馮信 張春梅 王宏偉
摘要:【目的】鑒定玉米EXO70s(ZmEXO70s)基因家族成員,分析其遺傳變異與玉米耐熱性的關(guān)聯(lián)性,為揭示其在玉米耐熱方面的功能和分子機(jī)制打下基礎(chǔ)?!痉椒ā恳詳M南芥EXO70s(AtEXO70s)基因家族成員序列為參考,利用MaizeGDB和NCBI數(shù)據(jù)庫(kù)從玉米全基因組中鑒定出ZmEXO70s基因家族成員,對(duì)其進(jìn)行基因結(jié)構(gòu)及系統(tǒng)進(jìn)化分析,根據(jù)其在系統(tǒng)發(fā)育進(jìn)化樹(shù)上的位置對(duì)其進(jìn)行系統(tǒng)命名,并基于轉(zhuǎn)錄組測(cè)序(RNA-Seq)數(shù)據(jù)分析ZmEXO70s基因家族成員在不同組織及非生物脅迫下的表達(dá)模式。最后,鑒定玉米自交群體AM368中ZmEXO70s基因SNP位點(diǎn),結(jié)合玉米AM368群體苗期耐熱存活率進(jìn)行基因家族關(guān)聯(lián)分析?!窘Y(jié)果】從玉米全基因組序列中共鑒定出36個(gè)ZmEXO70s基因,分布在10條染色體上,長(zhǎng)度為228~3726 bp,編碼75~1241個(gè)氨基酸殘基,蛋白分子量為8.6~136.6 kD,理論等電點(diǎn)(pI)介于4.5~9.9,大部分蛋白pI小于7.0。擬南芥、水稻和玉米的EXO70s蛋白被分為9組(A組~I(xiàn)組),其中ZmEXO70s蛋白在各組中均有分布。大多數(shù)ZmEXO70s基因不含內(nèi)含子,只有少數(shù)基因含有內(nèi)含子,且內(nèi)含子數(shù)量不同。36個(gè)ZmEXO70s蛋白共含8種基序(Motif 1~Motif 8),主要集中在C端,說(shuō)明這些蛋白端序列較保守,且Motif 1~Motif 8組成Exo70保守結(jié)構(gòu)域。ZmEXO70s基因在不同組織中的表達(dá)水平均存在明顯差異,其中ZmEXO70B3基因在雄穗、花藥、葉片和花絲中高表達(dá),ZmEXO70C1a基因只在雄穗和花藥中高表達(dá),ZmEXO70D2b基因在胚乳和萌發(fā)種子中低表達(dá),ZmEXO70G1c基因在花絲和萌發(fā)種子中低表達(dá)。有23個(gè)ZmEXO70s基因至少可響應(yīng)一種非生物脅迫,說(shuō)明這些ZmEXO70s基因參與非生物脅迫響應(yīng)過(guò)程。ZmEXO70D2a和ZmEXO70E1基因的遺傳變異與玉米苗期耐熱性具有顯著相關(guān)性(P≤0.01)?!窘Y(jié)論】ZmEXO70s基因家族成員在系統(tǒng)發(fā)育進(jìn)化上較保守,其基因組復(fù)制事件可能發(fā)生在禾本科植物分化后,且大多數(shù)ZmEXO70s基因被保留,僅部分基因被丟失。ZmEXO70s基因可能在非生物脅迫響應(yīng)過(guò)程中發(fā)揮重要作用,ZmEXO70D2a和ZmEXO70E1基因可作為調(diào)控玉米苗期耐熱性重要候選基因。
關(guān)鍵詞: 玉米;EXO70;基因家族鑒定;苗期耐熱性;關(guān)聯(lián)性分析;表達(dá)分析;胞泌復(fù)合體
中圖分類(lèi)號(hào): S513.035.2? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)04-0867-12
Identification of ZmEXO70s gene family in maize and its correlation with heat tolerance at seedling stage
FENG Xin1, ZHANG Chun-mei1, WANG Hong-wei1,2
(1Agricultural College, Yangtze University, Jingzhou, Hubei? 434025, China; 2Hubei Collaborative Innovation
Center for Grain Industry, Yangtze University, Jingzhou, Hubei? 434025, China)
Abstract:【Objective】To identify the members of maize ZXO70s(ZmEXO70s) gene family and analyze the correlation between their genetic variation and maize heat tolerance, and lay the foundation for defining its functional and mole-cular mechanisms in maize heat tolerance. 【Method】With the sequences of Arabidopsis thaliana EXO70s(AtEXO70s) gene family members as reference, the members of the ZmEXO70s gene family were identified from the whole maize genome by MaizeGDB and NCBI databases, and the gene structure and phylogenetic analysis were carried out, and the members were systematically named according to their positions in the phylogenetic tree. Based on transcriptome sequencing (RNA-Seq) data, the expression patterns of ZmEXO70s gene family members under different tissues and abiotic stresses were analyzed. Finally, the SNP loci of ZmEXO70s gene in maize self-crossing population AM368 were identified, and gene family association analysis was conducted in combination with the heat resistance survival rate of maize AM368 at seedling stage. 【Result】A total of 36 ZmEXO70s genes were identified from the whole genome sequence of maize, distri-buted on 10 chromosomes, with lengths ranging from 228 to 3726 bp, encoding 75-1241 amino acids, molecular weight of proteins ranging from 8.6 to 136.6 kD, theoretical isoelectric point(pI) ranging from 4.5 to 9.9, and pI of most proteins was less than 7.0. The EXO70s proteins of A. thaliana, rice and maize were divided into 9 groups(groups A to I), with ZmEXO70s proteins distributed in each group. Most ZmEXO70s genes did not contain introns, and only a few did, with varying numbers of introns. The 36 ZmEXO70s proteins contained 8 motifs(Motif 1-Motif 8), which were mainly concentrated in the C terminal, indicating that the ZmEXO70s C terminal sequence was relatively conservative, and Motif 1-Motif 8 constituted the conservative domain of Exo70. The expression level of the ZmEXO70s gene varied greatly in different tissues. The ZmEXO70s gene was highly expressed in panicle and anther, leaf and filaments, ZmEXO70C1a gene was only highly expressed in panicle and anther, and ZmEXO70D2b gene was lowly expressed in endosperm and germinal seed. ZmEXO70G1c gene was lowly expressed in filaments and germinated seeds. Twenty-three ZmEXO70s genes could respond to at least one abiotic stress, suggesting that these ZmEXO70s genes were involved in the abiotic stress response process. The genetic variation of ZmEXO70D2a and ZmEXO70E1 was significantly correlated with maize seedling heat resistance(P≤0.01). 【Conclusion】The members of the ZmEXO70s gene family are relatively conserved in phylogenetic evolution, and the genome replication event may occur after the differentiation of Gramineae, and most of the ZmEXO70s genes are retained, while some of them are lost. ZmEXO70s may play an important role in abiotic stress response, ZmEXO70D2a and ZmEXO70E1 genes may be important candidate genes for the regulation of maize seedling heat tolerance.
Key words: maize; EXO70; gene family identification; heat resistance at seedling stage; correlation analysis; expression analysis;? secretion complex
Foundation item: General Project of Hubei Natural Science Foundation(2019CFB616)
0 引言
【研究意義】胞吐是細(xì)胞中一類(lèi)重要的囊泡運(yùn)輸,由高爾基體運(yùn)輸囊泡與細(xì)胞質(zhì)膜融合,介導(dǎo)胞內(nèi)物質(zhì)分泌到細(xì)胞外及膜蛋白向質(zhì)膜的轉(zhuǎn)運(yùn)過(guò)程(Zhang et al.,2010a;Heider and Munson,2012)。胞泌復(fù)合體負(fù)責(zé)將高爾基囊泡栓系到細(xì)胞質(zhì)膜上(Sekere? et al.,2017;Kulich et al.,2018),是胞吐囊泡栓系過(guò)程中發(fā)揮關(guān)鍵作用的一類(lèi)栓系因子,該復(fù)合體由8個(gè)蛋白亞基構(gòu)成,其中EXO70是組成胞泌復(fù)合體功能的關(guān)鍵亞基,其決定胞泌復(fù)合體導(dǎo)向靶標(biāo)膜的胞吐位點(diǎn),參與細(xì)胞壁形成、細(xì)胞分泌和抗逆應(yīng)答等重要細(xì)胞學(xué)過(guò)程(Sekere? et al.,2017;Kulich et al.,2018)。鑒定玉米(Zea mays L.)EXO70s基因(ZmEXO70s)家族成員,分析其進(jìn)化及表達(dá)模式,尤其是探究其遺傳變異與玉米耐熱性的關(guān)系,對(duì)深入了解玉米響應(yīng)高溫脅迫的分子機(jī)制及發(fā)展玉米耐熱性育種具有重要意義?!厩叭搜芯窟M(jìn)展】目前關(guān)于植物胞泌復(fù)合體的研究主要集中在EXO70家族,其中在毛果楊(Populus trichocarpa)(Elias et al.,2003)、擬南芥(Arabidopsis thaliana)(Chong et al.,2010)、高粱(Sorghum bicolor)(Cvr?ková et al.,2012)、水稻(Oryza sativa)(Tu et al.,2015)、土豆(Symphytum tuberosum)(Du et al.,2018)和小麥(Triticum aestivum)(Zhao et al.,2018)等物種中已分別鑒定出31、23、22、41、29和75個(gè)EXO70蛋白,且部分EXO70蛋白的生物學(xué)功能已被驗(yàn)證。如擬南芥EXO70A1(AtEXO70H4)蛋白參與管狀分子分化、組織(種皮、根毛和柱頭乳突)發(fā)育及凱氏帶形成(Kulich et al.,2010;Kalmbach et al.,2017;Vuka?inovi? and ?ársk?,2017),AtEXO70H4蛋白通過(guò)調(diào)節(jié)胼胝質(zhì)和二氧化硅的分泌及積累以調(diào)控毛狀體細(xì)胞壁的成熟(Chen et al.,2014),AtEXO70C1和AtEXO70C2蛋白可調(diào)控?cái)M南芥花粉管成熟及其極性生長(zhǎng)過(guò)程(Synek et al.,2017);水稻EXO70A1(OsEXO70A1)蛋白在維管束分化和礦物質(zhì)營(yíng)養(yǎng)同化過(guò)程中發(fā)揮重要作用(Tu et al.,2015)。此外,已有較多研究證實(shí),EXO70s蛋白在植物與病原體的相互作用及對(duì)非生物脅迫的響應(yīng)過(guò)程中發(fā)揮重要作用。如煙草(Nicotiana benthamiana)中2個(gè)EXO70B同源基因能沉默增加植株對(duì)晚疫病菌的感病性(Du et al.,2018);AtEXO70B1、AtEXO70B2和AtEXO70H1基因均參與植物免疫反應(yīng)調(diào)控,其中AtEXO70B1基因缺失導(dǎo)致水楊酸積累,其突變體出現(xiàn)異位過(guò)敏反應(yīng)并對(duì)多種病原體產(chǎn)生廣譜抗性(Pe?enková et al.,2011;Kulich et al.,2013);AtEXO70B1和AtEXO70B2蛋白參與非生物應(yīng)激反應(yīng),二者均為氣孔運(yùn)動(dòng)的正向調(diào)節(jié)因子,如在干旱或甘露醇滲透脅迫下,通過(guò)依賴(lài)或不依賴(lài)脫落酸的信號(hào)傳導(dǎo)來(lái)響應(yīng)脅迫(Hong et al.,2016;Seo et al.,2016)??梢?jiàn),EXO70s蛋白參與胞吐有關(guān)多種重要的生物學(xué)過(guò)程?!颈狙芯壳腥朦c(diǎn)】雖然植物中存在大量的EXO70s基因,但目前僅對(duì)少數(shù)物種EXO70s基因進(jìn)行生物學(xué)功能分析,鮮見(jiàn)有關(guān)ZmEXO70s基因家族的研究報(bào)道。因此,揭示ZmEXO70s基因家族成員數(shù)量、逆境脅迫響應(yīng)機(jī)制及其與苗期耐熱性的相關(guān)性,不僅有利于推進(jìn)玉米耐熱性的遺傳改良,還有助于加深對(duì)該基因家族生物學(xué)功能的認(rèn)識(shí)?!緮M解決的關(guān)鍵問(wèn)題】以AtEXO70s基因家族成員序列為參考,利用MaizeGDB和NCBI數(shù)據(jù)庫(kù)從玉米全基因組中鑒定出ZmEXO70s基因家族成員,結(jié)合擬南芥和水稻的EXO70s蛋白進(jìn)行系統(tǒng)發(fā)育進(jìn)化分析及系統(tǒng)命名,并基于轉(zhuǎn)錄組測(cè)序(RNA-Seq)數(shù)據(jù)對(duì)ZmEXO70s基因家族成員在不同組織及非生物脅迫下的表達(dá)模式進(jìn)行分析,探析ZmEXO70s基因的遺傳變異與玉米耐熱性的相關(guān)性,為揭示該基因家族在玉米生長(zhǎng)發(fā)育和非生物脅迫響應(yīng)中的調(diào)控機(jī)制提供理論依據(jù),也為玉米耐熱性分子育種提供基因資源。
1 材料與方法
1. 1 ZmEXO70s基因家族成員鑒定
從TAIR數(shù)據(jù)庫(kù)中(https://www.arabidopsis.org/)查找23個(gè)AtEXO70s基因及其編碼蛋白的相關(guān)信息;在RGAP7數(shù)據(jù)庫(kù)中搜索OsEXO70s基因家族編碼的蛋白序列。根據(jù)AtEXO70s和OsEXO70s蛋白序列,在Phytozome數(shù)據(jù)庫(kù)中(https://phytozome.jgi.doe.gov/)對(duì)玉米B73基因組(AGPv3)進(jìn)行BLASTp序列比對(duì)分析,并將獲得的蛋白序列在NCBI的CDD(https://www.ncbi.nlm.nih.gov/cdd)進(jìn)行蛋白結(jié)構(gòu)預(yù)測(cè),篩選出包含結(jié)構(gòu)域pfam03081的序列,最終確定ZmEXO70s基因家族成員。
1. 2 ZmEXO70s基因結(jié)構(gòu)及系統(tǒng)發(fā)育進(jìn)化分析
使用ClustalX 2.0將ZmEXO70s基因編碼區(qū)序列與其對(duì)應(yīng)的參考基因序列進(jìn)行比對(duì),并使用CSDS 2.0進(jìn)行基因結(jié)構(gòu)分析。利用MEME和TBtools分析ZmEXO70s蛋白的保守基序(Motif),以Pfam在線分析ZmEXO70s蛋白的結(jié)構(gòu)域,運(yùn)用ClustalX 2.0比對(duì)ZmEXO70s、OsEXO70s和AtEXO70s蛋白序列,并以MEGA 7.0的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹(shù),參數(shù)是配對(duì)刪除(Pairwise deletion)和1000次置換檢驗(yàn)(Bootstrap)。
1. 3 ZmEXO70s基因在不同組織及非生物脅迫下的表達(dá)分析
利用玉米B73的RNA-Seq數(shù)據(jù)(Sekhon et al.,2011;Li et al.,2017)對(duì)ZmEXO70s基因在不同組織及非生物脅迫下的表達(dá)情況進(jìn)行分析。以轉(zhuǎn)錄組分析通用的FPKM(Fragments per kilobase of transcript per million fragments mapped)值作為目的基因相對(duì)表達(dá)量。為方便統(tǒng)計(jì),對(duì)每個(gè)表達(dá)數(shù)值取以2為底數(shù)的對(duì)數(shù)(log2)來(lái)繪制ZmEXO70s基因的表達(dá)熱圖。
1. 4 ZmEXO7基因遺傳變異與玉米苗期耐熱性的關(guān)聯(lián)分析
ZmEXO70s耐熱候選基因家族關(guān)聯(lián)分析參照Li等(2013)的方法。該定位群體由全球代表性的368個(gè)玉米自交系群體(AM368)構(gòu)成,含有55.6萬(wàn)高質(zhì)量的SNP分子標(biāo)記,其微等位基因頻率(MAF)>0.05(Li et al.,2013)。使用TASSEL的2個(gè)統(tǒng)計(jì)模型(Bradbury et al.,2007),即一般線性模型(GLM)和混合線性模型(MLM)進(jìn)行SNP分子標(biāo)記與苗期耐熱性的關(guān)聯(lián)分析。其中,GLM是將群體結(jié)構(gòu)考慮在內(nèi),結(jié)合基因型數(shù)據(jù)及表型數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析;MLM則是將群體結(jié)構(gòu)和親緣關(guān)系均考慮在內(nèi),結(jié)合基因型數(shù)據(jù)及表型數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析(Zhang et al.,2010b;Li et al.,2013)。
1. 5 AM368群體苗期耐熱存活率表型
在長(zhǎng)江大學(xué)農(nóng)學(xué)院的步入式生長(zhǎng)溫室中對(duì)AM368群體自交系進(jìn)行6次苗期耐熱表型鑒定。以玉米苗期高溫存活率為統(tǒng)計(jì)指標(biāo),試驗(yàn)設(shè)2次重復(fù),采用隨機(jī)區(qū)組設(shè)計(jì)。每個(gè)小缽子種植12棵玉米,稱(chēng)取相同重量的土壤基質(zhì),嚴(yán)格控制土壤基質(zhì)的重量和水分,待幼苗生長(zhǎng)至3葉1心期時(shí),對(duì)其進(jìn)行42 ℃高溫脅迫處理。當(dāng)玉米出現(xiàn)葉片萎蔫及植株死亡表型時(shí)溫度降至25 ℃,并在25 ℃恢復(fù)7 d后統(tǒng)計(jì)各自交系的存活率。
2 結(jié)果與分析
2. 1 ZmEXO70s基因家族成員鑒定及蛋白理化性質(zhì)分析結(jié)果
根據(jù)氨基酸序列相似性比對(duì)及NCBI數(shù)據(jù)庫(kù)BLASTp序列比對(duì)等生物信息學(xué)分析,共鑒定出36個(gè)ZmEXO70s基因家族成員,其GenBank登錄號(hào)、染色體位置、基因長(zhǎng)度及編碼蛋白的理化性質(zhì)如表1所示。36個(gè)ZmEXO70s基因分布在10條染色體上,基因序列長(zhǎng)度和氨基酸數(shù)目各不相同,其中ZmEXO70G1a基因序列長(zhǎng)度為228~3726 bp,編碼75~1241個(gè)氨基酸殘基,蛋白分子量為8.6~136.6 kD,理論等電點(diǎn)(pI)為4.5~9.9,大部分蛋白理論等電點(diǎn)小于7.0。
2. 2 ZmEXO70s蛋白系統(tǒng)發(fā)育進(jìn)化分析結(jié)果
為了探究玉米與其他物種EXO70蛋白的同源進(jìn)化關(guān)系,將已知的23個(gè)AtEXO70s蛋白(Chong et al.,2010)、41個(gè)OsEXO70s蛋白(Cvr?ková et al.,2012)和本研究鑒定出的36個(gè)ZmEXO70s蛋白進(jìn)行系統(tǒng)發(fā)育進(jìn)化分析,結(jié)果如圖1-A所示。擬南芥、水稻和玉米的EXO70s蛋白可分為9組(A組~I(xiàn)組),各組數(shù)目不相同,以E組數(shù)目最少、I組數(shù)目最多。結(jié)合前人構(gòu)建的AtEXO70s和OsEXO70s蛋白系統(tǒng)發(fā)育進(jìn)化樹(shù)(Chong et al.,2010;Cvr?ková et al.,2012),對(duì)ZmEXO70s基因家族成員進(jìn)行系統(tǒng)命名。由圖1-B可知,各組蛋白間有較高的同源性,十字花科植物擬南芥的AtEXO70s蛋白在不同組中均聚在同一小分支,OsEXO70s和ZmEXO70s蛋白則聚在其他小分支,究其原因可能是水稻和玉米同為禾本科植物,二者親緣關(guān)系較近。由表2可知,ZmEXO70s蛋白在不同組中均有分布,數(shù)目較多的是F組和I組,分別含有8和6個(gè);數(shù)目最少的是E組和H組,分別只有1個(gè);I組中只包含ZmEXO70s和OsEXO70s蛋白,分別為6和16個(gè);在親緣關(guān)系較近的F組和I組中,ZmEXO70s與OsEXO70s蛋白數(shù)量相近,但明顯多于AtEXO70s蛋白數(shù)量,其原因可能是十字花科植物進(jìn)化為禾本科植物時(shí)水稻和玉米全基因組發(fā)生復(fù)制事件并保留下較多基因;H組中ZmEXO70s蛋白數(shù)量遠(yuǎn)少于AtEXO70s蛋白數(shù)量,其原因可能是H組中編碼ZmEXO70s蛋白的基因在玉米全基因組復(fù)制事件中發(fā)生基因丟失現(xiàn)象(表2)。綜上所述,ZmEXO70s蛋白在系統(tǒng)發(fā)育進(jìn)化上較保守,玉米基因組復(fù)制事件可能發(fā)生在禾本科植物分化之后,且大部分編碼ZmEXO70s蛋白的基因被保留,僅部分基因發(fā)生丟失。
2. 3 ZmEXO70基因結(jié)構(gòu)與保守結(jié)構(gòu)域分析結(jié)果
構(gòu)建36個(gè)ZmEXO70s蛋白的系統(tǒng)發(fā)育進(jìn)化樹(shù),如圖2-A所示。36個(gè)ZmEXO70s分為9組,與表2相同。對(duì)ZmEXO70s基因結(jié)構(gòu)進(jìn)行序列結(jié)構(gòu)分析,發(fā)現(xiàn)大多數(shù)基因不含有內(nèi)含子,僅少數(shù)基因含內(nèi)含子,且內(nèi)含子數(shù)量不同,其中內(nèi)含子數(shù)最多是ZmEXO70D1b基因,含15個(gè)內(nèi)含子。為研究ZmEXO70s蛋白基序組成的多樣性和保守性,利用MEME對(duì)其保守基序進(jìn)行分析,結(jié)果如圖2-B所示。36個(gè)ZmEXO70s蛋白共含8種基序(Motif 1~Motif 8),且各基序主要集中在基因的C端,暗示ZmEXO70s蛋白C端序列具有較高的保守性。從基序種類(lèi)來(lái)看,B組、D組和E組的ZmEXO70s蛋白保守性更高,包含全部基序,其他組ZmEXO70s在基序種類(lèi)分布上存在明顯差異,部分成員出現(xiàn)不同種類(lèi)基序丟失現(xiàn)象,如ZmEXO70G1a蛋白只含有Motif 1,ZmEXO70F2c蛋白只含有Motif 3。此外,同一組內(nèi)的ZmEXO70s蛋白含有不同基序,如ZmEXO70A2蛋白缺少M(fèi)otif 1、Motif 2和Motif 3,但ZmEXO70A1蛋白只含有Motif 1、Motif 2和Motif 3;ZmEXO70F2b和ZmEXO70F2d蛋白只含有Motif 2和Motif 3,ZmEXO70F2c蛋白只含有Motif 3。雖然8種基序的功能尚不明確,但通過(guò)Pfam分析保守結(jié)構(gòu)域,結(jié)果顯示Motif 1~Motif 8組成Exo70保守結(jié)構(gòu)域(圖2-C)。
已有研究證實(shí)EXO70蛋白C端含有多個(gè)高度保守且?guī)в姓姾傻膲A性氨基酸,與帶有負(fù)電荷的磷脂酰肌醇4,5-二磷酸發(fā)生互作,促進(jìn)胞泌復(fù)合體其他亞基募集至胞吐部位(Pe?enková et al.,2020)。為此,本研究將ZmEXO70s蛋白C端可能與質(zhì)膜脂質(zhì)互作有關(guān)的氨基酸序列進(jìn)行多重比對(duì)分析,結(jié)果如圖3所示。與質(zhì)膜脂質(zhì)互作有關(guān)的氨基酸序列由65~75個(gè)氨基酸組成,包含11個(gè)堿性氨基酸(藍(lán)色星號(hào))和9個(gè)酸性氨基酸(紅色星號(hào)),其中有多個(gè)氨基酸位點(diǎn)相對(duì)保守。除ZmEXO70A1、ZmEXO70G1a、ZmEXO70F2b、ZmEXO70F2c和ZmEXO70F2d不含該段氨基酸序列外,其余31個(gè)ZmEXO70s蛋白C端均含該段氨基酸序列。在11個(gè)堿性氨基酸中,除第1和10個(gè)堿性氨基酸以外,其余9個(gè)堿性氨基酸在ZmEXO70s蛋白中保守性較高。在9個(gè)酸性氨基酸中,除第1、5和6個(gè)以外,其余6個(gè)酸性氨基酸在ZmEXO70s中也具有較高的保守性。但目前對(duì)這些保守的酸性和堿性氨基酸在Exo70結(jié)構(gòu)域中的功能尚不清楚,推測(cè)部分位點(diǎn)的氨基酸差異影響ZmEXO70s蛋白脂質(zhì)結(jié)合能力,進(jìn)而影響蛋白在細(xì)胞中的定位,或是ZmEXO70s蛋白功能差異的重要決定因素。
2. 4 ZmEXO70s基因在不同組織及非生物脅迫下的表達(dá)分析結(jié)果
利用玉米B73的RNA-Seq數(shù)據(jù)(Sekhon et al.,2011),對(duì)36個(gè)ZmEXO70s基因在15個(gè)組織中的表達(dá)特性進(jìn)行分析,結(jié)果如圖4-A所示。組間和組內(nèi)的ZmEXO70s基因表達(dá)水平均存在明顯差異,其中ZmEXO70A2、ZmEXO70F1a和ZmEXO70AF1b基因表達(dá)水平較高,其次是ZmEXO70B1、ZmEXO70B2a、ZmEXO70B2b、ZmEXO70D1a、ZmEXO70D1c、Zm-EXO70D2a、ZmEXO70D2b、ZmEXO70E1、ZmEXO70-F1a、ZmEXO70F1b、ZmEXO70F2a、ZmEXO70F2b、ZmEXO70G1b、ZmEXO70G1c和ZmEXO70G2等15個(gè)ZmEXO70s基因,表達(dá)水平也較高,推測(cè)這些Zm-EXO70s基因是玉米生長(zhǎng)發(fā)育中的重要調(diào)控基因;剩余基因的表達(dá)水平相對(duì)較低。值得注意的是,Zm-EXO70B3基因在雄穗、花藥、葉片和花絲中高表達(dá),ZmEXO70C1a基因僅在雄穗和花藥中高表達(dá),ZmEXO70D2b基因在胚乳和萌發(fā)種子中低表達(dá),ZmEXO70G1c基因在花絲和萌發(fā)種子中低表達(dá)。
利用Li等(2017)的RNA-Seq數(shù)據(jù)(PRJNA244661和PRJNA335771)分析ZmEXO70s基因在干旱、高溫、高鹽和低溫等非生物脅迫下的表達(dá)模式,結(jié)果如圖4-B所示。在36個(gè)ZmEXO70s基因中,有23個(gè)ZmEXO70s基因至少可響應(yīng)一種非生物脅迫,說(shuō)明這些ZmEXO70s基因響應(yīng)非生物脅迫,其余13個(gè)ZmEXO70s基因可能表達(dá)量極低,在RNA-Seq數(shù)據(jù)中未檢測(cè)出。干旱脅迫下,ZmEXO70D1和ZmEXO70I2基因上調(diào)表達(dá),ZmEXO70A1、ZmEXO70B3、ZmEXO-70D1a、ZmEXO70G1c和ZmEXO70I6基因下調(diào)表達(dá)。高溫脅迫下,ZmEXO70s基因表現(xiàn)出不同的表達(dá)模式,如ZmEXO70D2b、ZmEXO70E1、ZmEXO70F2a和ZmEXO70F4基因上調(diào)表達(dá),而ZmEXO70F1b、ZmEXO70H1和ZmEXO70I6基因下調(diào)表達(dá)。高鹽脅迫和低溫脅迫下,大多數(shù)ZmEXO70s基因被誘導(dǎo)上調(diào)表達(dá),僅少數(shù)基因表達(dá)受到抑制,如ZmEXO70G1c和ZmEXO70H1基因在高鹽和低溫脅迫下均下調(diào)表達(dá),ZmEXO70A1和ZmEXO70A1基因在低溫脅迫下的表達(dá)輕微下調(diào)。推測(cè)大多數(shù)ZmEXO70s基因在非生物脅迫響應(yīng)過(guò)程中發(fā)揮重要調(diào)控作用。
2. 5 ZmEXO70s基因遺傳變異與玉米苗期耐熱性的關(guān)聯(lián)分析結(jié)果
利用基因家族關(guān)聯(lián)分析方法檢測(cè)ZmEXO70s基因的遺傳變異與玉米苗期耐熱性是否關(guān)聯(lián)。玉米苗期耐熱性是以玉米3葉1心期植株經(jīng)持續(xù)高溫脅迫下植株存活率為衡量指標(biāo)。首先對(duì)AM368群體ZmEXO70s基因進(jìn)行SNP分析,結(jié)果如表3所示。有31個(gè)ZmEXO70s基因含SNP位點(diǎn),平均SNP位點(diǎn)數(shù)為21個(gè),其中以ZmEXO70F2a基因SNP位點(diǎn)數(shù)最多,達(dá)85個(gè)。隨后采用2種統(tǒng)計(jì)模型來(lái)分析基因型與表型間的相關(guān)性,結(jié)果如圖5所示。通過(guò)GLM分析發(fā)現(xiàn),ZmEXO70D2a、ZmEXO70E1和ZmEXO70I2基因的遺傳變異與苗期耐熱性存在顯著相關(guān)性(P≤0.01)。通過(guò)MLM分析發(fā)現(xiàn),ZmEXO70D2a和ZmEXO70E1基因分別有2個(gè)SNP位點(diǎn)與苗期耐熱性呈極顯著相關(guān)(P≤0.001,下同)。進(jìn)一步分析發(fā)現(xiàn),ZmEXO70E1基因的2個(gè)SNP位點(diǎn)位于其5'-非編碼區(qū)(UTR)(圖6-A);ZmEXO70D2a基因的2個(gè)SNP位點(diǎn)位于其編碼區(qū)(圖6-B)。
3 討論
玉米是目前我國(guó)種植面積最大的作物。隨著測(cè)序技術(shù)不斷發(fā)展和玉米全基因組測(cè)序的完成,為玉米基因家族鑒定、功能基因挖掘及基因功能研究等提供極有利的先決條件。雖然現(xiàn)已證實(shí)不同植物中EXO70s蛋白參與細(xì)胞壁形成、細(xì)胞分泌和抗逆應(yīng)答等重要細(xì)胞學(xué)過(guò)程(Sekere? et al.,2017;Kulich et al.,2018),但目前鮮見(jiàn)有關(guān)ZmEXO70s基因家族的研究報(bào)道。本研從玉米基因組中共鑒定出36個(gè)ZmEXO70s基因,說(shuō)明EXO70s蛋白在玉米中與其他植物一樣,均為多拷貝。植物EXO70s蛋白多拷貝現(xiàn)象可能是因?yàn)橹参锞哂卸喾N多樣的細(xì)胞壁及復(fù)雜的液泡結(jié)構(gòu),需要多種胞泌復(fù)合體滿(mǎn)足其適應(yīng)環(huán)境的需要,進(jìn)而演化出不同基因特有的調(diào)控機(jī)制(Elias et al.,2003;Chong et al.,2010)。ZmEXO70s基因家族成員數(shù)(36個(gè))與高梁Ex070s(SbEXO70s)基因家庭數(shù)目(31個(gè))相當(dāng),但比AtEXO70s基因家族成員數(shù)(23個(gè))多,比OsEXO70s基因家族成員數(shù)(41個(gè))少,可能是由于禾本科植物(水稻、玉米和高粱)在物種形成和進(jìn)化過(guò)程中發(fā)生了全基因組復(fù)制和二倍體化,從而導(dǎo)致其EXO70s基因家族成員數(shù)目比十字花科的擬南芥多,且玉米和高粱在進(jìn)化過(guò)程中經(jīng)歷染色體的丟失和融合,導(dǎo)致二者的EXO70s基因家族成員數(shù)目均比水稻少。
基因表達(dá)模式暗示其所行使的生物學(xué)功能。已有研究表明,胞泌復(fù)合體負(fù)責(zé)將高爾基囊泡栓系到細(xì)胞質(zhì)膜上,其基因缺失或突變均會(huì)導(dǎo)致其失去該生物學(xué)功能(Koumandou et al.,2007;Drdová et al.,2013)。本研究對(duì)36個(gè)ZmEXO70s基因在15個(gè)組織中的表達(dá)水平進(jìn)行分析,結(jié)果顯示大多數(shù)Zm-EXO70s基因在玉米組織中均有表達(dá),推測(cè)這些ZmEXO70s基因是玉米生長(zhǎng)發(fā)育中重要調(diào)控基因,其中,ZmEXO70B3和ZmEXO70C1a基因在雄穗和花藥中高表達(dá)。Li等(2010)也研究發(fā)現(xiàn),AtEXO70C1基因在成熟花粉中高效表達(dá),當(dāng)其發(fā)生突變后會(huì)導(dǎo)致花粉管生長(zhǎng)遲緩,花粉的傳遞效率下降??梢?jiàn),植物EXO70s基因家族中部分成員可能參與調(diào)控植株花粉發(fā)育過(guò)程。此外,已有研究表明,囊泡運(yùn)輸相關(guān)蛋白通過(guò)參與非生物脅迫下的質(zhì)膜修復(fù)增加植物對(duì)低溫、高鹽等非生物脅迫的耐受性(Yamazaki et al.,2008;Kim and Bassham,2011;Drakakaki et al.,2012),但針對(duì)胞泌復(fù)合體在非生物脅迫應(yīng)答響應(yīng)過(guò)程的功能研究較少。本研究通過(guò)分析ZmEXO70s基因在干旱、高溫、高鹽和低溫等非生物脅迫下的表達(dá)模式,結(jié)果顯示36個(gè)ZmEXO70s基因中有23個(gè)ZmEXO70s至少響應(yīng)一種非生物脅迫,暗示ZmEXO70s基因可能參與調(diào)控植物非生物脅迫響應(yīng)過(guò)程,為進(jìn)一步闡明植物胞泌復(fù)合體功能的分子機(jī)制提供理論依據(jù)。
雖然玉米來(lái)源于熱帶,但仍對(duì)高溫環(huán)境敏感,當(dāng)氣溫超過(guò)35 ℃時(shí),玉米植株整個(gè)生命周期(營(yíng)養(yǎng)生長(zhǎng)和生殖生長(zhǎng))均會(huì)受到影響(牛麗等,2015;Shi et al.,2017;石江等,2018),如春播玉米在抽雄吐絲期、夏播青儲(chǔ)玉米在幼苗出土期遭遇高溫?zé)岷Φ膯?wèn)題在我國(guó)玉米生產(chǎn)上表現(xiàn)越來(lái)越突出(Hansen et al.,2001;Lesk et al.,2016)。雖然目前沒(méi)有研究直接證實(shí),囊泡運(yùn)輸與植物耐熱性相關(guān),但已有研究證實(shí)囊泡運(yùn)輸參與氣孔運(yùn)動(dòng)過(guò)程,如負(fù)調(diào)控?cái)M南芥光誘導(dǎo)的氣孔開(kāi)放因子ROP2和RIC7,通過(guò)抑制EXO70B1蛋白來(lái)阻止氣孔過(guò)度開(kāi)放,說(shuō)明EXO70B1通過(guò)介導(dǎo)囊泡運(yùn)輸間接調(diào)控氣孔開(kāi)放(Hong et al.,2016)。高溫脅迫下植物通過(guò)增大葉片氣孔開(kāi)度,加快水分散失從而降低葉片溫度以適應(yīng)高溫環(huán)境。由此可見(jiàn),植物可能通過(guò)囊泡運(yùn)輸調(diào)控氣孔運(yùn)動(dòng)從而響應(yīng)高溫脅迫。本研究通過(guò)基因家族關(guān)聯(lián)分析發(fā)現(xiàn),ZmEXO70D2a和ZmEXO70E1基因的遺傳變異與玉米苗期耐熱性呈極顯著相關(guān),且RNA-Seq數(shù)據(jù)分析結(jié)果顯示,ZmEXO70D2a和ZmEXO70E1基因的表達(dá)受高溫脅迫分別被抑制或誘導(dǎo),故推測(cè)ZmEXO70D2a和ZmEXO70E1基因參與玉米高溫脅迫響應(yīng)過(guò)程,可作為提高玉米耐熱性的重要候選基因。但高溫脅迫下ZmEXO70D2a和ZmEXO70E1是否調(diào)控玉米葉片氣孔的動(dòng)態(tài)仍有待進(jìn)一步研究。
4 結(jié)論
ZmEXO70s基因家族成員在系統(tǒng)發(fā)育進(jìn)化上較保守,其基因組復(fù)制事件可能發(fā)生在禾本科植物分化后,且大多數(shù)ZmEXO70s基因被保留,僅部分基因被丟失。ZmEXO70s基因可能在非生物脅迫響應(yīng)過(guò)程中發(fā)揮重要作用,ZmEXO70D2a和ZmEXO70E1基因可作為調(diào)控玉米苗期耐熱性的重要候選基因。
參考文獻(xiàn):
牛麗,劉源,于康珂,劉榮花,李潮海,劉天學(xué). 2015. 玉米雜交種苗期耐熱性評(píng)價(jià)[J]. 玉米科學(xué),23(1):107-114. doi:10. 13597/j.cnki.maize.science.2015.01.018. [Niu L,Liu Y,Yu K K,Liu R H,Li C H,Liu T X. 2015. Evaluation of heat-tolerance of maize hybrids at seedling stage[J]. Journal of maize sciences,23(1):107-114.]
石江,趙琳,朱月清,樓旭平,余建忠,阮松林,陳文岳. 2018. 玉米幼苗葉片響應(yīng)熱脅迫的蛋白質(zhì)組學(xué)分析[J]. 浙江農(nóng)業(yè)學(xué)報(bào),30(6):893-908. doi:10.3969/j.issn.1004-1524. 2018.06.03. [Shi J,Zhao L,Zhu Y Q,Lou X P,Yu J Z,Ruan S L,Chen W Y. 2018. Proteomic analysis of maize seedling leaves in response to heat stress[J]. Acta Agriculturae Zhejiangensis,30(6):893-908.]
Bradbury P J,Zhang Z W,Kroon D E,Casstevens T M,Ramdoss Y,Buckler E S. 2007. TASSEL:Software for associa-tion mapping of complex traits in diverse samples[J]. Bioinformatics,23(19):2633-2635. doi:10.1093/bioinforma-tics/btm308.
Chen C H,Liu M,Jiang L,Liu X F,Zhao J Y,Yan S S,Yang S,Ren H Z,Liu R Y,Zhang X L. 2014. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.)[J]. Journal of Experimental Botany,65(17):4943-4958. doi:10.1093/jxb/eru258.
Chong Y T,Gidda S K,Sanford C,Parkinson J,Mullen R T,Goring D R. 2010. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic,expression profiling,and subcellular localization studies[J]. New Phytologist,185(2):401-419. doi:10.2307/256 09624.
Cvr?ková F,Grunt M,Bezvoda R,Hála M,Kulich I,Rawat A,Zársk? V. 2012. Evolution of the land plant exocyst complexes[J]. Frontier in Plant Science,3:159. doi:10.3389/ fpls.2012.00159.
Drakakaki G,van de Ven W,Pan S Q,Miao Y S,Wang J Q,Keinath N F,Weatherly B,Jiang L W,Schumacher K,Hicks G,Raikhel N. 2012. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis[J]. Cell Research,22(2):413-424. doi:10.1038/cr.2011.129.
Drdová E J,Synek L,Pe?enková T,Hála M,Kulich I,F(xiàn)owler J E,Murphy A S,Zársk? V. 2013. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis[J]. The Plant Journal,73(5):709-719. doi:10.1111/tpj.12074.
Du Y,Overdijk E J R,Berg J A,Govers F,Bouwmeester K. 2018. Solanaceous exocyst subunits are involved in immunity to diverse plant pathogens[J]. Journal of Experimental Botany,69(3):655-666. doi:10.1093/jxb/erx442.
Elias M,Drdova E,Ziak D,Bavlnka B,Hala M,Cvrckova F,Soukupova H,Zarsky V. 2003. The exocyst complex in plants[J]. Cell Biology International,27(3):199-201. doi: 10.1016/s1065-6995(02)00349-9.
Hansen P J,Drost M,Rivera R M,Paula-Lopes F F,Al-Katanani Y M,Krininger C E,Chase C C J. 2001. Adverse impact of heat stress on embryo production:Causes and strategies for mitigation[J]. Theriogenology,55(1):91-103. doi:10.1016/s0093-691x(00)00448-9.
Heider M R,Munson M. 2012. Exorcising the exocyst complex[J]. Traffic,13(7):898-907. doi:10.1111/j.1600-0854. 2012.01353.x.
Hong D,Jeon B W,Kim S Y,Hwang J U,Lee Y. 2016. The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit EXO70B1 in Arabidopsis[J]. New Phytologist,209(2):624-635. doi:10.1111/nph.13625
Kalmbach L,Hématy K,De Bellis D,Barberon M,F(xiàn)ujita S,Ursache R,Daraspe J,Geldner N. 2017. Transient cell-specific EXO70A1 activity in the CASP domain and casparian strip localization[J]. Nature Plants,3:17058. doi:10.1038/nplants.2017.58.
Kim S J,Bassham D C. 2011. TNO1 is involved in salt tolera-nce and vacuolar trafficking in Arabidopsis[J]. Plant Physiology,156(2):514-526. doi:10.1104/pp.110.168963.
Koumandou V L,Dacks J B,Coulson R M,F(xiàn)ield M C. 2007. Control systems for membrane fusion in the ancestral eukaryote;evolution of tethering complexes and SM proteins[J]. BMC Evolutionary Biology,7:29. doi:10.1186/1471-2148-7-29.
Kulich I,Cole R,Drdová E,Cvrcková F,Soukup A,F(xiàn)owler J,Zársk? V. 2010. Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin[J]. New Phytologist,188(2):615-625. doi:10.1111/j.1469-8137.2010. 03372.x.
Kulich I,Pe?enková T,Sekere? J,Smetana O,F(xiàn)endrych M,F(xiàn)oissner I,H?ftberger M,Zársk? V. 2013. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole[J]. Traffic,14(11):1155-1165. doi:10.1111/tra.12101.
Kulich I,Vojtíková Z,Sabol P,Ortmannová J,Neděla V,Tihla?íková E,?ársk? V. 2018. Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation[J]. Plant Physiology,176(3):2040-2051. doi:10.1104/pp.17.01693.
Lesk C,Rowhani P,Ramankutty N. 2016. Influence of extreme weather disasters on global crop production[J]. Nature,529(7584):84-87. doi:10.1038/nature16467.
Li H,Peng Z Y,Yang X H,Wang W D,F(xiàn)u J J,Wang J H,Han Y J,Chai Y C,Guo T T,Yang N,Liu J,Warburton M L,Cheng Y B,Hao X M,Zhang P,Zhao J Y,Liu Y J,Wang G Y,Li J S,Yan J B. 2013. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels[J]. Nature Genetics,45(1):43-50. doi:10.1038/ng.2484.
Li P C,Cao W,F(xiàn)ang H M,Xu S H,Yin S Y,Zhang Y Y,Lin D Z,Wang J N,Chen Y F,Xu C W,Yang Z F. 2017. Transcriptomic profiling of the maize(Zea mays L.) leaf response to abiotic stresses at the seedling stage[J]. Frontiers in Plant Science,8:290. doi:10.3389/fpls.2017.00290.
Li S P,van Os G M,Ren S C,Yu D L,Ketelaar T,Emons A M,Liu C M. 2010. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis[J]. Plant Physiology,154(4):1819-1830. doi:10.1104/pp.110.164178.
Pe?enková T,Hála M,Kulich I,Kocourková D,Drdová E,F(xiàn)endrych M,Toupalová H,Zársky V. 2011. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction[J]. Journal of Experimental Botany,62(6):2107-2116. doi:10.1093/jxb/erq402.
Pe?enková T,Potocká A,Potock? M,Ortmannová J,Drs M,Janková Drdová E,Pejchar P,Synek L,Soukupová H,?ársk? V,Cvr?ková F. 2020. Redundant and diversified roles among selected Arabidopsis thaliana EXO70 paralogs during biotic stress responses[J]. Frontiers in Plant Science,11:960. doi:10.3389/fpls.2020.00960.
Sekere? J,Pejchar P,?antr??ek J,Vuka?inovi? N,?ársk? V,Potock? M. 2017. Analysis of exocyst subunit EXO70 family reveals distinct membrane polar somains in tobacco pollen tubes[J]. Plant Physiology,173(3):1659-1675. doi:10.1104/pp.16.01709.
Sekhon R S,Lin H N,Childs K L,Hansey C N,Buell C R,de Leon N,Kaeppler S M. 2011. Genome-wide atlas of transcription during maize development[J]. The Plant Journal,66(4):553-563. doi:10.1111/j.1365-313X.2011.045 27.x.
Seo D H,Ahn M Y,Park K Y,Kim E Y,Kim W T. 2016. The N-terminal UND motif of the Arabidopsis U-Box E3 ligase PUB18 is critical for the negative regulation of ABA-mediated stomatal movement and determines its ubiquitination specificity for exocyst subunit Exo70B1[J]. The Plant Cell,28(12):2952-2973. doi:10.1105/tpc. 16.00347.
Shi J,Yan B Y,Lou X P,Ma H S,Ruan S L. 2017. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize(Zea mays L.) varieties under heat stress[J]. BMC Plant Biology,17(1):26. doi:10.1186/s12870-017-0973-y.
Synek L,Vuka?inovi? N,Kulich I,Hála M,Aldorfová K,F(xiàn)endrych M,?ársk? V. 2017. EXO70C2 is a key regulatory factor for optimal tip growth of pollen[J]. Plant Physio-logy,174(1):223-240. doi:10.1104/pp.16.01282.
Tu B,Hu L,Chen W L,Li T,Hu B H,Zheng L,Lü Z,You S J,Wang Y P,Ma B T,Chen X W,Qin P,Li S G. 2015. Disruption of OsEXO70A1 causes irregular vascular bundles and perturbs mineral nutrient assimilation in rice[J]. Scientific Reports,5:18609. doi:10.1038/srep18609.
Vuka?inovi? N,?ársk? V. 2016. Tethering complexes in the Arabidopsis endomembrane system[J]. Frontiers in Cell and Development Biology,4:46. doi:10.3389/fcell.2016. 00046.
Yamazaki T,Kawamura Y,Minami A,Uemura M. 2008. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1[J]. The Plant Cell,20(12):3389-3404. doi:10.1105/tpc.108.062679.
Zhang Y,Liu C M,Emons A M,Ketelaar T. 2010a. The Plant exocyst[J]. Journal of Integrative Plant Biology,52(2):138-146. doi:10.1111/j.1744-7909.2010.00939.x.
Zhang Z W,Ersoz E,Lai C Q,Todhunter R J,Tiwari H K,Gore M A,Bradbury P J,Yu J M,Arnett D K,Ordovas J M,Buckler E S. 2010b. Mixed linear model approach adapted for genome-wide association studies[J]. Nature Genetics,42(4):355-360 doi:10.1038/ng.546.
Zhao J,Zhang X,Wan W T,Zhang H,Liu J,Li M L,Wang H Y,Xiao J,Wang X. 2018. Identification and characterization of the EXO70 gene family in polyploid wheat and related species[J]. International Journal of Molecular Scien-ces,20(1):60. doi:10.3390/ijms20010060.
(責(zé)任編輯 陳 燕)
南方農(nóng)業(yè)學(xué)報(bào)2021年4期