精华液| 亚洲av美国av| 91在线观看av| 一个人观看的视频www高清免费观看 | 久久亚洲精品不卡| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 国产激情欧美一区二区| 99国产综合亚洲精品| 日韩精品中文字幕看吧| 免费观看的影片在线观看| 老汉色∧v一级毛片| 99久久精品国产亚洲精品| 国产又色又爽无遮挡免费看| 精品一区二区三区av网在线观看| 色综合站精品国产| 国产精品99久久久久久久久| 一个人观看的视频www高清免费观看 | 亚洲美女视频黄频| 99精品在免费线老司机午夜| 免费看美女性在线毛片视频| 在线观看66精品国产| 在线观看日韩欧美| 五月伊人婷婷丁香| 久久久精品大字幕| 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 在线观看日韩欧美| 国产一区在线观看成人免费| 夜夜躁狠狠躁天天躁| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 99在线视频只有这里精品首页| 亚洲美女黄片视频| 国产 一区 欧美 日韩| 国产一区二区在线av高清观看| 一个人看视频在线观看www免费 | 国产精品一区二区免费欧美| 露出奶头的视频| 老司机在亚洲福利影院| 久久性视频一级片| 精品人妻1区二区| 熟女少妇亚洲综合色aaa.| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 国产视频内射| 极品教师在线免费播放| 国语自产精品视频在线第100页| 国产淫片久久久久久久久 | 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 欧美乱码精品一区二区三区| 99riav亚洲国产免费| 欧美+亚洲+日韩+国产| 午夜福利成人在线免费观看| 亚洲熟妇中文字幕五十中出| 波多野结衣巨乳人妻| 99久久无色码亚洲精品果冻| 一进一出抽搐gif免费好疼| 亚洲欧美精品综合久久99| 国产精品一区二区三区四区久久| 老司机深夜福利视频在线观看| 欧美在线一区亚洲| 每晚都被弄得嗷嗷叫到高潮| 人妻久久中文字幕网| 国产av不卡久久| www日本在线高清视频| 国产亚洲精品久久久com| 亚洲美女黄片视频| 亚洲人成网站高清观看| 黄频高清免费视频| av在线蜜桃| 99久国产av精品| 长腿黑丝高跟| 国产精品一区二区三区四区免费观看 | 在线观看免费午夜福利视频| 色噜噜av男人的天堂激情| 制服丝袜大香蕉在线| 国产精品1区2区在线观看.| 狂野欧美白嫩少妇大欣赏| 男女做爰动态图高潮gif福利片| 脱女人内裤的视频| 亚洲国产精品成人综合色| 精品电影一区二区在线| 欧美极品一区二区三区四区| 国产三级黄色录像| 国产精品1区2区在线观看.| 美女 人体艺术 gogo| 日韩欧美一区二区三区在线观看| 小蜜桃在线观看免费完整版高清| 久久亚洲真实| 欧美+亚洲+日韩+国产| 黄色丝袜av网址大全| 国产精品日韩av在线免费观看| 婷婷精品国产亚洲av| 国内精品久久久久久久电影| 午夜免费观看网址| 无限看片的www在线观看| 亚洲色图 男人天堂 中文字幕| www日本黄色视频网| 99热精品在线国产| 欧美黑人巨大hd| 神马国产精品三级电影在线观看| 精品久久久久久久久久久久久| a级毛片a级免费在线| 亚洲成人免费电影在线观看| 色视频www国产| 天堂动漫精品| 激情在线观看视频在线高清| 国产麻豆成人av免费视频| 久久天堂一区二区三区四区| 精品久久久久久久人妻蜜臀av| 精品久久久久久久末码| 大型黄色视频在线免费观看| 高清在线国产一区| 极品教师在线免费播放| 日本黄大片高清| 精品99又大又爽又粗少妇毛片 | 搡老熟女国产l中国老女人| 国产亚洲av嫩草精品影院| 日韩 欧美 亚洲 中文字幕| 国产精品野战在线观看| 久久天躁狠狠躁夜夜2o2o| 午夜福利18| 国产成人啪精品午夜网站| 国产精品爽爽va在线观看网站| 亚洲国产高清在线一区二区三| 亚洲欧美精品综合久久99| 视频区欧美日本亚洲| 国产视频一区二区在线看| 国产单亲对白刺激| 亚洲中文av在线| 精品不卡国产一区二区三区| 欧美3d第一页| 麻豆国产97在线/欧美| 在线观看免费视频日本深夜| 国产成人欧美在线观看| 麻豆国产97在线/欧美| 在线a可以看的网站| 精品久久蜜臀av无|