• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    JULIA LIMITING DIRECTIONS OF ENTIRE SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS?

    2021-09-06 07:55:00王珺

    (王珺)

    School of Mathematical Sciences,Fudan University,Shanghai 200433,China E-mail:majwang@fudan.edu.cn

    Xiao YAO (姚瀟)?

    School of Mathematical Sciences and LPMC,Nankai University,Tianjin 300071,China E-mail:yaoxiao@nankai.edu.cn

    Chengchun ZHANG (張城純)

    School of Mathematical Sciences,Fudan University,Shanghai 200433,China E-mail:18210180014@fudan.edu.cn

    Abstract For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{zn}in the Julia set satisfyingOur main result is on the entire solution f of P(z,f)+F(z)fs=0,where P(z,f)isadifferential polynomial of f with entire coefficients of growth smaller than that of the entire transcendental F,with the integer s being no more than the minimum degree of all differential monomials in P(z,f).We observe that Julia limiting directions of f partly come from the directions in which F grows quickly.

    Key words Julia set;meromorphic function;Julia limiting direction;complex differential equations

    1 Introduction and Main Results

    There are a lot of works centered around the dynamics of classes of transcendental functions,such as the Speier class and the Eremenko-Lyubich class.This paper is another contribution in this direction,and we focus on transcendental entire solutions of complex differential equations.For these transcendental solutions,we investigate the geometric property of their Julia sets near∞,which is one of the questions in transcendental iteration theory distinct from the iteration of rational functions.

    Baker[2]observed that,when

    f

    is a transcendental entire function,J(

    f

    )cannot be contained in any finite set of straight lines.However,this is not true for transcendental meromorphic functions,such as J(tan

    z

    )=R.From the viewpoint of angular distribution,Qiao[11]introduced the limiting direction of the Julia set.A value

    θ

    ∈[0

    ,

    2

    π

    )is said to be a limiting direction of the Julia set of

    f

    if there is an unbounded sequence{

    z

    }?J(

    f

    )such that

    For brevity,in this paper we call a limiting direction of the Julia set of

    f

    a Julia limiting direction of

    f

    .We denote by

    L

    (

    f

    )the set of all Julia limiting directions of

    f

    ;it is a non-empty closed set in[0

    ,

    2

    π

    )and will reveal the large-scale geometry property of J(

    f

    ).Since any rational function,as well as any polynomial,can be treated as a map between two Riemann spheres,it makes no sense for us to consider the Julia limiting direction for rational functions.Furthermore,we identify[0

    ,

    2

    π

    )with the circle S:={

    z

    ∈C:|

    z

    |=1}and intervals in[0

    ,

    2

    π

    )with arcs on the circle for convenience.Value distribution theory plays an important role in studying transcendental meromorphic functions,and its standard notations as well as its well-known theorems can be found in[7,8].For example,we denote by

    T

    (

    r,f

    )and

    N

    (

    r,f

    )the characteristic function and the integrated counting function of poles,respectively,with respect to

    f

    .The order

    ρ

    (

    f

    )and the lower order

    μ

    (

    f

    )are de fined by

    For transcendental entire functions,Qiao[11]noticed a relation between the Lebesgue measure of

    L

    (

    f

    )and the growth order of

    f

    .

    Theorem 1.1

    ([11])Let

    f

    be a transcendental entire function of lower order

    μ<

    ∞.Then there exists a closed interval

    I

    ?

    L

    (

    f

    )such that

    where meas(

    I

    )is the Lebesgue measure of the set

    I

    .The condition that

    μ<

    ∞in Theorem 1.1 is necessary,since Baker[2]proved that there exists an entire function

    f

    of in finite lower order with a property implying that

    L

    (

    f

    )is a single point set.Furthermore,Qiao[11]showed that the estimate in Theorem 1.1 is sharp,which is veri fied by modifying functions in the Mittag-Leffler class.Recalling J(tan

    z

    )=R,Theorem 1.1 fails for general meromorphic functions,but under some certain conditions,Theorem 1.1 can be generalized;see[12,21]for the details.For entire functions of in finite lower order,what is the sufficient condition for the existence of the lower bound of meas(

    L

    (

    f

    ))?There are already some considerations regarding solutions of complex differential equations,for example,the linear equations

    (see[9]),and the nonlinear equations,such as Riccati equations

    (see[20]).We only state the result on linear equations(1.2)here.

    Theorem 1.2

    ([9])Suppose that all coefficients of(1.2)are entire functions of finite lower order,that

    a

    is transcendental and that

    T

    (

    r,a

    )=

    o

    (

    T

    (

    r,a

    ))(

    i

    =1

    ,

    2

    ,...,n

    ?1).Then every nonzero solution

    f

    of(1.2)is of in finite lower order,and

    Furthermore,under the hypothesis of Theorem 1.2,there even exists(see[17])

    where

    f

    (

    n

    ∈Z)denote the derivatives for

    n

    ∈N and the anti-derivatives for?

    n

    ∈N,and

    f

    =

    f

    .In addition,a corresponding investigation has been done for equations(1.2)with exponential coefficients[16].However,it is not clear what is behind the inequalities(1.1)and(1.4).Recently,we found out that for the entire function

    f

    ,the direction in which

    f

    grows more quickly than any polynomial is a Julia limiting direction of

    f

    ;see Lemma 2.2 in the next section.We introduce the following concept of transcendental direction to describe these directions in which

    f

    grows quickly:a value

    θ

    ∈[0

    ,

    2

    π

    )is said to be a transcendental direction of

    f

    if there exists an unbounded sequence of{

    z

    }such that

    We use

    TD

    (

    f

    )to denote the union of all transcendental directions;clearly

    TD

    (

    f

    )is a non-empty compact set in[0

    ,

    2

    π

    ).We will see that Julia limiting directions of solutions to(1.2)partly come from the transcendental directions of the dominanting coefficient

    a

    .Furthermore,in this paper,we investigate more general differential equations,which even contain some non-linear differential equations.Before stating our results,we first introduce the terminology of differential polynomials of

    f

    .The differential polynomial

    P

    (

    z,f

    )is a finite sum of differential monomials generated by

    f

    ,that is,

    where the coefficients

    a

    (

    z

    )are meromorphic,and the powers

    n

    ,n

    ,...,n

    are non-negative integers.We use

    γ

    to denote the minimum degree of

    M

    as

    Theorem 1.3

    Suppose that

    s,n

    are integers,

    F

    (

    z

    )is a transcendental entire function of finite lower order,and that

    P

    (

    z,f

    )is a differential polynomial in

    f

    with

    γ

    s

    ,where all coefficients

    a

    (

    j

    =1

    ,

    2

    ,...,l

    )are polynomials if

    μ

    (

    F

    )=0,or all

    a

    (

    j

    =1

    ,

    2

    ,...,l

    )are entire functions and

    ρ

    (

    a

    )

    (

    F

    ).Then,for every nonzero transcendental entire solution

    f

    of the differential equation

    we have

    TD

    (

    f

    )∩

    TD

    (

    F

    )?

    L

    (

    f

    )and

    Clearly,when

    s

    =1

    ,F

    =

    a

    (

    z

    )and

    P

    (

    z,f

    )=

    f

    +

    a

    (

    z

    )

    f

    +

    ...

    +

    a

    (

    z

    )

    f

    ,we immediately obtain the following corollary from Theorem 1.3:

    Corollary 1.4

    Suppose that all coefficients of(1.2)are entire functions of finite lower order,that

    a

    is transcendental and that all

    a

    (

    i

    =1

    ,

    2

    ,...,n

    ?1)are polynomials if

    μ

    (

    a

    )=0,or that all

    a

    (

    i

    =1

    ,

    2

    ,...,n

    ?1)satisfy

    ρ

    (

    a

    )

    (

    a

    ).Then,for every nonzero solution

    f

    of(1.2),we have

    TD

    (

    f

    )∩

    TD

    (

    a

    )?

    L

    (

    f

    )

    ,k

    ∈Z and

    As for the case that

    s

    =0,there is another corollary from Theorem 1.3 which can treat not only the non-homogeneous linear equation corresponding to(1.2)but also the non-linear differential equations

    P

    (

    z,f

    )=

    F

    (

    z

    ).

    Corollary 1.5

    Suppose that

    F

    and

    P

    (

    z,f

    )are de fined as in Theorem 1.3.Then,for every nonzero entire solution

    f

    of the equation

    P

    (

    z,f

    )=

    F

    (

    z

    ),we have

    TD

    (

    f

    )∩

    TD

    (

    F

    )?

    L

    (

    f

    )

    ,n

    ∈Z and(1.7).

    Remark 1.6

    The general Riccati differential equations

    f

    =

    a

    (

    z

    )+

    a

    (

    z

    )

    f

    +

    a

    (

    z

    )

    f

    can be rewritten as

    If

    a

    ,a

    ,a

    are entire functions of finite lower order such that

    ρ

    (

    a

    )

    (

    a

    )and

    ρ

    (

    a

    )

    (

    a

    ),then meas(

    L

    (

    f

    ))≥min{2

    π,π/μ

    (

    a

    )}follows from Corollary 2.Clearly,(1.3)is different from our case of Riccati differential equation.

    The remainder of this paper is organized as follows:in Section 2,we show some basic properties of Julia limiting directions for entire functions,which contain the relation between transcendental directions and Julia limiting directions.The proof of Theorem 1.3 is given in Section 3,and some examples given here.Our method is somewhat different and simpler than that of[9,17].

    2 Basic Property of Julia Limiting Directions

    The relation between

    TD

    (

    f

    )and

    L

    (

    f

    )is important for our proof of Theorem 1.3.Before proving the theorem,we need a result which can be deduced from the proof of[11,Lemma 1]in order to deal with the case that F(

    f

    )contains an angular domain.

    One Friday evening I came home from work to find a big beautiful German shepherd on our doorstep. This wonderful strong animal gave every indication that he intended to enter the house and make it his home. I, however, was wary4. Where did this obviously well-cared-for dog come from? Was it safe to let the children play with a strange dog? Even though he seemed gentle, he still was powerful and commanded respect. The children took an instant liking5 to German and begged me to let him in. I agreed to let him sleep in the basement until the next day, when we could inquire around the neighborhood for his owner. That night I slept peacefully for the first time in many weeks.

    Lemma 2.1

    Let

    f

    be analytic in the angular domain

    Suppose that

    f

    (?(

    z

    ,θ,δ

    ))is contained in a simply connected hyperbolic domain in C.Then

    for any

    δ

    ∈(0

    ).

    Now by Lemma 2.1,we establish the relation between transcendental directions and Julia limiting directions as follows:

    Lemma 2.2

    Let

    f

    be a transcendental entire function.Then

    TD

    (

    f

    )?

    L

    (

    f

    ).

    Proof

    We first treat the case in which F(

    f

    )has a multiply connected component.We claim that in this case,

    L

    (

    f

    )=[0

    ,

    2

    π

    ).Otherwise,there exists one value

    θ

    /∈

    L

    (

    f

    ),so there exist

    ?>

    0

    ,a

    ∈C and arg

    a

    =

    θ

    such that

    Next,we consider the remaining case that all components of the Fatou set are simply connected.For any given value

    θ

    TD

    (

    f

    ),we assume that

    θ

    /∈

    L

    (

    f

    ),so we have ?(

    a,θ,

    2

    ?

    )?F(

    f

    )for two constants

    ?>

    0 and

    a

    with arg

    a

    =

    θ

    .At the same time,there is an unbounded sequence{

    z

    }??(

    a,θ,

    2

    ?

    )such that

    as

    n

    →∞.Clearly,

    f

    (?(

    a,θ,?

    ))is contained in a simply connected hyperbolic domain.By Lemma 2.1,there exist positive constants

    k

    and

    A

    such that

    With Lemma 2.2 in hand,for the entire

    f

    ,we can investigate the Julia limiting directions by first finding the transcendental directions.By the radial growth of

    e

    ,that is,|exp(

    re

    )|=

    e

    ,it is easy to see that

    L

    (sin

    z

    )=

    L

    (cos

    z

    )=[0

    ,

    2

    π

    )since

    TD

    (sin

    z

    )=

    TD

    (cos

    z

    )=[0

    ,

    2

    π

    ).There are a few more examples as follows:

    Example 2.3

    We recall that Mittag-Leffler function

    has the uniform asymptotic behavior[7,Chapter 1,(5.40)]

    From this fact,it follows that

    Example 2.4

    From[19,(6.3.15)],the entire function

    in the angle ?(

    ε,

    2

    π

    ?

    ε

    )={

    z

    :

    ε<

    arg

    z<

    2

    π

    ?

    ε

    }for every positive number

    ε

    .Since

    ε

    is arbitrarily small,it is easy to see that

    L

    (

    f

    )=

    TD

    (

    f

    )=[0

    ,

    2

    π

    ).

    Example 2.5

    By[19,Lemma 7.9],for 1

    /

    2

    <μ<

    1,we know that

    is an entire function,and for a sufficiently small

    ε>

    0,

    uniformly in

    θ

    for|

    θ

    |

    ?

    ε.

    This implies that

    Thus,to measure

    L

    (

    f

    ),one possible way is to estimate the directions in which

    f

    grows quickly.To do this,we recall Baerstein’s result on the spread relation[1],which shows that for

    f

    with not so many poles,log|

    f

    |is‘large enough’on a substantial portion of circles{|

    z

    |=

    r

    }.

    Lemma 2.6

    ([1])Let

    f

    be a transcendental meromorphic function with finite lower order

    μ

    and positive de ficiency

    Clearly,

    E

    (

    f

    )?

    TD

    (

    f

    ),so

    E

    (

    f

    )?

    L

    (

    f

    ),by Lemma 2.2.Next,by Lemma 2.6 and the monotone convergence theorem,we derive the lower bound of meas(

    L

    (

    f

    )).

    Lemma 2.8

    Let

    f

    be a transcendental meromorphic function with finite lower order

    μ

    and

    δ

    (∞

    ,f

    )

    >

    0,and let Λ(

    r

    )be a positive function such that Λ(

    r

    )=

    o

    (

    T

    (

    r,f

    ))and Λ(

    r

    )

    /

    (log

    r

    )→∞as

    r

    →∞.Then,

    Proof It follows from Lemma 2.6 that

    Noting that

    D

    (

    r

    )?

    B

    for each

    n

    ,we get that

    Combining this fact with(2.8)and

    E

    (

    f

    )?

    L

    (

    f

    )yields inequality(2.7).In addition,we easily have the following lemma for

    L

    (

    f

    )∩

    L

    (

    f

    ):

    Lemma 2.9

    Let

    f

    be a transcendental entire function,and let

    n

    be a positive integer.Then

    TD

    (

    f

    )?

    TD

    (

    f

    )and

    TD

    (

    f

    )?

    L

    (

    f

    )∩

    L

    (

    f

    ).

    Proof

    For any given

    θ

    /∈

    TD

    (

    f

    ),it follows from the de finition of transcendental directions that there exist positive

    ?

    and

    K

    such that

    We note the fact that

    where

    c

    is a constant,and the integral path is the segment of a straight line from 0 and

    z

    .From this and(2.9),it is easy to see that|

    f

    (

    z

    )|≤(

    K

    +1)|

    z

    |for all

    z

    ∈?(0

    ,θ,?

    ).Repeating this discussion

    n

    times yields

    This means that

    θ

    /∈

    TD

    (

    f

    )if

    θ

    /∈

    TD

    (

    f

    ),which implies that

    TD

    (

    f

    )?

    TD

    (

    f

    ).By Lemma 2.2,

    TD

    (

    f

    )?

    L

    (

    f

    )and

    TD

    (

    f

    )?

    L

    (

    f

    ),so

    TD

    (

    f

    )?

    L

    (

    f

    )∩

    L

    (

    f

    ).

    3 Proof of Theorem 1.3 and Some Examples

    To prove Theorem 1.3,we still need the Nevanlinna theory in angular domains.For the convenience of the reader,we recall some basic de finitions here(for example see[7,22]).

    Let

    g

    (

    z

    )be an entire function on the closure of ?(

    α,β

    )={

    z

    ∈C:arg

    z

    ∈(

    α,β

    )},where

    β

    ?

    α

    ∈(0

    ,

    2

    π

    ].De fine

    where

    ω

    =

    π/

    (

    β

    ?

    α

    )and

    b

    =|

    b

    |

    e

    are the poles of

    g

    in the closure of ?(

    α,β

    )appearing according to their multiplicities.Nevanlinna’s angular characteristic of

    g

    is de fined by

    and the order of

    S

    (

    r,g

    )is de fined by

    Lemma 3.1

    ([9,Lemma 2.2])Suppose that

    n

    ∈N,and that

    g

    (

    z

    )is analytic in ?(

    α,β

    )with

    ρ

    (

    g

    )

    <

    ∞.Then,for

    ε

    =0,

    outside a set whose Lebesgue measure is zero,where

    and there exist positive constants

    M,K

    only depending on

    g,ε

    ,...,ε

    ,

    ?(

    α,β

    )such that for all

    m

    =1

    ,

    2

    ,...,n

    and

    z

    =

    re

    ∈?(

    α

    ),holds outside an R-set,where

    k

    =

    π/

    (

    β

    ?

    α

    )(

    j

    =1

    ,

    2

    ,...,n

    ).

    Lemma 3.2

    ([22,Theorem 2.5.1])Let

    f

    (

    z

    )be a meromorphic function on ?(

    α

    ?

    ε,β

    +

    ε

    )for

    ε>

    0 and 0

    <α<β<

    2

    π

    .Then

    for

    r>

    1,possibly excepting a set with finite linear measure,and also we have the constant

    K>

    0.

    Proof of Theorem 1.3

    In what follows,we will treat three cases:

    n

    =0

    ,n>

    0 and

    n<

    0.Case 1.We assume that

    n

    =0.For every

    θ

    /∈

    TD

    (

    f

    ),by the de finiti on of transcendental direction,there exist positive

    ?

    and

    K

    such that

    This implies that

    ρ

    (

    f

    )

    <

    ∞.By Lemma 3.1,there are positive

    M

    ,K

    and

    ?

    <?

    such that

    holds for

    z

    ∈?(

    θ,?

    )outside an

    R

    -set

    G

    ,where

    H

    ={

    r

    =|

    z

    |

    ,z

    G

    }is a set of finite Lebesgue measure,and

    m

    =1

    ,

    2

    ,...,k

    .

    We rewrite(1.6)as

    Taking(3.1)and(3.2)into(3.3)yields

    for

    z

    ∈?(

    θ,?

    )outside

    G

    ,where

    n

    +

    n

    +

    ...

    +

    n

    ?

    s

    γ

    ?

    s

    ≥0.When

    μ

    (

    F

    )

    >

    0,we take Λ(

    r

    )=

    r

    with

    for a subsequence{

    r

    }of{

    r

    }.

    For any given

    taking(3.6)into(3.4)yields

    It follows from the de finition of order by maximum modulus that the above inequality implies that

    This is an contradiction,which means that

    E

    (

    F

    )

    TD

    (

    f

    )=?

    ,

    so,by Lemma 2.2,

    At the same time,

    E

    (

    F

    )?

    TD

    (

    F

    ).Therefore,we have

    and(1.7)follows from(3.5).

    Case 2.We assume that

    n>

    0.It follows from Lemma 2.9 that

    TD

    (

    F

    )∩

    TD

    (

    f

    )?

    TD

    (

    F

    )∩

    TD

    (

    f

    ),thus

    by

    E

    (

    F

    )?

    TD

    (

    f

    ),which similarly leads to(1.7).Case 3.We assume that

    n<

    0.For

    θ

    /∈

    TD

    (

    f

    ),we know that

    where

    ?>

    0 and

    K

    >

    0.Thus,

    S

    (

    r,f

    )=

    O

    (1),so

    ρ

    (

    f

    )

    <

    ∞.Then,by Lemma 3.1,there are positive

    M

    ,K

    and

    ?

    <?

    such that

    holds for

    z

    ∈?(

    θ,?

    )outside an

    R

    -set

    G

    ,where

    H

    ={

    r

    =|

    z

    |

    ,z

    G

    }is of finite Lebesgue measure.It follows from Lemma 3.2 that

    with

    nε<?/

    2.Repeating this discussion

    n

    times yields that

    At the same time,by Lemmas 2.6 and 2.8,and Remark 2.7,there exists an unbound sequence{

    r

    }such that all

    r

    /∈

    H

    H

    ,and for

    θ

    E

    (

    F

    ),we have(3.5)and(3.6),where Λ(

    r

    )is de fined as in Case 1.We rewrite(1.6)as

    For

    θ

    E

    (

    F

    )

    TD

    (

    f

    ),substituting(3.2),(3.6),(3.7)and(3.8)into the above equation yields

    In a fashion similar to Case 1,this is impossible.This means that

    E

    (

    F

    )

    TD

    (

    f

    )=?,so,by Lemma 2.2,

    Therefore,we have

    and(1.7)follows from(3.5)again.

    This completes the proof of Theorem 1.3.

    Remark 3.3

    From the proof of Theorem 1.3,we know that

    Finally,we give some examples for applications of Theorem 1.3.

    Example 3.4

    The solutions of the Mathieu differential equation

    Since the set of transcendental directions is closed,we deduce that

    Example 3.5

    Every non-zero solution of the equation

    Example 3.7

    Every entire solution of the equation satis fies[0

    ,

    2

    π

    )=

    L

    (

    f

    ),since

    两性午夜刺激爽爽歪歪视频在线观看| 麻豆国产97在线/欧美| 国产精品野战在线观看| 综合色av麻豆| 欧美在线黄色| ponron亚洲| 久久久久久久亚洲中文字幕 | 伦理电影大哥的女人| 精品久久久久久成人av| 亚洲一区高清亚洲精品| 日韩 亚洲 欧美在线| 国产亚洲av嫩草精品影院| 99热只有精品国产| 日本免费一区二区三区高清不卡| 69人妻影院| 国产视频一区二区在线看| 亚洲在线观看片| www.www免费av| 日本 av在线| 成人特级黄色片久久久久久久| 精品人妻一区二区三区麻豆 | 在线观看午夜福利视频| 中文亚洲av片在线观看爽| 十八禁国产超污无遮挡网站| 青草久久国产| 亚洲av日韩精品久久久久久密| 亚洲 欧美 日韩 在线 免费| 亚洲最大成人中文| 18+在线观看网站| 亚洲欧美日韩高清在线视频| 丰满人妻熟妇乱又伦精品不卡| 国产69精品久久久久777片| 99精品久久久久人妻精品| 午夜免费激情av| 亚洲欧美日韩卡通动漫| 听说在线观看完整版免费高清| 亚洲av美国av| 少妇被粗大猛烈的视频| 五月伊人婷婷丁香| 免费电影在线观看免费观看| 欧美成人性av电影在线观看| 午夜激情欧美在线| 男女那种视频在线观看| 久久香蕉精品热| av福利片在线观看| 亚洲av成人不卡在线观看播放网| 五月伊人婷婷丁香| 琪琪午夜伦伦电影理论片6080| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 久久国产精品人妻蜜桃| 亚洲,欧美,日韩| 此物有八面人人有两片| 日本精品一区二区三区蜜桃| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 蜜桃久久精品国产亚洲av| 波多野结衣巨乳人妻| 婷婷亚洲欧美| 高清日韩中文字幕在线| 一个人观看的视频www高清免费观看| 国模一区二区三区四区视频| 性欧美人与动物交配| 久久精品国产亚洲av涩爱 | 在线十欧美十亚洲十日本专区| 9191精品国产免费久久| 两个人的视频大全免费| 亚洲精品粉嫩美女一区| 国产淫片久久久久久久久 | 国产av麻豆久久久久久久| 欧美+日韩+精品| 国产野战对白在线观看| 90打野战视频偷拍视频| 精品一区二区三区视频在线| 欧美高清成人免费视频www| 在线观看免费视频日本深夜| a级毛片免费高清观看在线播放| 日本a在线网址| 可以在线观看的亚洲视频| 99久久精品国产亚洲精品| 国产亚洲精品av在线| 亚洲中文字幕一区二区三区有码在线看| 久久久久亚洲av毛片大全| 免费电影在线观看免费观看| 男女之事视频高清在线观看| 国产人妻一区二区三区在| 成年女人毛片免费观看观看9| 国产在视频线在精品| 成人永久免费在线观看视频| 嫩草影视91久久| 久久这里只有精品中国| 露出奶头的视频| 午夜精品在线福利| 精品人妻一区二区三区麻豆 | 综合色av麻豆| 久99久视频精品免费| 色尼玛亚洲综合影院| 亚洲人成网站高清观看| 国产乱人视频| 国产成人福利小说| 国产亚洲精品久久久com| 午夜精品一区二区三区免费看| 国产免费男女视频| 成人av一区二区三区在线看| 国产精品,欧美在线| 午夜免费激情av| 精品人妻一区二区三区麻豆 | 国产亚洲欧美在线一区二区| 好男人在线观看高清免费视频| 欧美黄色淫秽网站| 在线播放无遮挡| 村上凉子中文字幕在线| 黄色视频,在线免费观看| 欧美成狂野欧美在线观看| 国产色爽女视频免费观看| 白带黄色成豆腐渣| 色噜噜av男人的天堂激情| 舔av片在线| 一本一本综合久久| 欧美另类亚洲清纯唯美| 不卡一级毛片| 亚洲熟妇中文字幕五十中出| 在线免费观看不下载黄p国产 | 亚洲七黄色美女视频| 亚洲无线在线观看| 国产精品免费一区二区三区在线| 国产乱人视频| 深夜a级毛片| 草草在线视频免费看| 久久中文看片网| 精品久久久久久久久av| 亚洲av成人av| 美女被艹到高潮喷水动态| 啦啦啦韩国在线观看视频| 在线国产一区二区在线| 少妇的逼水好多| 白带黄色成豆腐渣| 日韩欧美 国产精品| 国产高清视频在线观看网站| 俄罗斯特黄特色一大片| 国产精品女同一区二区软件 | 国产高潮美女av| 久久精品91蜜桃| 999久久久精品免费观看国产| 欧美最黄视频在线播放免费| 成人欧美大片| 国产伦在线观看视频一区| 成人高潮视频无遮挡免费网站| 真人做人爱边吃奶动态| 日韩欧美在线乱码| 一个人看视频在线观看www免费| 国产精品乱码一区二三区的特点| 内射极品少妇av片p| 免费人成在线观看视频色| 亚洲成av人片在线播放无| 少妇熟女aⅴ在线视频| 国产老妇女一区| 午夜a级毛片| 免费观看人在逋| 久久性视频一级片| 亚洲,欧美,日韩| 国产野战对白在线观看| 成人午夜高清在线视频| 成人亚洲精品av一区二区| 欧美日韩瑟瑟在线播放| 精品国产三级普通话版| 两个人视频免费观看高清| 真实男女啪啪啪动态图| 人妻夜夜爽99麻豆av| 国产精品一及| 亚洲最大成人手机在线| 看黄色毛片网站| 在线观看av片永久免费下载| 欧美成人性av电影在线观看| 午夜福利成人在线免费观看| 免费av不卡在线播放| 亚洲18禁久久av| 免费观看的影片在线观看| 精品人妻一区二区三区麻豆 | 亚洲熟妇熟女久久| 国产美女午夜福利| 中出人妻视频一区二区| 亚洲一区二区三区色噜噜| 高清日韩中文字幕在线| 一个人免费在线观看电影| 中文字幕免费在线视频6| 99热只有精品国产| a在线观看视频网站| 亚洲av成人精品一区久久| 全区人妻精品视频| 国产精品av视频在线免费观看| 亚洲av一区综合| 18禁裸乳无遮挡免费网站照片| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av| 99视频精品全部免费 在线| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| av福利片在线观看| 国产一区二区亚洲精品在线观看| 免费人成视频x8x8入口观看| 日韩欧美国产在线观看| 国产av在哪里看| 噜噜噜噜噜久久久久久91| 狂野欧美白嫩少妇大欣赏| 脱女人内裤的视频| 色在线成人网| 97热精品久久久久久| 久久伊人香网站| 又粗又爽又猛毛片免费看| 哪里可以看免费的av片| 国产美女午夜福利| 亚洲成人免费电影在线观看| 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 麻豆一二三区av精品| 神马国产精品三级电影在线观看| 国产三级黄色录像| 久久99热6这里只有精品| 欧美日本视频| 精品人妻1区二区| 久久午夜福利片| 又爽又黄a免费视频| 亚洲电影在线观看av| 日本精品一区二区三区蜜桃| aaaaa片日本免费| 精品不卡国产一区二区三区| www.999成人在线观看| 国产真实乱freesex| 日本一本二区三区精品| 精品人妻偷拍中文字幕| eeuss影院久久| 国产av不卡久久| 欧美成人一区二区免费高清观看| 丰满人妻熟妇乱又伦精品不卡| 757午夜福利合集在线观看| 国产精品影院久久| 给我免费播放毛片高清在线观看| 国产成人a区在线观看| 欧美日本视频| 久久亚洲精品不卡| 1024手机看黄色片| 看黄色毛片网站| 久久香蕉精品热| 久久性视频一级片| 亚洲五月婷婷丁香| 中出人妻视频一区二区| 欧美最黄视频在线播放免费| 国产午夜精品论理片| 动漫黄色视频在线观看| 日韩中字成人| 床上黄色一级片| 午夜福利在线观看吧| 在线看三级毛片| 男女那种视频在线观看| 人妻制服诱惑在线中文字幕| 国产爱豆传媒在线观看| avwww免费| 色精品久久人妻99蜜桃| 真实男女啪啪啪动态图| 国产欧美日韩一区二区三| 日韩亚洲欧美综合| 久久久久国产精品人妻aⅴ院| 我的老师免费观看完整版| 深夜精品福利| 成人鲁丝片一二三区免费| 亚洲av五月六月丁香网| 女生性感内裤真人,穿戴方法视频| 欧美色视频一区免费| 亚洲av电影不卡..在线观看| 亚洲 国产 在线| 国产黄色小视频在线观看| 免费黄网站久久成人精品 | 国产一区二区激情短视频| 成人性生交大片免费视频hd| 一本综合久久免费| 久久久成人免费电影| 成年女人毛片免费观看观看9| 激情在线观看视频在线高清| 美女高潮喷水抽搐中文字幕| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类 | 女人被狂操c到高潮| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 极品教师在线视频| 亚洲中文字幕一区二区三区有码在线看| 日韩中字成人| 日本一二三区视频观看| 又紧又爽又黄一区二区| 九色成人免费人妻av| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av| 国产一区二区在线av高清观看| 99国产综合亚洲精品| 中文字幕免费在线视频6| 国产熟女xx| 波多野结衣高清作品| 两人在一起打扑克的视频| 757午夜福利合集在线观看| 欧美午夜高清在线| 青草久久国产| 久久久久免费精品人妻一区二区| 日韩中字成人| 亚洲国产色片| 日韩中文字幕欧美一区二区| 噜噜噜噜噜久久久久久91| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 黄色视频,在线免费观看| 老女人水多毛片| 成人国产一区最新在线观看| 久久久国产成人免费| 国内精品一区二区在线观看| 久久人人爽人人爽人人片va | 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| 夜夜爽天天搞| 欧美高清成人免费视频www| 天堂影院成人在线观看| 国产蜜桃级精品一区二区三区| 男插女下体视频免费在线播放| 人人妻人人看人人澡| 日韩欧美一区二区三区在线观看| 亚洲五月天丁香| 国产激情偷乱视频一区二区| 婷婷色综合大香蕉| 麻豆成人午夜福利视频| 国产精品99久久久久久久久| 天堂√8在线中文| 91麻豆av在线| 国产免费男女视频| а√天堂www在线а√下载| 国产伦一二天堂av在线观看| 欧美一区二区亚洲| 国产精品亚洲美女久久久| 最近视频中文字幕2019在线8| 九色国产91popny在线| 男女做爰动态图高潮gif福利片| 国产美女午夜福利| 亚洲av成人不卡在线观看播放网| 国产成人aa在线观看| 国产精品一区二区性色av| 久久久久九九精品影院| 亚洲精品在线美女| 久久久国产成人免费| 不卡一级毛片| a级毛片a级免费在线| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 亚洲av免费在线观看| 国产精品久久久久久人妻精品电影| 首页视频小说图片口味搜索| 中文字幕av成人在线电影| 欧美zozozo另类| 国产av麻豆久久久久久久| 日韩欧美精品v在线| 国产精品亚洲av一区麻豆| 不卡一级毛片| 嫩草影院入口| 午夜视频国产福利| 欧美性猛交黑人性爽| 亚洲美女搞黄在线观看 | 老女人水多毛片| 自拍偷自拍亚洲精品老妇| 国产一区二区三区在线臀色熟女| aaaaa片日本免费| 国产视频一区二区在线看| 偷拍熟女少妇极品色| 亚洲在线观看片| 亚洲乱码一区二区免费版| 日本撒尿小便嘘嘘汇集6| 日本黄色视频三级网站网址| 国产精品久久久久久人妻精品电影| 亚洲第一电影网av| 中文字幕av成人在线电影| 搡老熟女国产l中国老女人| 国产成年人精品一区二区| 99久国产av精品| 午夜两性在线视频| 亚洲五月婷婷丁香| 婷婷亚洲欧美| 超碰av人人做人人爽久久| 国产久久久一区二区三区| 日本与韩国留学比较| 日韩av在线大香蕉| 亚洲人成网站在线播| 欧美中文日本在线观看视频| 国产免费男女视频| АⅤ资源中文在线天堂| 国产大屁股一区二区在线视频| 老熟妇仑乱视频hdxx| 最近中文字幕高清免费大全6 | 性欧美人与动物交配| 两个人的视频大全免费| 最近在线观看免费完整版| 亚洲av二区三区四区| 国内毛片毛片毛片毛片毛片| 国产激情偷乱视频一区二区| 我要看日韩黄色一级片| 99热精品在线国产| 99久久精品热视频| 两人在一起打扑克的视频| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频| 欧美乱色亚洲激情| 淫秽高清视频在线观看| 搡老熟女国产l中国老女人| 欧美精品国产亚洲| 高清在线国产一区| 嫩草影视91久久| 色视频www国产| ponron亚洲| 国产成人影院久久av| 午夜免费男女啪啪视频观看 | 免费一级毛片在线播放高清视频| 97人妻精品一区二区三区麻豆| 18美女黄网站色大片免费观看| 怎么达到女性高潮| 深夜精品福利| 国产又黄又爽又无遮挡在线| avwww免费| 国产精品嫩草影院av在线观看 | 99热这里只有精品一区| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 久久国产精品人妻蜜桃| 床上黄色一级片| 国产 一区 欧美 日韩| av欧美777| 精品久久久久久久久久久久久| 在线观看av片永久免费下载| 成人av在线播放网站| 国产一级毛片七仙女欲春2| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 欧美日韩中文字幕国产精品一区二区三区| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日韩 亚洲 欧美在线| 永久网站在线| 久久久久久久午夜电影| 国内精品久久久久精免费| 他把我摸到了高潮在线观看| 欧美高清性xxxxhd video| 91av网一区二区| 91在线精品国自产拍蜜月| 中文资源天堂在线| 成人午夜高清在线视频| 日韩国内少妇激情av| 90打野战视频偷拍视频| 国产精品99久久久久久久久| 美女xxoo啪啪120秒动态图 | 日本免费一区二区三区高清不卡| 天天躁日日操中文字幕| 婷婷精品国产亚洲av| 色播亚洲综合网| 亚洲一区高清亚洲精品| 欧美最新免费一区二区三区 | 欧美性猛交黑人性爽| 亚洲人成网站高清观看| 精品午夜福利在线看| 精品日产1卡2卡| 久久婷婷人人爽人人干人人爱| 一级黄片播放器| 午夜福利高清视频| 国产精华一区二区三区| 欧美+亚洲+日韩+国产| 在线观看舔阴道视频| 又粗又爽又猛毛片免费看| 极品教师在线视频| 搡老岳熟女国产| 18禁黄网站禁片午夜丰满| 久久国产乱子伦精品免费另类| 最近在线观看免费完整版| 亚洲 欧美 日韩 在线 免费| 高清毛片免费观看视频网站| 亚洲经典国产精华液单 | x7x7x7水蜜桃| 国内少妇人妻偷人精品xxx网站| 久久久久久久精品吃奶| 亚洲国产日韩欧美精品在线观看| 久久久久久久午夜电影| 午夜日韩欧美国产| 国产主播在线观看一区二区| 国产在线精品亚洲第一网站| 一二三四社区在线视频社区8| 精品99又大又爽又粗少妇毛片 | 欧美不卡视频在线免费观看| 嫩草影院新地址| 99热这里只有是精品50| 此物有八面人人有两片| 国产成人啪精品午夜网站| 少妇被粗大猛烈的视频| 亚洲avbb在线观看| 波多野结衣高清作品| 啦啦啦观看免费观看视频高清| www.色视频.com| 特大巨黑吊av在线直播| 国产欧美日韩一区二区三| 亚洲第一电影网av| 亚洲综合色惰| 成人亚洲精品av一区二区| 天堂动漫精品| 久久久精品大字幕| 国产av不卡久久| 欧美日韩福利视频一区二区| 午夜福利在线在线| 久久99热6这里只有精品| 97碰自拍视频| 亚洲国产精品久久男人天堂| 精品国产三级普通话版| 中文字幕免费在线视频6| 波多野结衣高清作品| 欧美潮喷喷水| 亚洲内射少妇av| 国产精品亚洲av一区麻豆| 国产不卡一卡二| 亚洲久久久久久中文字幕| 国产精品影院久久| 成年免费大片在线观看| 精品人妻1区二区| 国产亚洲av嫩草精品影院| av在线观看视频网站免费| 久久精品国产99精品国产亚洲性色| 一个人看视频在线观看www免费| 亚洲最大成人av| 在线国产一区二区在线| 极品教师在线免费播放| 亚洲精品456在线播放app | 人妻夜夜爽99麻豆av| 嫁个100分男人电影在线观看| 国产午夜精品论理片| 精品乱码久久久久久99久播| 99久久99久久久精品蜜桃| a级毛片免费高清观看在线播放| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 天堂av国产一区二区熟女人妻| 18禁在线播放成人免费| 成人永久免费在线观看视频| 狠狠狠狠99中文字幕| 国产精品久久久久久久电影| 18禁在线播放成人免费| 最近最新中文字幕大全电影3| 成人毛片a级毛片在线播放| 亚洲av一区综合| 啦啦啦观看免费观看视频高清| 免费av毛片视频| 99热这里只有精品一区| 国产不卡一卡二| 免费在线观看日本一区| 亚洲无线在线观看| 少妇的逼水好多| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 俺也久久电影网| 91久久精品电影网| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 日韩亚洲欧美综合| 欧美日韩黄片免| 中文字幕免费在线视频6| 久久亚洲精品不卡| 亚洲av免费高清在线观看| 久久精品人妻少妇| 在线免费观看不下载黄p国产 | 大又大粗又爽又黄少妇毛片口| 国产黄a三级三级三级人| 欧美成人a在线观看| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 大话2 男鬼变身卡| 内地一区二区视频在线| av一本久久久久| 大陆偷拍与自拍| 成人二区视频| 午夜激情久久久久久久| 亚洲欧美日韩东京热| 精品人妻熟女av久视频| 最新中文字幕久久久久| 少妇的逼水好多| 亚洲国产最新在线播放| 国产精品成人在线| 国产探花在线观看一区二区| 亚洲精品影视一区二区三区av| 人妻夜夜爽99麻豆av| 欧美高清性xxxxhd video| 久久影院123| 亚洲av日韩在线播放| 午夜精品国产一区二区电影 | 五月天丁香电影| 26uuu在线亚洲综合色| 成人欧美大片| 卡戴珊不雅视频在线播放| 成人毛片a级毛片在线播放| 日日啪夜夜爽| 最近中文字幕高清免费大全6| 夜夜看夜夜爽夜夜摸| 国产一级毛片在线| 丰满乱子伦码专区| 亚洲第一区二区三区不卡| 特大巨黑吊av在线直播| 一级毛片电影观看| 日本-黄色视频高清免费观看| 热re99久久精品国产66热6| 有码 亚洲区| av天堂中文字幕网| 天堂俺去俺来也www色官网| 中文精品一卡2卡3卡4更新| 成人免费观看视频高清| 国产乱来视频区| 日韩av免费高清视频|