• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯增強傳統(tǒng)砂巖文物修復材料性能研究

    2021-03-11 10:16喬榛王捷孫博王逢睿丁梓涵楊天宇
    土木建筑與環(huán)境工程 2021年1期
    關鍵詞:石墨烯力學性能

    喬榛 王捷 孫博 王逢睿 丁梓涵 楊天宇

    摘 要:川渝地區(qū)分布有8 000余處石窟和摩崖造像,大部分鑿刻于砂巖中,長期環(huán)境作用導致砂巖性能劣化,對賦存文化遺產(chǎn)的安全造成威脅。為了提升傳統(tǒng)砂巖文物修復材料的性能,將石墨烯納米片加入傳統(tǒng)修復材料中,運用傳統(tǒng)工藝制備出“CH@G”灰漿。結(jié)果表明,加入石墨烯納米片的CH@G灰漿的力學性能和體積穩(wěn)定性較傳統(tǒng)材料明顯提高。當石墨烯納米片的添加量為質(zhì)量百分比0.07%時,樣品力學性能最佳,56 d抗壓強度、抗折強度和抗拉強度分別為4.21、2.21、0.47 MPa,相對于傳統(tǒng)修復材料,強度分別提升了7.36%、19.46%、51.61%。FT-IR、Raman和XRD結(jié)果表明,石墨烯納米片對固化反應產(chǎn)物影響較小,并且可以在早期加速水化反應,從而提升早期強度。SEM結(jié)果表明,石墨烯納米片作為一種調(diào)節(jié)相,促使灰漿形成均勻致密的微觀結(jié)構(gòu)。

    關鍵詞:砂巖文物;灰漿;石墨烯;力學性能

    1 Introduction

    There are more than 8 000 grottoes and cliff statues located in Sichuan and Chongqing. These are mainly carved out of the thick sandstone and mudstone strata of the Jurassic Period of the Mesozoic Era. The most famous stone cultural relics are the Leshan Giant Buddha and the Dazu rock carvings[1]. The sandstone cultural relics have deteriorated over time due to both environmental causes and human activity, and conservation work has been carried out several times in the past decades in an effort to preserve them[2]. In 2001, Chinese experts used traditional materials to repair the head, chest and abdomen of the Leshan Giant Buddha.

    The mortar used for the conservation of traditional sandstone cultural relics is a cementitious material composed of lime, sand, slag and a small amount of cement. Cementitious materials possess relatively high compressive strength, but lack toughness and volume stability[3-5]. The traditional materials used in the chest and abdomen areas of the Leshan Giant Buddha show some deterioration due to multiple factors. The deterioration of the chest and abdomen (exfoliation, hollow, crack and water infiltration) is shown in Fig.1.

    Graphene, which has a high elastic modulus (1 TPa) and excellent mechanical properties (130 GPa)[6-10], is considered an ideal candidate for improving the mechanical properties of cementitious material, and previous results indicate that adding graphene to cementitious matrices can enhance the toughness of the resultant composites[11-15].

    In this paper, traditional mortar used in the conservation of sandstone cultural relics is named CH mortar due to its Chinese name “Chui Hui”. Graphene is used to improve their mechanical properties, and the mortars with graphene are defined as CH@G mortars. Mechanical properties, shrinkage rate, ultrasonic wave velocity, the composition of the products, morphology and the mechanism of the graphene effect are investigated.

    2 Experimental Section

    2.1 Materials

    2.1.1 CH mortar

    The raw materials of the CH mortar were lime, slag, sand and a small amount of cement. Mixing and ramming were employed to make the particles distribute uniformly.

    The cement and lime were local products. The X-Ray Diffraction (XRD) results are shown in Table 1. The sand was purchased from Xiamen ISO Standard Sand Co, Ltd.. The slag, which was steel mill waste, was purchased from Desheng Steel Co., Ltd. in Leshan. The particle size distribution curves of the slag and sand are shown in Fig.2.

    2.1.2 Graphene

    Graphene sheets was purchased from Deyang Carbonene Co. in Sichuan province. The microstructure and chemical composition were tested by Transmission Electron Microscope (TEM), High Resolution Transmission Electron Microscope (HRTEM) and X-ray Photoelectron Spectroscopy (XPS). As shown in Fig.3 (a), the microstructure of graphene is similar to overlapping nano-fibers. Fig.3 (b) shows the HRTEM image of the graphene sheet. The sheet has 6~7 single carbon layers. As shown in Fig.3 (c), the intensity of the C1s peak is greater than that of the O1s peak. The C1s spectrum contains four peaks, including peak A (C=C) at 284.4 eV, peak B (C—O) at 286.9 eV, peak C (C=O) at 287.7 eV, and peak D (COOH) at 288.8 eV.

    2.2 Specimen preparation

    The preparation procedureis illustrated in Fig.4. First, graphene and hexadecyl trimethyl ammonium bromide (CTAB) were dispersed into 50 mL deionized water and ultrasonicated for 10 min. Next, cement and lime were mixed and stirred, and slag and sand were added after 1 min of low speed stirring. Finally, the graphene dispersion was dropped into the CH mortar. Ramming was employed to make the particle distribution more uniform after mixing. The mixture was molded to different types of specimens for testing and characterization.

    Table 2 presents the recipes for preparations of various CH and CH@G mortars. The weight percentages of the graphene sheets in the mortars were 0.01%, 0.03%, 0.05%, 0.07% and 0.10% of all raw materials (lime, cement, slag and sand). The water binder ratios of all specimens were 0.30. The size of the samples for compressive strength was 70.7 mm×70.7 mm×70.7 mm, and the flexural strength test samples were 40 mm×40 mm×160 mm. The Brazilian disc test was used to test the tensile strength of the samples, and the size of the samples was φ50 mm×100 mm.

    All samples for testing and characterization were cured in an environment (parameters: 8:00—20:00, 20 ℃, RH 65%, 20:00—8:00, 15 ℃, RH 75%) similar to that of the Leshan Giant Buddha area, and the parameters of the curing condition were controlled by a temperature and humidity curing box (BG/TH-100, Shanghai Bogong Equipment Co. Ltd.).

    2.3 Experimental methods

    2.3.1 Shrinkage rate and ultrasonic wave velocity

    The shrinkage rate of the specimens (40 mm×40 mm×160 mm) at different ages was measured by an electronic micrometer with an accuracy of 0.001 mm. The ultrasonic wave velocity of the samples (φ=50 mm, height=100 mm) at different ages was obtained by an RSM-SY5 (T) nonmetal acoustic detector.

    2.3.2 Mechanical properties

    Compressive strength, flexural strength and tensile strength were tested on a universal mechanical testing machine.The flexural strength of 40 mm×40 mm×160 mm samples was determined with a central-loading method, and then the compressive strength test was conducted after the flexural test on the remaining samples. The rate of loading was 2 mm/min. All test results were the average value of three replicate samples.

    2.3.3 Characterization

    The microstructure of all samples was examined by scanning electron microscope (Hitachi S-4800, Japan) and transmission electron microscope (Hillsboro, Tecnai G2 F20). Chemical state assignment was performed using X-ray photoelectron spectroscopy (Waltham, Thermal Scientific Escalab 250 Xi). Surface characterizations of specimens were obtained by FT-IR spectra analysis (Bruker, Tensor 27), Raman spectra analysis (France, LabRAM HR) and X-ray diffraction (Rigaku, D/max-2400).

    3 Results and discussion

    3.1 Shrinkage rate

    The shrinkage rates of all samples are shown in Fig.5. The shrinkage rate of the CH specimen increases rapidly during 0-7 d, and then slowly increases from 8 d to 14 d. Finally, the value remains almost constant after 15 d. The CH@G specimens show a tendency similar to that of the CH specimen, but all shrinkage rate values are lower than those of the CH specimen, indicating that the addition of grapheme can enhance the volume stability of the CH@G specimens. When percentage of graphene added is 0.07 wt%, the specimen has the lowest shrinkage rate (0.39%) and the attenuation is 34.74% compared to the CH specimen (0.59%).

    3.2 Ultrasonic wave velocity

    Ultrasonic wave velocity tests were employed to reflect the degree of solidification of the samples[16]. As shown in Fig.6, all specimen values first decrease and then increase. Finally, the value becomes stable. At 0 d, each sample has a high initial value due to the water filling in the pores. During 1-3 d, the water in the pores is absorbed by the cement and lime, and the wave velocity drops rapidly due to the loose and porous microstructure. At 4-14 d, the wave velocity of each specimen is simultaneously improved as the cement and lime solidify, and the velocity value increases as graphene is added. In the last period (15~28 d), the wave velocities become stable. At 28 d, the velocities of the CH@G specimens are higher than those of the CH specimen. The velocity of the CH@G-4 specimen is 1 670 m/s, which is the highest value among all the samples, and the increasement is 15.17% compared to the CH specimen.

    3.3 Mechanical properties

    3.3.1 Compressive strength

    As shown in Fig.7, the compressive strength of the CH specimen at 56 d is only 3.94 MPa. The compressive strengths of the CH@G specimens increase with the addition of graphene, and the highest strength is obtained at 0.07 wt%. The strength completion degree is used to describe the hardening rate of each sample. The compressive strength value of each sample at 56 d is used as the reference value in the compressive strength completion degree curve[17]. The hardening rate gets faster in the CH@G specimens. The compressive strength completion degree of the CH and the CH@G specimens (1-5) at 7 d are 52.30%, 60.80%, 62.69%, 65.90%, 66.11% and 65.78%, respectively, suggesting that the addition of graphene could accelerate the hydration of the CH@G specimens in the early days.

    3.3.2 Flexural strength

    The flexural strengths are shown in Fig.8. The flexural strengths of the CH specimen are 0.89 MPa (3 d), 1.34 MPa (7 d), 1.60 MPa (28 d) and 1.85 MPa (56 d). With the addition of graphene, the flexural strength at 56 d increased for different degrees and the largest increasement is 19.46% obtained in the CH@G-4 sample. The 56 d flexural strength values of each sample are used as the reference value in the flexural strength completion degree curve. The flexural strength completion degree curve shows a tendency similar to that of the compressive strength completion degree curve. The flexural strength completion degrees at 7 d are 72.40% (CH), 74.71% (CH@G-1), 75.22% (CH@G-2), 76.92% (CH@G-3), 76.94% (CH@G-4), and 76.33% (CH@G-5), indicating that the addition of graphene has the potential to enhance the hydration reaction.

    3.3.3 Tensile strength

    As shown in Fig.9, the tensile strength of the CH specimen at 3 d, 7 d, 28 d and 56 d are 0.13 MPa, 0.18 MPa, 0.24 MPa, and 0.31 MPa, respectively. The tensile strength of the CH@G specimens increases with the addition of graphene. The CH@G-4 sample exhibits the highest strength value (0.47 MPa), and the increasement is 51.61%. The result shows that the addition of graphene to the CH@G specimens has a significant influence on the tensile strength. The 56 d tensile strength value of each sample is used as the reference value in the tensile strength completion degree curve. The tensile strength completion degree of the CH specimen at 7 d is 58.1%. With the addition of graphene, the tensile strength completion degrees of the CH@G specimens, which are 60.00%, 60.00%, 64.12%, 61.73% and 62.23%, change a little at each dosage of graphene (0.01%, 0.03%, 0.05%, 0.07% and 0.10%).

    3.4 Products characteristics

    3.4.1 FT-IR spectra

    The FT-IR spectra of graphene, CH mortar and CH@G mortars at 28 d are presented in Fig.10. As shown in Fig.10, a characteristic broad band that is responsible for hydroxyl stretching can be observed around 3 450 cm-1. The —COOH carbonyl stretching at 1 730 cm-1for graphene is very weak, likely because the absorption is slight and is obscured by the range band of C=C at 1 630 cm-1 [18-19]. The spectra of the CH mortar and the CH@G mortars have similar characteristic peaks such as 3 460 cm-1 (—OH), 1 470 cm-1 (O—C—O) and 778 cm-1(O—C—O), 950 cm-1(C—S—H) and 510 cm-1 (Si—O—Si). The results indicate that the addition of graphene has little influence on the composition of the products. However, the characteristic peaks of graphene can rarely be observed in the FT-IR spectra of the CH@G mortars. The Raman spectra are employed to further analyze the existence of graphene in the CH@G mortars.

    3.4.2 Raman spectra

    The Raman spectra of graphene, CH mortar and CH@G mortars at 28 d are shown in Fig.11. The spectrum of graphene contains three peaks, namely D peak at 1 350 cm-1, G peak at 1 582 cm-1 and 2D peak at 2 700 cm-1. The D peak and 2D peak represent the high-frequency E2g phonon at the center of the Brillouin zone, and the G peak corresponds to the breathing modes of six-atom rings[20]. The spectrum of the CH mortar has four characteristic peaks, including [CO3] bending vibration, [CO3] symmetric stretching vibration, C bending vibration and O bending vibration, and similar characteristic peaks are observed in the spectra of the CH@G mortars. The results confirm that the addition of graphene has little influence on the composition of the products. A weakened peak at 1 550 cm-1, the G peak of graphene, can be observed in the spectra of CH@G-2, CH@G-3, CH@G-4 and CH@G-5, and the intensity of this peak increased as the percentage of graphene added increased. It suggests that the graphene has been successfully added into the CH@G mortars.

    3.4.3 XRD

    XRD patterns of CH mortar, CH@G-2 mortar and CH@G-4 mortar curing at different ages are shown in Fig.12. The specimens are mainly composed of Ca(OH)2, CaCO3, SiO2, AFt and unhydrated C3S, but C-S-H could not be indexed by XRD due to its amorphous property[21]. The peak intensity of unhydrated C3S can be used to analyze the hydration rate of each sample. As shown in Fig.12 (a), the peak intensity of unhydrated C3S in the CH specimen at 1 d is a little higher than those specimens of CH@G-2 and CH@G-4, indicating that the hydration rate of the CH mortar is equivalent to that of the CH@G-2 and CH@G-4 mortars at the first period (0-1 d). From Fig.12 (b), the peak intensity of unhydrated C3S in the CH specimen at 3 d is much higher than those specimens of CH@G-2 and CH@G-4, and the peak shows a decreasing trend with the increasing contents of graphene. The results suggest that the hydration rate of the CH mortar is much slower than that of the CH@G-2 mortar and the CH@G-4 mortar at the second period (1-3 d). The hydration rate of the CH mortar is slower than that of the CH@G-2 mortar and the CH@G-4 mortar at the third period (3-7 d), as shown in Fig.12 (c). In the fourth period, the peak intensity of the unhydrated C3S in the CH mortar is as great as those of the CH@G-2 mortar and the CH@G-4 mortar.

    The peak of Ca(OH)2 at 18° can be used to analyze the amount of Ca(OH)2 due to its good crystallinity[22]. The intensity of Ca(OH)2 in CH at 1 d is as high as that in the CH@G-2 and CH@G-4, meaning that the hydration rate of each sample is similar to that in first period. The intensity of Ca(OH)2 in the CH at 3 d is higher than that in CH@G-2 and CH@G-4, indicating that the hydration rate of the CH@G specimens is quicker than that of the CH specimen. The trend shows a tendency similar to the change of C3S. The results of XRD demonstrate that graphene could enhance the hydration of cement in the early days, leading to higher strength of the CH@G mortars.

    3.5 Product morphology

    As shown in Fig.13 (a), the CH specimen is mainly the crystal aggregation of laminated Ca(OH)2 and fibrous C—S—H, and the whole microstructure is loose. Fig.13 (b), (c) show the morphology of the CH@G-2 specimen and the CH@G-3 specimen, and the microstructure of the two specimens is similar to that of the CH specimen.

    As shown in Fig.13 (d), a small amount of graphene sheets exist between particles, and the microstructure is still loose, indicating that the effect of the graphene is not significant at this content. From Fig.13 (e), graphene sheets can be observed in the CH@G-4 specimen, and the microstructure of the CH@G-4 specimen is more uniform and dense compared with the CH specimen. As shown in Fig.13 (f), more graphene sheets can be observed, but the graphene shows a tendency to agglomerate. It can be concluded that the effect of graphene in the CH@G-5 specimen is

    3.6 Mechanism analysis

    According to the experimental results and the discussion above, the possible mechanism by which the addition of graphene influences the mechanical properties of CH mortar can be illustrated as follows (Fig.14). In the hydration process, a complex reaction is carried out among C2S, C3S, C3A and C4AF. The products of hydration are AFt, AFm, Ca(OH)2 and C—S—H. The corresponding reactions are expressed by Eqs. (1)~(4).

    Graphene sheets involve active groups (—OH, —COOH, and —SO3H) after being functionalized by CTAB, and acid-based reactions take place between these active groups and Ca(OH)2, leading to a strong covalent force on the interface between the graphene and the CH matrix[6]. The reaction sites and patterns are simultaneously controlled by the graphene, which is called the template effect[23]. The products of hydration grow forward from the surface of the graphene in the same direction, exhibit in an ordered way, and form a uniform and compacted microstructure. The resultant products improve the strength and volume stability of the CH@G mortars. Once the microstructure starts to crack or lose stability, they would disperse into the pores and cracks as filler to retard crack propagation.

    4 Conclusion

    Grapheneis used to enhance the mechanical properties of CH@G mortars in this study. With the increase of graphene sheets, the mechanical properties of the CH@G mortars are enhanced. The specimen with the highest strength is found at 0.07 wt% level of graphene addition, where the compressive strength, flexural strength and tensile strength at 56 d are 4.21 MPa, 2.21 MPa and 0.47 MPa, respectively. FT-IR and Raman spectra show that the addition of graphene has little influence on the composition of the products, and from the XRD results, the graphene could enhance the hydration in the early days.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Sichuan Science and Technology Program (No. 2020YFS0391) and Key Research Project of China Railway Academy Co. Ltd. (No. 2019-KJ011-Z010-A2, No. 2020-KJ009-Z009-A2).

    References:

    [1] WEI J P, ZHU B L. Study on the sandstone weathering sensitivity caused by the changes of temperature and humidity [J]. Advanced Materials Research, 2011, 243-249: 645-649.

    [2] LI J H, LIU Z L, YU H, et al. The geological heritage of mount Emei in Sichuan Province and its geological significance [J]. Advances in Earth Science, 2015, 30(6): 691-699.

    [3] SINGH A P, MISHRA M, CHANDRA A, et al. Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application [J]. Nanotechnology, 2011, 22(46): 465701.

    [4] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite [J]. Cement and Concrete Composites, 2015, 58: 140-147.

    [5] DU H J, PANG S D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet [J]. Cement and Concrete Research, 2015, 76: 10-19.

    [6] CAO M L, ZHANG H X, ZHANG C. Effect of graphene on mechanical properties of cement mortars [J]. Journal of Central South University, 2016, 23(4): 919-925.

    [7] LIU H T, JIN J Z, YU Y J, et al. The mechanical properties and micro-structure of oil well cement enhanced by graphene oxide [J]. Materials Science Forum, 2018, 916: 200-204.

    [8] JIANG R S, WANG B M. Mechanical properties and microstructure of graphene-cement composites [J]. Key Engineering Materials, 2017, 748: 295-300.

    [9] LING X, WU J X, XU W G, et al. Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy [J]. Small, 2012, 8(9)1365-1372

    [10] ZHANG S, ZHANG X W, LIU X K, et al. Raman peak enhancement and shift of few-layer graphene induced by plasmonic coupling with silver nanoparticles [J]. Applied Physics Letters, 2014, 104(12): 121109.

    [11] PANG H, CHEN T, ZHANG G M, et al. An electrically conducting polymer/graphene composite with a very low percolation threshold [J]. Materials Letters, 2010, 64(20): 2226-2229.

    [12] BLANTER Y M, MARTIN I. Transport through normal-metal-graphene contacts [J]. Physical Review B, 2007, 76(15): 155433.

    [13] WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites [J]. ACS Nano, 2011, 5(4): 3182-3190.

    [14] ALKHATEB H, ALOSTAZ A, CHENG A, et al. Materials genome for graphene-cement nanocomposites [J]. Journal of Nanomechanics and Micromechanics, 2013, 3(3): 67-77.

    [15] LV S, MA Y J, QIU C C, et al. Regulation of GO on cement hydration crystals and its toughening effect [J]. Magazine of Concrete Research, 2013, 65(20): 1246-1254.

    [16] CARETTE J, STAQUET S. Monitoring the setting process of mortars by ultrasonic P and S-wave transmission velocity measurement [J]. Construction and Building Materials, 2015, 94: 196-208.

    [17] WANG N, CHEN W W, ZHANG J K, et al. Evolution of properties under realistic curing conditions of calcined ginger nut grouting mortars used in anchoring conservation of earthen sites [J]. Journal of Cultural Heritage, 2019, 40: 69-79.

    [18] QIAO Z, MAO J. Multifunctional poly (melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity [J]. Materials Science and Engineering: B, 2017, 226: 86-93.

    [19] QIAO Z, MAO J. Enhanced thermal properties with graphene oxide in the urea-formaldehyde microcapsules containing paraffin PCMs [J]. Journal of Microencapsulation, 2017, 34(1): 1-9.

    [20] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8(4): 235-246.

    [21] LUO K, LI J, LU Z Y, et al. Effect of nano-SiO2 on early hydration of natural hydraulic lime [J]. Construction and Building Materials, 2019, 216: 119-127.

    [22] QIAO Z, SUN B, WANG F, et al. Age performance of Leshan Giant Buddha restoration material by metakaolin modified [J]. Bulletin of the Chinese Ceramic Society, 2020 39(2): 543-551.

    [23] LV S, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites [J]. Construction and Building Materials, 2013, 49: 121-127.

    (編輯 章潤紅)

    猜你喜歡
    石墨烯力學性能
    聚氨酯/聚磷酸銨復合泡沫阻燃性能的優(yōu)化方法綜述
    廢棄塑料制品改性瀝青混凝土力學性能研究
    Mg元素對A356合金力學性能影響
    Mg元素對A356合金力學性能影響
    氧化石墨烯在純棉織物上的抗菌應用
    石墨烯負載納米銀復合材料的制備及催化性能研究
    功率芯片表面絕緣層厚度對石墨烯散熱效果的影響
    綜合化學實驗設計:RGO/MnO復合材料的合成及其電化學性能考察
    基于短纖維增強的復合氣壓砂輪基體性能研究
    石墨烯量子電容的理論研究
    国产精品乱码一区二三区的特点| 白带黄色成豆腐渣| 亚洲av中文av极速乱 | 欧美激情在线99| 在线免费十八禁| 色av中文字幕| 黄色配什么色好看| 波多野结衣高清无吗| 少妇的逼好多水| 中亚洲国语对白在线视频| 老司机午夜福利在线观看视频| a级一级毛片免费在线观看| 小蜜桃在线观看免费完整版高清| 午夜福利18| 日日啪夜夜撸| 人人妻,人人澡人人爽秒播| 久久精品人妻少妇| 人妻制服诱惑在线中文字幕| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩东京热| 老司机深夜福利视频在线观看| 欧美潮喷喷水| 国产色婷婷99| 国产高清三级在线| 亚洲在线观看片| 99热精品在线国产| 国产精品一区二区免费欧美| 亚洲在线自拍视频| 大又大粗又爽又黄少妇毛片口| 大又大粗又爽又黄少妇毛片口| 亚洲经典国产精华液单| avwww免费| 亚洲av熟女| 国产精品伦人一区二区| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 亚洲最大成人av| 亚洲国产色片| 午夜日韩欧美国产| 深夜a级毛片| 免费大片18禁| 欧美丝袜亚洲另类 | 噜噜噜噜噜久久久久久91| 男人的好看免费观看在线视频| 久久精品国产鲁丝片午夜精品 | 国内精品宾馆在线| av在线老鸭窝| 夜夜看夜夜爽夜夜摸| 99热网站在线观看| 99久久精品国产国产毛片| 午夜精品久久久久久毛片777| 亚洲成a人片在线一区二区| 99热这里只有精品一区| 欧美最黄视频在线播放免费| 看免费成人av毛片| 熟女电影av网| 亚洲成人久久性| 亚洲国产欧洲综合997久久,| 禁无遮挡网站| 亚洲在线观看片| 日本-黄色视频高清免费观看| 久久中文看片网| 高清毛片免费观看视频网站| 可以在线观看毛片的网站| 1000部很黄的大片| 淫秽高清视频在线观看| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 麻豆国产av国片精品| 大又大粗又爽又黄少妇毛片口| 免费在线观看影片大全网站| 久久久精品欧美日韩精品| 在线看三级毛片| 欧美日韩国产亚洲二区| 色在线成人网| 色精品久久人妻99蜜桃| 亚洲欧美日韩高清在线视频| 免费在线观看影片大全网站| 国产精品女同一区二区软件 | 黄色女人牲交| 亚洲精品影视一区二区三区av| 亚洲不卡免费看| 婷婷亚洲欧美| 亚州av有码| 真人一进一出gif抽搐免费| 免费在线观看日本一区| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 狂野欧美白嫩少妇大欣赏| 老师上课跳d突然被开到最大视频| 男女那种视频在线观看| 欧美日韩国产亚洲二区| 亚洲一区二区三区色噜噜| 日本色播在线视频| 精品一区二区免费观看| 久久精品久久久久久噜噜老黄 | 搡老妇女老女人老熟妇| 少妇猛男粗大的猛烈进出视频 | 亚洲av二区三区四区| 成人特级黄色片久久久久久久| 久久人人精品亚洲av| 国产伦精品一区二区三区视频9| 变态另类丝袜制服| 国产人妻一区二区三区在| 国产在线男女| 久久精品国产自在天天线| 最近最新免费中文字幕在线| 亚洲在线自拍视频| 日韩欧美精品v在线| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 精品不卡国产一区二区三区| 成年女人永久免费观看视频| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 黄色女人牲交| 在线免费观看不下载黄p国产 | 国产精品久久视频播放| a级一级毛片免费在线观看| 最好的美女福利视频网| 久久天躁狠狠躁夜夜2o2o| 十八禁国产超污无遮挡网站| 亚洲精品一区av在线观看| 久久久久久大精品| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 国产一区二区三区在线臀色熟女| 亚洲不卡免费看| 国产午夜福利久久久久久| 最近视频中文字幕2019在线8| 免费看av在线观看网站| 色综合色国产| 琪琪午夜伦伦电影理论片6080| 桃色一区二区三区在线观看| 在线a可以看的网站| 长腿黑丝高跟| 国产视频内射| 日本黄色视频三级网站网址| 免费观看人在逋| 久久久久久久久久久丰满 | 精品免费久久久久久久清纯| 精品久久久久久久久久久久久| 精品一区二区三区视频在线观看免费| 欧美性猛交黑人性爽| 国产单亲对白刺激| av.在线天堂| 欧美日韩中文字幕国产精品一区二区三区| 91精品国产九色| 婷婷亚洲欧美| 欧美一区二区国产精品久久精品| 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 亚洲最大成人av| 校园春色视频在线观看| 日韩人妻高清精品专区| 中亚洲国语对白在线视频| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡欧美一区二区| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 人人妻人人澡欧美一区二区| 久久午夜亚洲精品久久| 少妇高潮的动态图| 国国产精品蜜臀av免费| 日本在线视频免费播放| av天堂在线播放| 偷拍熟女少妇极品色| 久99久视频精品免费| 精品99又大又爽又粗少妇毛片 | 噜噜噜噜噜久久久久久91| 最近最新免费中文字幕在线| 无人区码免费观看不卡| 高清在线国产一区| 啦啦啦韩国在线观看视频| 搡老熟女国产l中国老女人| 国产白丝娇喘喷水9色精品| 波多野结衣高清无吗| 在线免费观看的www视频| 少妇的逼好多水| 日本a在线网址| 欧美中文日本在线观看视频| 欧美日韩国产亚洲二区| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 少妇熟女aⅴ在线视频| 国产成年人精品一区二区| 免费在线观看成人毛片| 国产极品精品免费视频能看的| 最近视频中文字幕2019在线8| 如何舔出高潮| netflix在线观看网站| 欧美又色又爽又黄视频| 一级毛片久久久久久久久女| 97超级碰碰碰精品色视频在线观看| 国产精品98久久久久久宅男小说| 久久久久久国产a免费观看| 91麻豆av在线| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 精品久久久久久久久久免费视频| 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 九九在线视频观看精品| 亚洲av第一区精品v没综合| 十八禁国产超污无遮挡网站| 精品久久久久久,| 18禁裸乳无遮挡免费网站照片| 中文字幕高清在线视频| 欧美黑人欧美精品刺激| 免费黄网站久久成人精品| 老熟妇仑乱视频hdxx| 色播亚洲综合网| 精品国内亚洲2022精品成人| 日日撸夜夜添| 成人二区视频| 午夜福利在线观看免费完整高清在 | 乱码一卡2卡4卡精品| 亚洲av五月六月丁香网| 俄罗斯特黄特色一大片| 国产色爽女视频免费观看| 午夜福利18| 亚洲aⅴ乱码一区二区在线播放| 两人在一起打扑克的视频| 日本成人三级电影网站| 久久久久久伊人网av| 久久午夜福利片| 18+在线观看网站| 他把我摸到了高潮在线观看| 国产精品久久久久久久久免| 国产极品精品免费视频能看的| 免费大片18禁| 中文字幕av在线有码专区| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 亚洲国产精品合色在线| 亚洲国产欧美人成| 男女那种视频在线观看| 精品一区二区免费观看| 蜜桃亚洲精品一区二区三区| 欧美+亚洲+日韩+国产| 精品久久久久久久末码| 又黄又爽又免费观看的视频| 乱人视频在线观看| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 国产高清激情床上av| av视频在线观看入口| 中出人妻视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 97人妻精品一区二区三区麻豆| 亚洲真实伦在线观看| 免费高清视频大片| 少妇猛男粗大的猛烈进出视频 | 日韩精品中文字幕看吧| 亚洲自拍偷在线| 亚洲性夜色夜夜综合| 在线免费观看不下载黄p国产 | 亚洲综合色惰| 听说在线观看完整版免费高清| 观看美女的网站| 亚洲av不卡在线观看| 大型黄色视频在线免费观看| 亚洲四区av| 亚洲国产精品合色在线| 免费不卡的大黄色大毛片视频在线观看 | 久久久精品大字幕| 欧美三级亚洲精品| 五月玫瑰六月丁香| 免费在线观看成人毛片| 色综合色国产| 精品乱码久久久久久99久播| 男插女下体视频免费在线播放| 啦啦啦观看免费观看视频高清| 男女啪啪激烈高潮av片| 亚洲内射少妇av| 亚洲国产色片| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品av视频在线免费观看| 人妻少妇偷人精品九色| 91狼人影院| 精品久久久久久久久亚洲 | 欧美日韩国产亚洲二区| 国产精品av视频在线免费观看| 男女视频在线观看网站免费| 国产在线精品亚洲第一网站| 91午夜精品亚洲一区二区三区 | 黄色一级大片看看| 亚洲18禁久久av| 欧美高清成人免费视频www| 欧美bdsm另类| 69av精品久久久久久| 久久久久久九九精品二区国产| 精品福利观看| 婷婷亚洲欧美| 国产又黄又爽又无遮挡在线| 色综合色国产| 久久久久久久久久黄片| 很黄的视频免费| 中文字幕久久专区| 国产高清不卡午夜福利| 99国产极品粉嫩在线观看| 男女视频在线观看网站免费| 免费观看在线日韩| av福利片在线观看| 国内少妇人妻偷人精品xxx网站| 91av网一区二区| www.色视频.com| 男女边吃奶边做爰视频| 国产精品一及| 亚洲最大成人av| 一本久久中文字幕| 搞女人的毛片| 亚洲性夜色夜夜综合| 免费黄网站久久成人精品| 天天一区二区日本电影三级| 亚洲 国产 在线| 国产av在哪里看| 国产极品精品免费视频能看的| 一进一出抽搐gif免费好疼| 熟女电影av网| 色在线成人网| 色综合亚洲欧美另类图片| 性插视频无遮挡在线免费观看| 国产探花在线观看一区二区| 99热网站在线观看| 一本久久中文字幕| 国产aⅴ精品一区二区三区波| 亚洲,欧美,日韩| 亚洲中文日韩欧美视频| 国产色爽女视频免费观看| 特大巨黑吊av在线直播| 九九爱精品视频在线观看| 国产精品永久免费网站| 欧美三级亚洲精品| 我的女老师完整版在线观看| x7x7x7水蜜桃| 97超级碰碰碰精品色视频在线观看| 毛片女人毛片| 国产精品伦人一区二区| 亚洲不卡免费看| 国产探花极品一区二区| 国产极品精品免费视频能看的| 一级a爱片免费观看的视频| 听说在线观看完整版免费高清| 九色国产91popny在线| 婷婷色综合大香蕉| 亚洲成a人片在线一区二区| 99久久久亚洲精品蜜臀av| 亚洲精品影视一区二区三区av| av女优亚洲男人天堂| 狂野欧美白嫩少妇大欣赏| 免费观看人在逋| 国产精品1区2区在线观看.| 亚洲av成人精品一区久久| 成熟少妇高潮喷水视频| 麻豆精品久久久久久蜜桃| 亚洲色图av天堂| 深爱激情五月婷婷| 亚洲一区高清亚洲精品| bbb黄色大片| 亚洲欧美精品综合久久99| 成年人黄色毛片网站| 麻豆国产97在线/欧美| 最好的美女福利视频网| 欧美一区二区精品小视频在线| 久久精品人妻少妇| 在线观看一区二区三区| 亚洲精品粉嫩美女一区| 97人妻精品一区二区三区麻豆| 成人精品一区二区免费| 午夜福利成人在线免费观看| 欧美丝袜亚洲另类 | 国产黄色小视频在线观看| 色综合亚洲欧美另类图片| 18+在线观看网站| 很黄的视频免费| 午夜福利视频1000在线观看| 国产视频内射| 国产在线精品亚洲第一网站| 国产69精品久久久久777片| 一级毛片久久久久久久久女| 日韩av在线大香蕉| 精品人妻熟女av久视频| 好男人在线观看高清免费视频| 男人的好看免费观看在线视频| 乱人视频在线观看| 男人舔奶头视频| 熟妇人妻久久中文字幕3abv| 高清在线国产一区| 国产欧美日韩精品一区二区| 欧美不卡视频在线免费观看| 亚洲av中文av极速乱 | 日韩中文字幕欧美一区二区| 女人十人毛片免费观看3o分钟| av福利片在线观看| 久久精品国产鲁丝片午夜精品 | 国产亚洲精品综合一区在线观看| 99热这里只有是精品50| 亚洲avbb在线观看| 夜夜爽天天搞| 最近视频中文字幕2019在线8| 尾随美女入室| 五月玫瑰六月丁香| 在线国产一区二区在线| 一级黄片播放器| 久久久久九九精品影院| 成年女人毛片免费观看观看9| 亚洲第一区二区三区不卡| 日本免费a在线| 欧美在线一区亚洲| 亚洲性夜色夜夜综合| 国产精品三级大全| 国产欧美日韩精品一区二区| 黄色丝袜av网址大全| 又爽又黄a免费视频| 国产午夜福利久久久久久| 亚洲精品色激情综合| 欧美3d第一页| 日本成人三级电影网站| 丰满乱子伦码专区| 麻豆av噜噜一区二区三区| 欧美不卡视频在线免费观看| www日本黄色视频网| 两个人视频免费观看高清| 性欧美人与动物交配| 国产免费男女视频| 男女视频在线观看网站免费| 免费看日本二区| 我的老师免费观看完整版| 丝袜美腿在线中文| 亚洲成av人片在线播放无| 久久99热这里只有精品18| 久久精品国产亚洲网站| 联通29元200g的流量卡| 国产精品一区二区性色av| 亚洲内射少妇av| 日本撒尿小便嘘嘘汇集6| 亚洲最大成人中文| 婷婷色综合大香蕉| 久久久久国内视频| 国产午夜精品论理片| 男人舔女人下体高潮全视频| 久久久久九九精品影院| 国产色婷婷99| 99视频精品全部免费 在线| 久久久久久久久大av| 亚洲黑人精品在线| 99久久精品一区二区三区| 91午夜精品亚洲一区二区三区 | 女人被狂操c到高潮| 国产精品福利在线免费观看| 91精品国产九色| 国产精品一区二区性色av| а√天堂www在线а√下载| 成人美女网站在线观看视频| 国产精品综合久久久久久久免费| 少妇的逼好多水| 在线免费观看不下载黄p国产 | 国产午夜精品久久久久久一区二区三区 | 99热这里只有是精品在线观看| 91久久精品电影网| 在线看三级毛片| 内地一区二区视频在线| 成人毛片a级毛片在线播放| 亚洲最大成人av| 国产69精品久久久久777片| 日日摸夜夜添夜夜添小说| 亚洲国产精品sss在线观看| 桃红色精品国产亚洲av| 国产伦在线观看视频一区| 国产精品三级大全| 国产在线男女| 嫩草影院新地址| 国产精品1区2区在线观看.| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 国产又黄又爽又无遮挡在线| av在线观看视频网站免费| 97热精品久久久久久| 日韩在线高清观看一区二区三区 | 天堂动漫精品| 免费搜索国产男女视频| 亚洲精品456在线播放app | 亚洲av日韩精品久久久久久密| 免费看av在线观看网站| 免费无遮挡裸体视频| 国产不卡一卡二| 中文字幕熟女人妻在线| 国产精品嫩草影院av在线观看 | 最新在线观看一区二区三区| 日韩一区二区视频免费看| 两个人的视频大全免费| 九九热线精品视视频播放| 成人二区视频| 国内精品一区二区在线观看| 国产成年人精品一区二区| 亚洲成人久久爱视频| 精品人妻一区二区三区麻豆 | 久久久成人免费电影| 欧美在线一区亚洲| 国产在线男女| 88av欧美| 天堂影院成人在线观看| 黄色女人牲交| 亚洲在线观看片| 18禁在线播放成人免费| 一级黄色大片毛片| 午夜福利视频1000在线观看| 精品不卡国产一区二区三区| 我要搜黄色片| 干丝袜人妻中文字幕| 欧美三级亚洲精品| 我要看日韩黄色一级片| 天堂影院成人在线观看| 午夜福利欧美成人| 很黄的视频免费| 欧美+亚洲+日韩+国产| bbb黄色大片| 午夜福利在线观看免费完整高清在 | 99riav亚洲国产免费| 黄色配什么色好看| 国产精品久久视频播放| 大型黄色视频在线免费观看| 国产久久久一区二区三区| 亚洲熟妇中文字幕五十中出| 国产免费男女视频| 真人一进一出gif抽搐免费| 国产男靠女视频免费网站| 午夜久久久久精精品| 亚洲内射少妇av| 成人国产综合亚洲| av女优亚洲男人天堂| 午夜福利欧美成人| 男女那种视频在线观看| 九九热线精品视视频播放| 亚洲av五月六月丁香网| 午夜福利在线观看吧| 又紧又爽又黄一区二区| 久久久久国内视频| 精品不卡国产一区二区三区| 悠悠久久av| 18禁裸乳无遮挡免费网站照片| 老熟妇乱子伦视频在线观看| 偷拍熟女少妇极品色| 日韩一区二区视频免费看| 综合色av麻豆| 波多野结衣巨乳人妻| 国产精品三级大全| 天堂av国产一区二区熟女人妻| 亚洲内射少妇av| 少妇的逼水好多| 啪啪无遮挡十八禁网站| 大型黄色视频在线免费观看| 在线播放国产精品三级| 亚洲av日韩精品久久久久久密| 国产白丝娇喘喷水9色精品| 99在线视频只有这里精品首页| 亚洲精品日韩av片在线观看| 日本一本二区三区精品| 亚洲国产欧美人成| 赤兔流量卡办理| 欧美性猛交黑人性爽| 午夜免费男女啪啪视频观看 | 啦啦啦韩国在线观看视频| 少妇人妻一区二区三区视频| 久久精品国产亚洲网站| 午夜影院日韩av| 麻豆av噜噜一区二区三区| 日韩精品青青久久久久久| 国产精品嫩草影院av在线观看 | eeuss影院久久| 亚洲美女搞黄在线观看 | 99国产精品一区二区蜜桃av| 成人毛片a级毛片在线播放| 亚洲avbb在线观看| or卡值多少钱| 全区人妻精品视频| 亚洲精品456在线播放app | 国产精品99久久久久久久久| 日本欧美国产在线视频| 五月伊人婷婷丁香| 亚洲av电影不卡..在线观看| 九九久久精品国产亚洲av麻豆| 天堂影院成人在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产白丝娇喘喷水9色精品| а√天堂www在线а√下载| 国产欧美日韩精品一区二区| 精品久久国产蜜桃| 白带黄色成豆腐渣| 无人区码免费观看不卡| 男女做爰动态图高潮gif福利片| 尾随美女入室| 久久午夜亚洲精品久久| 久久精品国产自在天天线| 国产精品野战在线观看| 毛片一级片免费看久久久久 | 99riav亚洲国产免费| 日韩欧美精品v在线| 亚洲在线自拍视频| 国产精品久久久久久av不卡| 亚洲av中文av极速乱 | 乱人视频在线观看| 午夜福利在线观看免费完整高清在 | 在线观看美女被高潮喷水网站| 999久久久精品免费观看国产| 久久草成人影院| 国产一区二区亚洲精品在线观看| 在线观看66精品国产| 麻豆精品久久久久久蜜桃| 精品午夜福利在线看| av福利片在线观看|