• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      兩個(gè)正交投影算子組合的性質(zhì)

      2021-06-10 05:29:12蔣萬林左可正
      關(guān)鍵詞:充分性對(duì)角角化

      蔣萬林,左可正,李 昱

      (湖北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖北 黃石 435002)

      1 預(yù)備引理

      對(duì)于矩陣A∈n×n,若A2=A,稱A為冪等矩陣;若A3=A,稱A為三冪等矩陣;若A2=In,稱A為對(duì)合矩陣;若存在k∈N+,使得Ak=0,稱A為冪零矩陣;若AA?=A?A,稱A為EP陣.

      定義1[1-2]設(shè)矩陣A∈m×n,若矩陣X∈n×m滿足下列條件:

      1)AXA=A,2)XAX=X,3)XAk+1=Ak,

      則稱X為矩陣A的Moore-Penrose逆,記為A?.

      A?總是存在且唯一的.

      定義2[1-2]設(shè)矩陣A∈n×n,Ind(A)=k,若矩陣X∈n×n滿足下列條件:

      1)AXA=A,2)XAX=X,3)XAk+1=Ak,

      則稱X為矩陣A的Drazin逆,記為AD.當(dāng)k=1時(shí),AD稱為是A的群逆,記為AD=A#.

      若A#存在,則唯一.A#存在當(dāng)且僅當(dāng)Ind(A)≤1.

      對(duì)于矩陣A∈n×n,分別用A,A,AD,?,A?,A表示矩陣A的核心逆[3],核-EP逆[4],DMP-逆[5],BT-逆[6],弱群逆[7].

      在文[13]中,Benítez研究了兩個(gè)正交投影算子P和Q的線性組合aP+bQ(ab≠0)的譜和秩,分別給出了兩個(gè)正交投影算子的組合aP+bQ是EP陣,可對(duì)角化的,冪零矩陣,冪等矩陣,三冪等矩陣,對(duì)合矩陣,廣義投影算子,超廣義投影算子的一些性質(zhì),給出了在特殊條件下aP+bQ的Moore-Penrose逆的表示.在P和Q相乘不可交換的條件下,給出了aP+bQ是三冪等矩陣,對(duì)合矩陣,超廣義投影算子的充要條件,并證明了aP+bQ不可能是冪零矩陣,冪等矩陣以及廣義投影算子.

      關(guān)于兩個(gè)冪等矩陣P和Q的組合的研究有很多,例如,Koliha[14]證明了當(dāng)a,b∈且ab≠0,a+b≠0時(shí),r(aP+bQ)=r(P+Q).Tian[15]給出了關(guān)于r(P-Q),r(P+Q),r(PQ-QP)的一些秩等式.Deng[16]給出了在一些特殊條件下P+Q,P-Q的Drazin逆表達(dá)式.

      進(jìn)一步地,左可正[17]給出了兩個(gè)冪等矩陣P和Q的組合aP+bQ+cPQ(ab≠0)的秩的重要等式,即證明了當(dāng)a+b+c=0時(shí),

      r(aP+bQ+cPQ)=r(P-Q);

      當(dāng)a+b+c≠0時(shí),

      r(aP+bQ+cPQ)=r(P+Q).

      在文[18]中,左可正研究了兩個(gè)正交投影算子P和Q的組合aP+bQ-cPQ-dQP的可逆性條件,給出了在特殊條件下,aP+bQ-cPQ-dQP的Moore-Penrose逆的顯示表達(dá)式.在文[19]中,左可正又證明了只有當(dāng)兩個(gè)正交投影算子P和Q相乘可交換時(shí),aP+bQ+cPQ才有可能是正交冪等陣.

      本文主要利用矩陣的CS-分解,研究兩個(gè)正交投影算子P和Q的組合aP+bQ+cPQ分別在條件PQ=QP以及PQ≠Q(mào)P下,是EP陣,可對(duì)角化矩陣,冪零矩陣,冪等矩陣,三冪等矩陣,對(duì)合矩陣的完全刻畫.

      CS-分解是研究兩個(gè)正交投影算子的重要工具,利用CS-分解可以得到兩個(gè)正交投影算子的組合的譜和秩的性質(zhì)[13].CS-分解與兩個(gè)子空間的主角密切相關(guān)[20],這些主角是擾動(dòng)理論中的重要概念[21].

      其中C,S都是對(duì)角元為正實(shí)數(shù)的p階對(duì)角方陣,且C2+S2=Ip.在P和Q的表達(dá)式中,對(duì)應(yīng)位置的單位矩陣I和零矩陣有相同的階數(shù).

      在CS-分解中,令

      (1)

      P=U(T1⊕R1)UH,Q=U(T2⊕R2)UH.

      (2)

      通過恰當(dāng)?shù)闹脫Q,對(duì)T1和T2中的元素進(jìn)行重排,可設(shè)

      (3)

      i=1,2,…,p.

      (4)

      顯然有

      (5)

      從而,

      aP+bQ+cPQ=U((aT1+bT2+cT1T2)⊕

      (aR1+bR2+cR1R2))UH=

      (6)

      (aP+bQ+cPQ)?=

      (aP+bQ+cPQ)](In-Π)+
      {[(a+b+c)?-a-1-b-1]PQ+

      a-1P+b-1Q}Π ,

      其中,

      2 主要結(jié)果

      1)σ(aP+bQ+cPQ)?{0,a,b,a+b+c};

      2)當(dāng)a+b+c=0時(shí),r(aP+bQ+cPQ)=r(P)+r(Q)-2r(PQ)=r(P-Q);當(dāng)a+b+c≠0時(shí),r(aP+bQ+cPQ)=r(P)+r(Q)-r(PQ)=r(P+Q);

      P=U(Ix⊕Iy-x⊕0⊕0)UH,

      Q=U(Ix⊕0⊕Iz-x⊕0)UH,

      (7)

      aP+bQ+cPQ

      =U((a+b+c)Ix⊕aIy-x⊕bIz-x⊕0)UH,

      (8)

      從而,

      σ(aP+bQ+cPQ)?{0,a,b,a+b+c}.

      2)結(jié)合文[17]中的結(jié)論,可知

      當(dāng)a+b+c=0時(shí),

      r(aP+bQ+cPQ)=

      (y-x)+(z-x)=y+z-2x=

      r(P)+r(Q)-2r(PQ)=r(P-Q);

      當(dāng)a+b+c≠0時(shí),

      r(aP+bQ+cPQ)=

      x+(y-x)+(z-x)=y+z-x=

      r(P)+r(Q)-r(PQ)=r(P+Q).

      3)由文[18]中定理1的結(jié)果即得.

      1)若θ∈Θ(P,Q),η∈,η2=(a+b+ccos2θ)2-4absin2θ,則

      若λ∈σ(aP+bQ+cPQ){0,a,b,a+b+c},則存在θ∈Θ(P,Q)使得

      其中,η2=(a+b+ccos2θ)2-4absin2θ.

      2)r(PQ-QP)≤r(aP+bQ+cPQ).特別地,若PQ-QP可逆,則aP+bQ+cPQ可逆.

      3)r((aP+bQ+cPQ)(I-Π))=r(PQ-QP).

      證明1)由(6)式有

      σ(aP+bQ+cPQ)=

      (9)

      由(4)式知,Xi的特征多項(xiàng)式為

      fXi(λ)=λ2-(a+b+ccos2θi)λ+absin2θi,

      所以Xi的譜

      σ(Xi)=

      其中,

      η2=(a+b+ccos2θi)2-4absin2θi.

      (10)

      因?yàn)棣?Xi)?σ(aP+bQ+cPQ),i=1,2,…,p,所以

      從而1)的前部分得證.

      反過來由(9)式知,

      σ(aP+bQ+cPQ){0,a,b,a+b+c}=

      這樣1)的后部分得證.

      2)因?yàn)閨Xi|=absin2θi≠0,由(5)式知,(aT1+bT2+cT1T2)∈2p×2p可逆.

      由(6)式知,r(aP+bQ+cPQ)≥r(aT1+bT2+cT1T2)=2p,因?yàn)閞(PQ-QP)=2p,所以r(PQ-QP)≤r(aP+bQ+cPQ).若PQ-QP可逆,則r(PQ-QP)=n,從而r(aP+bQ+cPQ)=n,即aP+bQ+cPQ可逆.

      3)因?yàn)?aP+bQ+cPQ)(I-Π)=U((aT1+bT2+cT1T2)⊕0)UH,所以

      r((aP+bQ+cPQ)(I-Π))=

      2p=r(PQ-QP).

      λ∈σ(aP+bQ+cPQ)?

      證明必要性.根據(jù)(3)式,由于

      (11)

      所以σ(T1T2)={cos2θi|θi∈Θ(P,Q)}∪{0}.取任意λ∈σ(aP+bQ+cPQ){0,a,b,a+b+c},由定理2知,存在θ∈Θ(P,Q)以及η∈,η2=(a+b+ccos2θ)2-4absin2θ,使得

      (12)

      因此存在μ∈σ(T1T2),使得μ=cos2θ.再結(jié)合(10)式和(12)式得出

      λ2-(a+b)λ+ab=μ(ab+cλ),

      由于λ∈σ(aP+bQ+cPQ){0,a,b,a+b+c},所以ab+cλ≠0,從而

      (13)

      因?yàn)棣?T1T2)?σ(PQ),所以μ∈σ(PQ).

      充分性.假設(shè)μ∈σ(PQ)由(13)式給出,其中λ∈{0,a,b,a+b+c},則有μ≠0且μ≠1,否則λ∈{a,b}或λ∈{0,a+b+c},與假設(shè)矛盾.

      對(duì)任意θ∈Θ(P,Q),因?yàn)?/p>

      σ(PQ)=σ(T1T2)∪σ(R1R2),

      其中,σ(T1T2)={cos2θi|θi∈Θ(P,Q)}∪{0},σ(R1R2)={0,1},從而μ∈σ(T1T2).

      由(11)式知,存在θ∈{θ1,θ2,…,θp},使得μ=cos2θ.由(13)式,知

      由上式,可得

      λ2-(a+b+ccos2θ)λ+4absin2θ=0.

      記η2=(a+b+ccos2θ)2-4absin2θ,從而

      注記1定理3是文[13]中定理2.8的推廣.

      證明由(6)式,知aP+bQ+cPQ可對(duì)角化?aT1+bT2+cT1T2與aR1+bR2+cR1R2可對(duì)角化.而aR1+bR2+cR1R2是對(duì)角的,再結(jié)合(5)式知,aP+bQ+cPQ可對(duì)角化等價(jià)于每個(gè)Xi,i=1,2,…,p都可對(duì)角化.由(3)式知,Xi的特征多項(xiàng)式為

      fXi(λ)=λ2-(a+b+ccos2θi)λ+absin2θi,

      顯然fXi(λ)有兩個(gè)不同的根當(dāng)且僅當(dāng)(a+b+ccos2θi)2≠4absin2θi,因此若(a+b+ccos2θi)2≠4absin2θi,此時(shí)Xi可對(duì)角化.若(a+b+ccos2θi)2=4absin2θi,fXi(λ)有兩個(gè)相同的特征值,此時(shí)若Xi可對(duì)角化,則存在一個(gè)可逆矩陣K∈2×2,使得Xi=K-1diag(λ,λ)K=λI2,這與(4)式矛盾.從而Xi可對(duì)角化當(dāng)且僅當(dāng)(a+b+ccos2θ)2≠4absin2θ.

      注記2定理4是文[13]中推論2.9的推廣.

      證明當(dāng)PQ=QP時(shí),結(jié)論顯然成立.

      當(dāng)PQ≠Q(mào)P時(shí),由(6)式知,aR1+bR2+cR1R2是對(duì)角陣,而對(duì)角陣是EP陣.又因?yàn)閍T1+bT2+cT1T2可逆,所以aT1+bT2+cT1T2也是EP陣,從而aP+bQ+cPQ是EP陣.

      注記3由于X=aP+bQ+cPQ是EP陣,此時(shí)有

      下面分別討論在條件PQ=QP,PQ≠Q(mào)P下aP+bQ+cPQ是冪零矩陣,冪等矩陣,三冪等矩陣,對(duì)合矩陣的充要條件.由于本文研究P,Q的組合的性質(zhì),因此只討論P(yáng),Q≠0的情況.

      1)aP+bQ+cPQ是冪零矩陣的充分必要條件是a+b+c=0,P=Q=PQ.

      2)aP+bQ+cPQ是冪等矩陣的充分必要條件是下列任一命題成立:

      i)a+b+c∈{0,1},a=1,b=1;

      ii)a+b+c∈{0,1},a=1,PQ=Q;

      iii)a+b+c∈{0,1},b=1,PQ=P;

      iv)a+b+c∈{0,1},P=Q;

      v)a=1,b=1,PQ=0.

      3)aP+bQ+cPQ是三冪等矩陣的充分必要條件是下列任一命題成立:

      i)a+b+c∈{0,-1,1},a∈{-1,1},b∈{-1,1};

      ii)a+b+c∈{0,-1,1},a∈{-1,1},PQ=Q;

      iii)a+b+c∈{0,-1,1},b∈{-1,1},PQ=P;

      iv)a+b+c∈{0,-1,1},P=Q;

      v)a∈{-1,1},b∈{-1,1},PQ=0.

      4)aP+bQ+cPQ是對(duì)合矩陣的充分必要條件是下列任一命題成立:

      i)a+b+c∈{-1,1},a∈{-1,1},b∈{-1,1},r(P+Q)=n;

      ii)a+b+c∈{-1,1},a∈{-1,1},P=In;

      iii)a+b+c∈{-1,1},b∈{-1,1},Q=In;

      iv)a+b+c∈{-1,1},P=Q=In;

      v)a∈{-1,1},b∈{-1,1},PQ=0,P+Q=In.

      證明1)必要性.由(7)式知,aP+bQ+cPQ可對(duì)角化,若aP+bQ+cPQ是冪零矩陣,則

      aP+bQ+cPQ=0.

      (14)

      將(14)式乘P,可得

      aP+(b+c)PQ=0,

      (15)

      再將(15)式乘Q,可得

      aPQ+(b+c)PQ=0,

      (16)

      又因?yàn)閍≠0,結(jié)合(15)式和(16)式,可得P=PQ.

      類似可證明Q=PQ,從而P=Q=PQ.此時(shí)(14)式變?yōu)?a+b+c)P=0,因?yàn)镻≠0,所以a+b+c=0.

      充分性.當(dāng)a+b+c=0,P=Q=PQ時(shí),aP+bQ+cPQ=0,因此aP+bQ+cPQ是冪零矩陣.

      2)必要性.易知

      (a+b+c)2=a+b+c?a+b+c∈{0,1}.

      利用(7)式和(8)式的記號(hào),若aP+bQ+cPQ是冪等矩陣,進(jìn)行如下分類討論.

      a)當(dāng)x>0,y-x>0,z-x>0時(shí),有a+b+c∈{0,1},a=1,b=1.

      b)當(dāng)x>0,y-x>0,z-x=0時(shí),有a+b+c∈{0,1},a=1,此時(shí),

      P=U(Ix⊕Iy-x⊕0)UH,

      Q=U(Ix⊕0⊕0)UH,PQ=Q.

      c)當(dāng)x>0,y-x=0,z-x>0時(shí),有a+b+c∈{0,1},b=1,此時(shí),

      P=U(Ix⊕0⊕0)UH,

      Q=U(Ix⊕Iz-x⊕0)UH,PQ=P.

      d)當(dāng)x>0,y-x=0,z-x=0時(shí),有a+b+c∈{0,1},此時(shí),

      P=U(Ix⊕0)UH,Q=U(Ix⊕0)UH,P=Q.

      e)因?yàn)镻,Q≠0,當(dāng)x=0時(shí),y-x,z-x都是大于0的,此時(shí),

      P=U(Iy-x⊕0⊕0)UH,

      Q=U(0⊕Iz-x⊕0)UH,PQ=0.

      由a)—e),必要性得證.

      充分性.利用(7)式和(8)式,直接驗(yàn)證即得.

      3)易知(a+b+c)3=a+b+c?a+b+c∈{0,-1,1},證明類似于上述2)的證明.

      4)必要性.若aP+bQ+cPQ是對(duì)合矩陣,則(8)式中的第四分塊不能出現(xiàn),否則與aP+bQ+cPQ是對(duì)合矩陣相矛盾.

      易知(a+b+c)2=1?a+b+c∈{-1,1},利用(7)式和(8)式的記號(hào),進(jìn)行如下分類討論.

      a)當(dāng)x>0,y-x>0,z-x>0時(shí),有a+b+c∈{-1,1},a∈{-1,1},b∈{-1,1},此時(shí),

      P=U(Ix⊕Iy-x⊕0)UH,

      Q=U(Ix⊕0⊕Iz-x)UH,r(P+Q)=n.

      b)當(dāng)x>0,y-x>0,z-x=0時(shí),有a+b+c∈{-1,1},a∈{-1,1},此時(shí),

      P=U(Ix⊕Iy-x)UH,Q=U(Ix⊕0)UH,P=In.

      c)當(dāng)x>0,y-x=0,z-x>0時(shí),有a+b+c∈{-1,1},b∈{-1,1},此時(shí),

      P=U(Ix⊕0)UH,Q=U(Ix⊕Iz-x)UH,Q=In.

      d)當(dāng)x>0,y-x=0,z-x=0時(shí),有a+b+c∈{0,1},此時(shí),

      P=U(Ix)UH,Q=U(Ix)UH,P=Q=In.

      e)因?yàn)镻,Q≠0,當(dāng)x=0時(shí),y-x,z-x都是大于0的,有a∈{-1,1},b∈{-1,1},此時(shí),

      P=U(Iy-x⊕0)UH,

      Q=U(0⊕Iz-x)UH,PQ=0,P+Q=In.

      由(a)—(e),必要性得證.

      充分性.利用(7)式和(8)式,直接驗(yàn)證即得.

      1)aP+bQ+cPQ不是冪零矩陣.

      2)aP+bQ+cPQ不是冪等矩陣.

      證明1)反證法.因?yàn)镻Q≠Q(mào)P,若aP+bQ+cPQ是冪零矩陣,則aT1+bT2+cT1T2是冪零矩陣且aT1+bT2+cT1T2這塊一定存在,而這與aT1+bT2+cT1T2是可逆矩陣相矛盾,因此aP+bQ+cPQ不是冪零矩陣.

      2)反證法.若aP+bQ+cPQ是冪等矩陣,由定理2知,aT1+bT2+cT1T2可逆,結(jié)合(6)式知

      aT1+bT2+cT1T2=I2p.

      (17)

      因?yàn)?4)式中bcosθisinθi≠0,這與(1)式相矛盾,因此aP+bQ+cPQ不是冪等矩陣.

      注記4定理7為文[13]中定理2.11(i),(iv)的推廣,當(dāng)c=0時(shí),即為定理2.11(i),(iv).

      1)aP+bQ+cPQ是三冪等矩陣的充分必要條件是Θ(P,Q)={θ},(aP+bQ+cPQ)2(In-Π)=In-Π,且下列任一命題成立:

      iv)a+b+ccos2θ=0,absin2θ=-1,PΠ=QΠ=0.

      2)aP+bQ+cPQ是對(duì)合矩陣的充分必要條件是Θ(P,Q)={θ},(aP+bQ+cPQ)2(In-Π)=In-Π,且下列任一命題成立:

      iii)a+b+ccos2θ=0,absin2θ=-1,Π=0.

      (aP+bQ+cPQ)2(In-Π)=In-Π.

      a+b+ccos2θi=0,absin2θi=-1.

      (18)

      由(1)式知,此時(shí)R1=Ix⊕Iy⊕0⊕0,R2=Ix⊕0⊕Iz⊕0,則

      aR1+bR2+cR1R2=

      (a+b+c)Ix⊕aIy⊕bIz⊕0.

      (19)

      R1=Ix⊕Iy⊕0,R2=Ix⊕0⊕0.

      R1=Ix⊕0⊕0,R2=Ix⊕Iz⊕0.

      c)當(dāng)x>0,y=0,z=0時(shí),有(a+b+c)3=(a+b+c),即a+b+c∈{0,-1,1}.根據(jù)a+b+c的不同取值,再對(duì)c)進(jìn)行如下分類討論.

      c1)若a+b+c=0,則-csin2θ=0,又因?yàn)閟in2θ≠0,所以c=0,此時(shí),

      c=0,R1=R2=Ix⊕0.

      b2sin2θ-bcos2θ-1=0.

      (20)

      R1=R2=Ix⊕0.

      (21)

      c3)若a+b+c=1,類似于c2)的證明,可得

      R1=R2=Ix⊕0,

      (22)

      R1=R2=Ix⊕0.

      (23)

      R1=Iy⊕0,R2=0⊕0.

      R1=0⊕0,R2=Iz⊕0.

      f)當(dāng)x=0,y=0,z=0時(shí),R1=R2=0,此時(shí),

      a+b+ccos2θ=0,absin2θ=-1,

      PΠ=QΠ=0.

      因此,由a),d),(20)式及(22)式可得命題i);由b),e),(21)式及(23)式可得命題ii);由c1)可得命題iii);由f)可得命題iv).

      (In-Π)Π=Π(In-Π)=0,

      PΠ=U(0⊕R1)U=ΠP,

      QΠ=U(0⊕R2)U=ΠQ,

      (aP+bQ+cPQ)(In-Π)=

      U((aT1+bT2+cT1T2)⊕0)=

      (In-Π)(aP+bQ+cPQ),

      則有

      (aP+bQ+cPQ)3=

      [(aP+bQ+cPQ)(In-Π)+

      (aP+bQ+cPQ)Π]3=

      (aP+bQ+cPQ)3(In-Π)+

      (aPΠ+(b+c)QΠ)3=

      (aP+bQ+cPQ)(In-Π)+

      a3PΠ+[3a(b+c)2+3a2(b+c)+

      (b+c)3]QΠ,

      (24)

      又因?yàn)?a+b+c)∈{-1,1},a=±1,所以(a+b+c)3=a+b+c,a3=a,從而

      3a(b+c)2+3a2(b+c)+(b+c)3=b+c.

      結(jié)合(24)式,可得

      (aP+bQ+cPQ)3=

      (aP+bQ+cPQ)(In-Π)+aPΠ+(b+c)QΠ=

      aP+bQ+cPQ,

      所以aP+bQ+cPQ是三冪等矩陣.類似可證命題ii)~iv)的充分性.

      因?yàn)閍R1+bR2+cR1R2是對(duì)合矩陣,所以(21)式中右邊的0不出現(xiàn).結(jié)合(18)式和(19)式,進(jìn)行如下分類討論.

      R1=Ix⊕Iy,R2=Ix⊕0.

      R1=Ix⊕0,R2=Ix⊕Iz.

      c)當(dāng)x>0,y=0,z=0時(shí),有(a+b+c)2=1,即a+b+c∈{-1,1}.再根據(jù)a+b+c的不同取值對(duì)(c)進(jìn)行如下分類.

      b2sin2θ-bcos2θ-1=0,

      (25)

      (26)

      c2)若a+b+c=1,類似于c1)的證明,可得

      (27)

      (28)

      R1=In-2p,R2=0.

      R1=0,R2=In-2p.

      f)當(dāng)x=0,y=0,z=0時(shí),R1,R2不存在,此時(shí),

      a+b+ccos2θ=0,absin2θ=-1,

      P=UT1UH,Q=UT2UH,Π=0.

      因此,由a),d),(25)式及(26)式可得命題i);由b),e),(26)式及(27)式可得命題ii);由f)可得命題iii).

      (In-Π)Π=Π(In-Π)=0,

      PΠ=U(0⊕R1)U=ΠP,

      QΠ=U(0⊕R2)U=ΠQ,

      (aP+bQ+cPQ)(In-Π)=

      U((aT1+bT2+cT1T2)⊕0)=

      (In-Π)(aP+bQ+cPQ),

      則有

      (aP+bQ+cPQ)2=

      [(aP+bQ+cPQ)(In-Π)+

      (aP+bQ+cPQ)Π]2=

      (aP+bQ+cPQ)2(In-Π)+

      (aPΠ+(b+c)QΠ)2=

      (In-Π)+a2PΠ+[(b+c)2+2a(b+c)]QΠ.

      (29)

      又因?yàn)閍+b+c∈{-1,1},a=±1,所以(a+b+c)2=1,a2=1.

      結(jié)合(29)式,可得

      (aP+bQ+cPQ)2=

      (In-Π)+Π+(a+b+c)2QΠ-a2QΠ=In,

      從而aP+bQ+cPQ是對(duì)合矩陣.類似可證明命題ii)~iii)的充分性.

      注記5由定理8 1)中的命題iii)知,aP+bQ是三冪等矩陣的充分必要條件是

      Θ(P,Q)={θ},

      (aP+bQ)2(In-Π)=In-Π,

      c=0,PΠ=QΠ.

      (30)

      又因?yàn)?30)式等價(jià)于

      Θ(P,Q)={θ},

      (P-Q)2(In-Π)=sin2θ(In-Π),

      (31)

      而(31)式即為文[13]中定理2.11(ii).

      注記6假設(shè)c=0,則定理8 1)中的命題i),ii)不存在,由iv)可以得到iii).由注記5知,此時(shí)定理8 1)即為文[13]中定理2.11(ii).

      當(dāng)c=0時(shí),定理8 2)中的命題i)~ii)不存在,此時(shí)aP+bQ是對(duì)合矩陣的充分必要條件是

      Θ(P,Q)={θ},(P-Q)2In=sin2θIn,

      (32)

      此時(shí),(32)式即為文[13]中定理2.11(iii).

      猜你喜歡
      充分性對(duì)角角化
      2023 年高考充要條件問題聚焦
      解析簇上非孤立奇點(diǎn)的C0-Rv-V(f)-充分性
      維持性血液透析患者透析充分性相關(guān)因素分析
      擬對(duì)角擴(kuò)張Cuntz半群的某些性質(zhì)
      實(shí)對(duì)稱矩陣對(duì)角化探究
      東方教育(2017年14期)2017-09-25 02:07:38
      巨大角化棘皮瘤誤診為鱗狀細(xì)胞癌1例
      實(shí)對(duì)稱矩陣正交相似對(duì)角化的探討
      日光性角化病的診治進(jìn)展
      充要條件的判斷
      非奇異塊α1對(duì)角占優(yōu)矩陣新的實(shí)用簡捷判據(jù)
      中西区| 汾西县| 三穗县| 饶河县| 嘉黎县| 常山县| 安乡县| 清流县| 简阳市| 乳源| 静安区| 监利县| 清新县| 莫力| 灵璧县| 桂林市| 阳山县| 洱源县| 华池县| 磴口县| 乌拉特后旗| 祁连县| 瓦房店市| 兴海县| 惠安县| 阿坝县| 依安县| 拜泉县| 南开区| 九江县| 宁国市| 青龙| 铜鼓县| 噶尔县| 察隅县| 英德市| 乌恰县| 罗城| 吉安市| 教育| 兰考县|