• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于遺傳模擬退火算法的滑坡位移預(yù)測(cè)方法

    2021-03-11 08:49喬世范王超
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:支持向量機(jī)滑坡神經(jīng)網(wǎng)絡(luò)

    喬世范 王超

    摘 要:滑坡是一種常見的地質(zhì)災(zāi)害,通常在復(fù)雜的地質(zhì)條件下演化和發(fā)生,給社會(huì)和人類的生命財(cái)產(chǎn)安全造成了極大的危害。了解滑坡的發(fā)展規(guī)律,對(duì)災(zāi)害防治具有重要意義。在現(xiàn)有滑坡累積位移時(shí)間序列的基礎(chǔ)上,提出了一種基于遺傳模擬退火算法的滑坡位移預(yù)測(cè)方法。采用遺傳模擬退火算法BP神經(jīng)網(wǎng)絡(luò)對(duì)白水河滑坡預(yù)警區(qū)Z118觀測(cè)點(diǎn)進(jìn)行分析,利用前3個(gè)月的累積位移來預(yù)測(cè)第4個(gè)月的累積位移。分別與BP神經(jīng)網(wǎng)絡(luò)模型和Elman神經(jīng)網(wǎng)絡(luò)模型進(jìn)行比較,并將遺傳模擬退火算法的預(yù)測(cè)結(jié)果與支持向量機(jī)的預(yù)測(cè)結(jié)果進(jìn)行比較。研究結(jié)果表明,建立的滑坡位移預(yù)測(cè)模型能有效地提高預(yù)測(cè)精度。

    關(guān)鍵詞:滑坡;位移預(yù)測(cè);遺傳模擬退火算法;神經(jīng)網(wǎng)絡(luò);支持向量機(jī)

    1 Introduction

    The landslide is a natural phenomenon in which the rock or soil in the slope slides or collapses as a whole due to the influence of factors such as gravity, groundwater, rainfall, earthquake, human activities and others. The occurrence of a landslide is always accompanied by a shear failure surface. Landslide analysis studies the evolution, the probability of occurrence and the mechanism of the landslide on the basis of fully understanding the geological body. There are both qualitative and quantitative methods of landslide analysis. Quantitative analysis methods are further divided into deterministic analysis and uncertainty analysis.

    The constitutive model is based on the viscoelastic assumption of the sliding body and the sliding surface[1]. The concept of viscous force is introduced into the dynamic equation of landslide displacement. Under the assumption of the infinite slope, the solution of the dynamic equation and the practical significance of the solution are discussed. On this basis, the landslide displacement prediction equation is established with the time and the tangential stress ratio as variables[2]. In 2004, Ferlisi[3] considered the influence of the change in the groundwater level on the landslide, and established a mechanical model of landslide displacement to predict the time a landslide would occur based on the viscoplasticity of the sliding surface. In 2005, based on the study of Angeli and Casparto, Spanish scholars Corominas et al.[4] further analyzed the characteristics of the Vallcebre landslide by the step system, and pointed out the importance of viscous force in the process of landslide sliding. The method and conclusion of calculating the viscous force with different ideas were introduced into landslide prediction, and the deformation velocity of the landslide was successfully predicted. In 2006, Maugeri[5] proposed coupling elasticity and plasticity. A mathematical model of the viscous constitutive relationship could be used to predict the viscous deformation of the landslide and the slope of various slip modes.

    Due to the complex and unpredictable evolution characteristics of the landslide system, it is difficult to accurately predict the displacement of the large complex landslide using traditional methods of analysis. In order to solve this problem, scholars have done much research. Zhang et al[6] carried out laboratory tests and field macro deformation analysis, and divided the evolution of the landslide into three stages: initial creep, constant creep and accelerated creep. The creep rate and sliding time of the landslide were analyzed, based on this, and the empirical formula for predicting landslide displacement was established[6-8]. Fukuzono[9] and Voight[10] introduced a method to predict the time of a volcanic eruption into the study of landslide prediction, and established an empirical formula for calculating the velocity and acceleration of the landslide displacement. They concluded that the two variables had an exponential relationship based on previous studies, Federico et al.[11] proposed a general expression of the creep model considering displacement, velocity and acceleration. Inspired by the growth model of organisms, Verhulst, a German biologist, proposed a landslide prediction model based on creep theory, named the Verhulst model[12]. On the basis of Verhulst's research[12], Shu and Xiao[13] improved the Verhulst model by combining the geological characteristics of landslide evolution with the quadratic regression fitting method and grey theory to characterize the deformation of the landslide. Smith et al.[14] proposed a mathematical model for landslide prediction based on catastrophe theory to predict the time slope instability would occur. A series of nonlinear prediction models such as the fractal prediction model[15], the loading and unloading response ratio prediction model[16] and the slope instability prediction model based on creep theory[17-20] were also proposed. Although these nonlinear models achieved good results in predicting the time a landslide would occur, they are still in the development stage. It is necessary to further analyze the nonlinear characteristics of the landslide. Therefore, according to the actual situation of the landslide, the nonlinear theory is introduced for modeling and analysis. Based on this, the Support Vector Machine method is applied in this article to establish the landslide stability evaluation model, which avoids the limitations of traditional methods and improves the accuracy of the evaluation. At the same time, the neural network is applied to the landslide displacement prediction. Based on the time series of the cumulative displacement of the landslide, the Genetic Simulated Annealing (GSA) algorithm is applied to the modelling and analysis of the landslide displacement. Considering the influence of rainfall on landslide displacement, the dynamic neural network (Elman network) is used, and the Genetic Algorithm is used to optimize the initial weight of the network to predict the cumulative displacement of the landslide under rainfall conditions. The simulation results show that the method can improve the accuracy of the prediction and provide a new idea for the design and construction of geotechnical engineering.

    2 Landslide displacement prediction model based on the neural network optimized by the GSA algorithm

    The artificial neural network (ANN) has developed rapidly in recent years. As a general nonlinear approximator, it has been widely used in pattern recognition, classification and identification of nonlinear systems. Compared with other statistical methods, the artificial neural network has many advantages and is an effective method of predicting complex nonlinear dynamic systems. It is also suitable for landslide prediction. At present, the BP neural network, which can reveal the nonlinear relationship in data samples, is the most widely used artificial neural network. A large number of processing units constitute a nonlinear adaptive dynamic system, which has good adaptability, self-organization and strong learning, association, fault tolerance and anti-interference ability. The BP neural network model was proposed by Rumelhart in 1986[21]. Because of its simple structure, adjustable parameters, many training algorithms and good operability, it is widely welcomed by scholars. However, the BP neural network model has some shortcomings. For example, if the convergence speed is too slow in the late stage of learning, it easily falls into local minima, which makes it hard to determine the network structure. In addition, the initial weights cannot accurately get the initial weights of the network. In view of these characteristics, this article combines the Genetic Algorithm (GA) and Simulated Annealing (SA) to optimize the weights of the neural network. A landslide displacement prediction model based on the GSA algorithm optimized BP neural network is proposed and applied to the displacement prediction of the Baishui River landslide. The weights of the BP neural network before and after optimization are compared, and the prediction effect before and after optimization is compared using the Support Vector Machine method. It is verified that the landslide displacement prediction model optimized by the BP neural network based on the GSA algorithm has high prediction accuracy for the time series of cumulative landslide displacement, which can meet the needs of engineering construction.

    2.1 BP neural network

    The BP neural network is essentially a feed-forward neural network. Its main features are forward signal transmission and reverse error transmission. If the output layer does not receive the expected result, the signal will be sent back and the calculation will restart by adjusting the weight and threshold of the network according to the error. The above algorithm allows the continuous update of the BP neural network so that the output results gradually approach the expected results. The topological structure of the single hidden layer BP neural network is shown in Fig. 1.

    Assume that the BP neural network in Fig. 1 has n neurons in the input layer, p neurons in the hidden layer and m neurons in the output layer, which are defined as follows. The meanings of parameters are listed in Table 1.

    According to references[22-24], the basic steps of the BP neural network model are as follows.

    1)Initialize the network. Assign a random number in the interval (-1, 1) to each connection weight, set the error function e, and determine the calculation accuracy and the maximum number of learning M.

    2)Select the input sample k randomly x(k)=(x1(k),x2(k),…,xn(k))′, and the corresponding expected output d(k)=(d1(k),d2(k),…,dm(k))′.

    3)Calculate the input and output results of each neuron in the hidden layer and the output layer.

    4)Calculate the partial derivative δo(k) of the error function to each neuron in the output layer by using the expected output and actual output of the network.

    5)Calculate the partial derivative δh(k) of the error function of each neuron in the hidden layer based on the connection weight from the hidden layer to the output layer, the partial derivative δo(k) of each neuron in the output layer and the output results of the hidden layer is

    6)Use the δo(k) of each neuron of the output layer and the output results of each neuron of the hidden layer to correct the connection weight who.

    7)Use the δh(k) of each neuron of the hidden layer and the output of each neuron of the input layer to correct the connection weight wih.

    8)Calculate the total error

    9)Determine whether the network error meets the requirements. When the error reaches the preset accuracy or the number of learning times is greater than the set maximum number of times, the algorithm stops running. Otherwise, select the next learning sample and the corresponding expected output, return to step (3), and enter the next round of learning.

    2.2 GA-Elman neural network model

    The GA-Elman neural network model is used to predict the time series of the landslide. The network is composed of the correlation layer, input layer, hidden layer and output layer. There is a corresponding relationship between the neurons in the correlation layer and the neurons in the hidden layer, and the output value of the hidden layer is delayed and fed back to the correlation layer. In general, the two layers of the Elman can reflect the state of the network. The GA-Elman network contains a correlation layer. The hidden layer of the GA-Elman network is connected with the full feedback of the correlation layer. It can describe any n-order system which has been proved theoretically. In order to improve the dynamic performance of the GA-Elman neural network, a self-feedback connection is introduced into the correlation layer of the GA-Elman neural network. The structure of the improved GA-Elman neural network is shown in Fig.2. In the graph, the number of neurons in the correlation layer is equal to the number of neurons in the hidden layer. The number of external input neurons is the number of features. The hidden layer nodes are fully connected to the input layer and the output layer.

    The Levenberg-Marquarelt (LM) algorithm, which has a fast convergence speed, is a common algorithm in neural network training. In the case of high accuracy requirements, the advantages of the algorithm are particularly prominent. In most cases, the LM algorithm can obtain smaller mean square error than any other algorithm. Like the Newton algorithm, this algorithm can avoid computing the Hessian matrix when it is corrected at the second-order training rate.

    2.3 Establishment of the GA-Elman neural network model

    In this study, a neural network model (p, h, 1) is established. Since only the landslide displacement is predicted, the output unit of the GA-Elman neural network has just one neuron. The model is established as follows.

    1) Initialize the weight of the Elman network as a random number between intervals [0, 1], which is encoded by the GA.

    2) Generate an initial population with a population size of N.

    3) Decode every population in the group which represents an Elman network structure. The N sets of weights obtained by this decoding correspond to N networks of the same structure.

    4) For each network, the network structure is adjusted as follows.

    a. Identify training samples and test samples for the network.

    b. Calculate the network output corresponding to the input sample set based on the Levenberg-Marquarelt (LM) algorithm.

    c. Determine the fitness function as the reciprocal of the network's error performance function. Calculate the fitness of each chromosome, the larger the error value, the smaller the corresponding fitness.

    d. Select individuals with high fitness as new parents and eliminate individuals with small fitness.

    e. Cross and mutate the new parent.

    f. Repeat steps c~e to perform a new iteration of the new population until the training target meets the requirement and a set of optimization weights is obtained.

    5) Assign the optimized weight to the Elman network for modeling and prediction.

    The error evolution curve of the Genetic Algorithm is shown in Fig. 4.

    3 Case analysis of the landslide under the rainfall condition

    Landslide displacement is usually affected by many factors, such as geotechnical mechanical properties, geological profile, hydrological conditions and so on. However, due to the limitation of manpower and material resources, it is impossible to conduct a comprehensive study of the influence of the above factors. Since rainfall plays an important role in the generation of landslides, this article mainly studies the influence of rainfall on landslide displacement. In order to ensure that the research results are not affected by other factors, before the case analysis, the other factors remain unchanged. Based on these requirements, the neural network prediction model was established. Since the engineering geology of the Baishui River landslide satisfies the conditions for verifying the relationship between landslide displacement and rainfall, the Baishui River landslide was selected as the study object.

    The displacement observation data of the Baishui River landslide are shown in Fig.7. Since May 1, 2015, the data was recorded every other month. As of June 1, 2017, 47 sets of data were recorded. Each time step in Fig. 7 represents a month. In this case, the GA-Elman neural network model was used. Since the occurrence of a landslide is a long-term cumulative process, the displacement of a landslide will affect the evolution of the next landslide. Based on this, the rainfall and the accumulated displacement in each period are used as the input value, and the output result is set as the predicted value of the cumulative displacement at the next time. The results show that, in most cases, the influence of rainfall on the landslide has a certain lag. Therefore, in order to predict the cumulative displacement of the landslide in Δt period and ensure the accuracy of the prediction results by considering the influence of the actual rainfall, the Δt period is divided into t1-t2 period, t2-t3 period, t3-t4 period and t4-t5 period, and the rainfall of time t1, time t2, time t3, time t4 and time t5 are used as input values. The first 37 groups of data are used for the training network, and the last 10 groups of data are used for the prediction. The corresponding coefficients are set in the model, and the number of neurons in the hidden layer is determined by experience and experiment. After many experiments, it can be determined that when the number of neurons in the hidden layer is 15, the mean square error and the fault-tolerant function of the network achieve the best effect.

    In order to prove the superiority of this method, the initial weights and thresholds of the Elman network are optimized by the Genetic Algorithm, and compared with the results of the non-optimized Elman network. The error performance curve of the Elman network with random initial weights is shown in Fig.8. In addition, the Elman network and the BP network are compared. The error performance curve of the BP network optimized by the Genetic Algorithm is shown in Fig.9. Through comparison, it can be seen that the Elman network has better performance than the BP network, and the prediction effect of the optimized Elman network is better than that of the non-optimized Elman network.

    In Fig.2, x represents the independent variable, y represents the learning rate, and z represents the algorithm performance. In order to get better prediction results, first, the collected data are logarithmically processed, and then normalized. The prediction results using the optimized Elman network model are shown in Table 2 and Fig.10.

    It can be seen from Table 2 that the predicted value of the cumulative landslide displacement is very close to the measured value, and the relative error is less than 4%. In the actual training process, 73% of the data passed the training. In the case with the same parameters and where the mean square error of the performance index meets the requirements, the convergence process of the Elman neural network optimized by the Genetic Algorithm is smoother and faster than the original algorithm, and the accuracy of the prediction is enough to meet the needs of the medium and short-term prediction of the landslide displacement. The results of numerical simulation analysis show that the shorter the prediction time, the greater the prediction accuracy. Therefore, the same samples are used to train the GA-BP neural network to verify the superiority of the Genetic Simulated Annealing algorithm. The prediction results are shown in Fig.11. It can be seen from Fig.12 that the prediction accuracy of the GA-BP neural network is significantly lower than that of the GA-Elman neural network. Therefore, the GA-Elman neural network is better than the GA-BP neural network in the prediction of landslide displacement under the rainfall condition, so the GA-Elman neural network should be used first.

    4 Conclusions

    Based on the existing time series of the accumulated displacement of the landslide, a BP neural network prediction model based on the Genetic Simulated Annealing algorithm was proposed. The weight of the network was optimized using the Genetic Simulated Annealing algorithm to overcome shortcomings of the BP neural network, such as slow convergence speed and easy to fall into the local minimum point. The GSA-BP neural network was used to analyze the observation point Z118 in the Baishui River landslide warning area, and the landslide displacement in the 4th month was predicted using the cumulative landslide displacement of the first 3 months. The prediction results were compared with those of the BP neural network and the Elman neural network, respectively. At the same time, the prediction results of the Genetic Simulated Annealing algorithm and the Support Vector Machine model were compared and analyzed. The results showed that the prediction effect of the GSA-BP neural network was very good. In addition, the prediction model established in this article performed well in the average relative error and the mean square error of the prediction results, proving the rationality of the model. The GA-Elman neural network was used to analyze the landslide, and the generalized predictive control fast algorithm was used to realize the control of the landslide prediction. From the point of view of dynamics, taking the landslide thrust as the control variable, the simulation test proves that the method can well control the prediction accuracy of landslide displacement, ensuring the accuracy of the landslide displacement prediction, which can provide reliable data support for landslide prediction, and ensure the development and completion of landslide prevention and control.

    Acknowledgements

    The authors would like to acknowledge the financial support from Key Projects Supported by China Railway Corporation (No. 2017G007-D, 2017G008-J). References:

    [1] DAI M, TANG D B, GIRET A, et al. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm [J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(5): 418-429.

    [2] BI R N, EHRET D, XIANG W, et al. Landslide reliability analysis based on transfer coefficient method: a case study from Three Gorges Reservoir [J]. Journal of Earth Science, 2012, 23(2): 187-198.

    [3] FERLISI S. A simple mechanical model for the interpretation of translational active landslides involving detrital covers [M]// Landslides: Evaluation and Stabilization/Glissement de Terrain: Evaluation et Stabilisation, Set of 2 Volumes. CRC Press, 2004: 1227-1232.

    [4] COROMINAS J, MOYA J, LEDESMA A, et al. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain) [J]. Landslides, 2005, 2(2): 83-96.

    [5] MAUGERI M, MOTTA E, RACITI E. Mathematical modelling of the landslide occurred at Gagliano Castelferrato (Italy) [J]. Natural Hazards and Earth System Sciences, 2006, 6(1): 133-143.

    [6] ZHANG Q C, SUN Q S. Damage detection of self-anchored suspension bridge based on neural network model and genetic-simulated annealing algorithm [J]. Advanced Materials Research, 2011, 243-249: 1963-1967.

    [7] ZHENG X J. Optimal dispatching methods for unit commitment based on hybrid genetic-simulated annealing algorithm [J]. Applied Mechanics and Materials, 2013, 462/463: 1076-1080.

    [8] YI P Y, WANG K, REN J, et al. Research on anti-analysis of the landslide′s strength parameter through transferring coefficient method [J]. The Chinese Journal of Geological Hazard and Control, 2008, 19(4): 23-26, 32. (in Chinese)

    [9] FUKUZONO T. A new method for predicting the failure time of a slope [C] // Proceedings of the 4th International Conference and Field Workshop on Landslides. Tokyo: Tokyo University Press, 1985: 145-150.

    [10] VOIGHT B. A method for prediction of volcanic eruptions [J]. Nature, 1988, 332(6160): 125-130.

    [11] FEDERICO A, POPESCU M, FIDELIBUS C, et al. On the prediction of the time of occurrence of a slope failure: a review [M]// Landslides: Evaluation and Stabilization/Glissement de Terrain: Evaluation et Stabilisation, Set of 2 Volumes. CRC Press, 2004: 979-983.

    [12] HE X H, WANG S J, XIAO R H, et al. Improvement of Verhulst forecast model of landslide and its application [J]. Rock and Soil Mechanics, 2013, 34(Sup1): 355-364.(in Chinese)

    [13] SHU Q, XIAO X P. Combination forecasting model using grey verhulst models coupling to regression analysis [C]//Proceedings of the 2016 International Conference on Applied Mathematics, Simulation and Modelling. May 28-29, 2016.

    [14] SMITH C E, ARNETT D K, TSAI M Y, et al. Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study [J]. Atherosclerosis, 2009, 206(2): 500-504.

    [15] SWANEY R E, GROSSMANN I E. An index for operational flexibility in chemical process design. Part I: Formulation and theory [J]. AIChE Journal, 1985, 31(4): 621-630.

    [16] NIMKUNTOD P, TONGDEE P. Plasma low-density lipoprotein cholesterol/high-density lipoprotein cholesterol concentration ratio and early marker of carotid artery atherosclerosis [J]. Journal of the Medical Association of Thailand, 2015, 98(Sup 4): S58-S63.

    [17] ZHANG Q, GROSSMANN I E, SUNDARAMOORTHY A, et al. Data-driven construction of Convex Region Surrogate models [J]. Optimization and Engineering, 2016, 17(2): 289-332.

    [18] HAMDIA K M, LAHMER T, NGUYEN-THOI T, et al. Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS [J]. Computational Materials Science, 2015, 102: 304-313.

    [19] BADAWY M F, MSEKH M A, HAMDIA K M, et al. Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites [J]. Probabilistic Engineering Mechanics, 2017, 50: 64-75.

    [20] KHALIQ A Q M, BIALA T A, ALZAHRANI S S, et al. Linearly implicit predictor-corrector methods for space-fractional reaction-diffusion equations with non-smooth initial data [J]. Computers & Mathematics with Applications, 2018, 75(8): 2629-2657.

    [21] BASHEER I A, HAJMEER M. Artificial neural networks: fundamentals, computing, design, and application [J]. Journal of Microbiological Methods, 2000, 43(1): 3-31.

    [22] MARTIN T H, HOWARD B D, MARK B. Neural network design [M]. Machinery Industry Press, 2002.

    [23] SIMON H. Principle of neural network [M]. Machinery Industry Press, 2004.

    [24] ZHU K, WANG Z L. Proficient in MATLAB neural network [M]. Electronic Industry Press, 2010.

    [25] LI D Y. Prediction study of landslides with step-like deformation in the Three Gorges Reservior [D]. Wuhan: China University of Geosciences, 2010.

    [26] DU J, YIN K L, LACASSE S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China [J]. Landslides, 2013, 10(2): 203-218.

    [27] HUANG F, YIN K, HE T, et al. Influencing factor analysis and displacement prediction in reservoir landslides-a case study of Three Gorges Reservoir (China) [J]. Tehnicki Vjesnik - Technical Gazette, 2016, 23(2): 617-626.

    [28] GUO Z Z, YIN K L, HUANG F M, et al. Landslide displacement prediction based on surface monitoring data and nonlinear time series combination model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Sup1): 3392-3399.(in Chinese)

    (編輯 章潤(rùn)紅)

    猜你喜歡
    支持向量機(jī)滑坡神經(jīng)網(wǎng)絡(luò)
    基于人工智能LSTM循環(huán)神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)成績(jī)預(yù)測(cè)
    某停車場(chǎng)滑坡分析及治理措施
    基于圖像處理與卷積神經(jīng)網(wǎng)絡(luò)的零件識(shí)別
    基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)的電網(wǎng)穩(wěn)定性預(yù)測(cè)
    夏季大山里的隱形殺手——滑坡
    三次樣條和二次刪除相輔助的WASD神經(jīng)網(wǎng)絡(luò)與日本人口預(yù)測(cè)
    動(dòng)態(tài)場(chǎng)景中的視覺目標(biāo)識(shí)別方法分析
    論提高裝備故障預(yù)測(cè)準(zhǔn)確度的方法途徑
    基于熵技術(shù)的公共事業(yè)費(fèi)最優(yōu)組合預(yù)測(cè)
    基于支持向量機(jī)的金融數(shù)據(jù)分析研究
    久久久久久人人人人人| 亚洲片人在线观看| 高清欧美精品videossex| 久久青草综合色| 国产精品永久免费网站| 国产单亲对白刺激| 亚洲成国产人片在线观看| 一边摸一边抽搐一进一小说 | 日本黄色日本黄色录像| 91字幕亚洲| 欧美日韩瑟瑟在线播放| 国产激情欧美一区二区| 精品高清国产在线一区| 可以免费在线观看a视频的电影网站| 国产精品成人在线| 欧美日韩一级在线毛片| 免费在线观看黄色视频的| 精品久久久久久电影网| 可以免费在线观看a视频的电影网站| 免费久久久久久久精品成人欧美视频| 成人18禁在线播放| 多毛熟女@视频| 国产精品欧美亚洲77777| 久久午夜综合久久蜜桃| 视频在线观看一区二区三区| 51午夜福利影视在线观看| 丝袜美腿诱惑在线| 亚洲熟妇中文字幕五十中出 | 亚洲av成人不卡在线观看播放网| 飞空精品影院首页| 欧美日韩瑟瑟在线播放| 精品国内亚洲2022精品成人 | 国产伦人伦偷精品视频| 视频区欧美日本亚洲| 国产亚洲精品久久久久5区| 亚洲全国av大片| 每晚都被弄得嗷嗷叫到高潮| 男人舔女人的私密视频| 老熟妇仑乱视频hdxx| 一二三四在线观看免费中文在| av免费在线观看网站| 女性被躁到高潮视频| 又黄又爽又免费观看的视频| 欧美国产精品va在线观看不卡| 午夜福利影视在线免费观看| 欧美乱色亚洲激情| 一级a爱视频在线免费观看| 国产精品一区二区精品视频观看| 777久久人妻少妇嫩草av网站| 少妇 在线观看| 亚洲成人免费电影在线观看| 搡老熟女国产l中国老女人| 国内久久婷婷六月综合欲色啪| 午夜精品久久久久久毛片777| 人人妻人人澡人人看| 精品福利永久在线观看| 黄片小视频在线播放| 午夜免费观看网址| 国产高清激情床上av| 精品一区二区三卡| 在线观看66精品国产| 成人精品一区二区免费| 搡老乐熟女国产| www.熟女人妻精品国产| 一级作爱视频免费观看| 国产成人精品无人区| 亚洲三区欧美一区| 成人国产一区最新在线观看| 高清欧美精品videossex| 亚洲精品久久午夜乱码| 午夜成年电影在线免费观看| 极品人妻少妇av视频| 久久香蕉激情| 91国产中文字幕| 性色av乱码一区二区三区2| 黑丝袜美女国产一区| 成人亚洲精品一区在线观看| 亚洲男人天堂网一区| 久久精品国产亚洲av香蕉五月 | 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频| 欧美午夜高清在线| 国产精品av久久久久免费| 国产精品乱码一区二三区的特点 | 黄色毛片三级朝国网站| 国产国语露脸激情在线看| 免费观看人在逋| 一a级毛片在线观看| www日本在线高清视频| 欧洲精品卡2卡3卡4卡5卡区| 18禁裸乳无遮挡免费网站照片 | 午夜精品久久久久久毛片777| 日韩精品免费视频一区二区三区| 身体一侧抽搐| 中文字幕高清在线视频| 亚洲精品国产色婷婷电影| 国产成人影院久久av| 人人妻,人人澡人人爽秒播| 午夜福利在线观看吧| 在线观看免费高清a一片| 亚洲精品乱久久久久久| 一区在线观看完整版| 日韩熟女老妇一区二区性免费视频| 国产蜜桃级精品一区二区三区 | 亚洲九九香蕉| 精品人妻在线不人妻| 中文亚洲av片在线观看爽 | 日本五十路高清| 在线观看免费高清a一片| 久久草成人影院| cao死你这个sao货| 亚洲七黄色美女视频| 亚洲av日韩精品久久久久久密| 欧美黄色片欧美黄色片| 精品电影一区二区在线| 怎么达到女性高潮| 夜夜夜夜夜久久久久| a在线观看视频网站| 中文字幕人妻丝袜制服| 80岁老熟妇乱子伦牲交| 嫩草影视91久久| 韩国av一区二区三区四区| 校园春色视频在线观看| 满18在线观看网站| 亚洲精品美女久久久久99蜜臀| 国产又爽黄色视频| 又紧又爽又黄一区二区| 国产免费男女视频| 9色porny在线观看| 18禁裸乳无遮挡动漫免费视频| 日本a在线网址| 侵犯人妻中文字幕一二三四区| 18禁美女被吸乳视频| 国产精品久久久av美女十八| 变态另类成人亚洲欧美熟女 | 亚洲欧美激情在线| 一级毛片精品| 久久久久视频综合| 国产精品亚洲av一区麻豆| 国产精品久久久久久人妻精品电影| 国产精品 国内视频| 叶爱在线成人免费视频播放| 国产亚洲精品第一综合不卡| 午夜两性在线视频| 人妻丰满熟妇av一区二区三区 | 欧美精品啪啪一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲av成人一区二区三| 夫妻午夜视频| 99香蕉大伊视频| 亚洲九九香蕉| 深夜精品福利| 91成人精品电影| 热re99久久精品国产66热6| 午夜日韩欧美国产| 免费在线观看日本一区| 国产日韩一区二区三区精品不卡| 成人18禁在线播放| 亚洲免费av在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 69av精品久久久久久| 久久久久久久午夜电影 | 人人妻,人人澡人人爽秒播| 欧美激情久久久久久爽电影 | 妹子高潮喷水视频| 免费日韩欧美在线观看| 黄片播放在线免费| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区精品| 久久久久国产一级毛片高清牌| 亚洲人成电影免费在线| 嫁个100分男人电影在线观看| 欧美亚洲 丝袜 人妻 在线| 国产亚洲欧美在线一区二区| 精品人妻1区二区| 国产欧美日韩一区二区三区在线| 亚洲性夜色夜夜综合| 亚洲国产精品合色在线| 欧美乱色亚洲激情| 久久精品国产综合久久久| 国产成人精品久久二区二区免费| 黄色毛片三级朝国网站| 国产99久久九九免费精品| 成人三级做爰电影| 久久热在线av| 女人被狂操c到高潮| 欧洲精品卡2卡3卡4卡5卡区| 国产极品粉嫩免费观看在线| 无人区码免费观看不卡| 日本vs欧美在线观看视频| 免费不卡黄色视频| 成熟少妇高潮喷水视频| 国产精品亚洲av一区麻豆| 日韩一卡2卡3卡4卡2021年| 免费在线观看亚洲国产| av片东京热男人的天堂| 亚洲一区高清亚洲精品| 精品久久蜜臀av无| 很黄的视频免费| 操美女的视频在线观看| 国产精品秋霞免费鲁丝片| 性少妇av在线| 视频区图区小说| 777米奇影视久久| 两个人看的免费小视频| 搡老乐熟女国产| 成人18禁高潮啪啪吃奶动态图| 国产激情久久老熟女| 国产片内射在线| 午夜成年电影在线免费观看| 久久香蕉激情| 男女免费视频国产| 国产成人精品在线电影| 久久久国产精品麻豆| 日韩三级视频一区二区三区| 久久亚洲精品不卡| 亚洲欧美色中文字幕在线| 一级a爱片免费观看的视频| 日韩制服丝袜自拍偷拍| 精品人妻1区二区| 亚洲伊人色综图| 国产一区在线观看成人免费| 精品乱码久久久久久99久播| 国产精品av久久久久免费| 亚洲视频免费观看视频| 午夜免费成人在线视频| 三上悠亚av全集在线观看| 侵犯人妻中文字幕一二三四区| 999久久久精品免费观看国产| 欧美精品亚洲一区二区| 一边摸一边抽搐一进一出视频| 欧美乱码精品一区二区三区| xxxhd国产人妻xxx| 在线观看免费高清a一片| 久热爱精品视频在线9| av天堂在线播放| 人妻一区二区av| 亚洲五月天丁香| cao死你这个sao货| 人成视频在线观看免费观看| 1024视频免费在线观看| 成人黄色视频免费在线看| 精品熟女少妇八av免费久了| 国产aⅴ精品一区二区三区波| 亚洲五月色婷婷综合| 国产高清激情床上av| 亚洲精品自拍成人| 欧美久久黑人一区二区| 久久婷婷成人综合色麻豆| av欧美777| 日韩视频一区二区在线观看| 久久久久国内视频| 成人国语在线视频| 日日夜夜操网爽| 精品少妇一区二区三区视频日本电影| 精品国产亚洲在线| 亚洲第一av免费看| 欧美黑人欧美精品刺激| 99国产综合亚洲精品| 一级片免费观看大全| 国产熟女午夜一区二区三区| 首页视频小说图片口味搜索| xxxhd国产人妻xxx| 天天躁日日躁夜夜躁夜夜| 变态另类成人亚洲欧美熟女 | 捣出白浆h1v1| 国产有黄有色有爽视频| 久久九九热精品免费| 亚洲人成伊人成综合网2020| 在线av久久热| 精品国产乱子伦一区二区三区| 欧美不卡视频在线免费观看 | 免费人成视频x8x8入口观看| 人人妻人人澡人人看| 亚洲欧美激情综合另类| 最近最新中文字幕大全电影3 | av线在线观看网站| 国产91精品成人一区二区三区| 69精品国产乱码久久久| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 两个人免费观看高清视频| 亚洲aⅴ乱码一区二区在线播放 | 色播在线永久视频| 国产免费男女视频| 一区二区三区激情视频| 国产99白浆流出| 久久天堂一区二区三区四区| 精品久久久久久久毛片微露脸| 电影成人av| 欧美日韩福利视频一区二区| 大码成人一级视频| 人人澡人人妻人| 一本综合久久免费| 老汉色∧v一级毛片| 国产在线一区二区三区精| 久热这里只有精品99| 俄罗斯特黄特色一大片| 欧美色视频一区免费| 性少妇av在线| 我的亚洲天堂| 一本大道久久a久久精品| 欧美 日韩 精品 国产| 99re在线观看精品视频| 亚洲成人国产一区在线观看| 叶爱在线成人免费视频播放| 欧美色视频一区免费| 国产精品 欧美亚洲| 中文字幕精品免费在线观看视频| 12—13女人毛片做爰片一| 免费在线观看影片大全网站| 午夜福利乱码中文字幕| 他把我摸到了高潮在线观看| 免费观看人在逋| 超色免费av| 高清在线国产一区| a级毛片黄视频| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 亚洲av日韩在线播放| 久9热在线精品视频| 国产精品 欧美亚洲| 757午夜福利合集在线观看| 久久婷婷成人综合色麻豆| 免费看a级黄色片| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 日韩有码中文字幕| 高清在线国产一区| 亚洲成人手机| 女同久久另类99精品国产91| 精品国产一区二区三区四区第35| 成人亚洲精品一区在线观看| 欧美精品一区二区免费开放| 久久精品国产99精品国产亚洲性色 | 丝瓜视频免费看黄片| 色在线成人网| 高清视频免费观看一区二区| 少妇裸体淫交视频免费看高清 | bbb黄色大片| 制服人妻中文乱码| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| av网站在线播放免费| 看免费av毛片| 岛国在线观看网站| 久久国产乱子伦精品免费另类| 亚洲熟妇中文字幕五十中出 | 国产一区二区三区在线臀色熟女 | 高清黄色对白视频在线免费看| 99久久综合精品五月天人人| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 日韩有码中文字幕| 激情视频va一区二区三区| 久久久久久久午夜电影 | 国产精品美女特级片免费视频播放器 | 可以免费在线观看a视频的电影网站| 午夜两性在线视频| 国产亚洲精品久久久久5区| 日日摸夜夜添夜夜添小说| 亚洲 国产 在线| 1024视频免费在线观看| 久久国产亚洲av麻豆专区| 久久精品熟女亚洲av麻豆精品| 日韩有码中文字幕| 亚洲成人免费电影在线观看| 90打野战视频偷拍视频| 高清在线国产一区| 十八禁高潮呻吟视频| x7x7x7水蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产一区二区| 免费少妇av软件| 色综合欧美亚洲国产小说| 国产在线观看jvid| 国产成人啪精品午夜网站| 丁香欧美五月| 高清av免费在线| 久久亚洲精品不卡| 久久国产精品人妻蜜桃| 久久久水蜜桃国产精品网| av国产精品久久久久影院| 亚洲九九香蕉| www日本在线高清视频| 大型av网站在线播放| 欧美不卡视频在线免费观看 | 国产成人免费观看mmmm| 国产又爽黄色视频| 黄色丝袜av网址大全| 欧美老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| av有码第一页| 国产在视频线精品| 亚洲黑人精品在线| 日本黄色视频三级网站网址 | 国产一区有黄有色的免费视频| 久久这里只有精品19| 久久香蕉精品热| 免费女性裸体啪啪无遮挡网站| 久久人妻av系列| 男女午夜视频在线观看| 欧美精品人与动牲交sv欧美| 看黄色毛片网站| 久久精品国产清高在天天线| 精品国产一区二区久久| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 日韩中文字幕欧美一区二区| 后天国语完整版免费观看| 三上悠亚av全集在线观看| 极品人妻少妇av视频| tube8黄色片| 亚洲avbb在线观看| 人妻一区二区av| 国产激情欧美一区二区| 久久中文字幕一级| 色老头精品视频在线观看| 麻豆av在线久日| 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 村上凉子中文字幕在线| 色综合欧美亚洲国产小说| 午夜福利一区二区在线看| 亚洲情色 制服丝袜| 亚洲精品国产精品久久久不卡| 亚洲国产欧美网| 亚洲九九香蕉| av免费在线观看网站| 91国产中文字幕| 飞空精品影院首页| 久久久久久亚洲精品国产蜜桃av| 久久精品aⅴ一区二区三区四区| 最新美女视频免费是黄的| 日本黄色日本黄色录像| 99久久99久久久精品蜜桃| 欧美激情高清一区二区三区| 国产精品99久久99久久久不卡| 男人的好看免费观看在线视频 | 国产一区二区三区综合在线观看| 色综合婷婷激情| 中文字幕另类日韩欧美亚洲嫩草| 手机成人av网站| 嫁个100分男人电影在线观看| 丝袜在线中文字幕| 老司机午夜十八禁免费视频| 一a级毛片在线观看| 91大片在线观看| 欧美激情极品国产一区二区三区| 国产免费男女视频| 最新的欧美精品一区二区| 久久精品成人免费网站| 国产精品99久久99久久久不卡| 欧美乱妇无乱码| 日韩制服丝袜自拍偷拍| 大片电影免费在线观看免费| 国产精品二区激情视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品一区二区三区在线| 国产亚洲一区二区精品| x7x7x7水蜜桃| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| 亚洲性夜色夜夜综合| 亚洲午夜精品一区,二区,三区| 国产精品偷伦视频观看了| www.自偷自拍.com| 国产精品久久电影中文字幕 | 三级毛片av免费| 一进一出抽搐gif免费好疼 | 99热网站在线观看| 老熟女久久久| 一进一出抽搐动态| 欧美 日韩 精品 国产| 在线观看免费日韩欧美大片| 下体分泌物呈黄色| 亚洲精品中文字幕一二三四区| 一区二区三区国产精品乱码| 亚洲成人国产一区在线观看| 老司机福利观看| 亚洲美女黄片视频| 三级毛片av免费| 妹子高潮喷水视频| 老鸭窝网址在线观看| 免费在线观看视频国产中文字幕亚洲| 久久久久精品人妻al黑| 婷婷丁香在线五月| 女人被躁到高潮嗷嗷叫费观| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲真实| 亚洲专区字幕在线| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 19禁男女啪啪无遮挡网站| 久久青草综合色| 久久精品国产亚洲av香蕉五月 | 欧美精品高潮呻吟av久久| bbb黄色大片| 999久久久精品免费观看国产| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 久久精品aⅴ一区二区三区四区| e午夜精品久久久久久久| 欧美亚洲日本最大视频资源| а√天堂www在线а√下载 | 一进一出好大好爽视频| 老司机午夜十八禁免费视频| 啪啪无遮挡十八禁网站| 亚洲成av片中文字幕在线观看| 国产高清videossex| 久久九九热精品免费| 国产欧美日韩一区二区精品| 国产精品美女特级片免费视频播放器 | av中文乱码字幕在线| 亚洲熟妇熟女久久| 久久ye,这里只有精品| 日本黄色日本黄色录像| 91在线观看av| 男女免费视频国产| 在线观看免费视频日本深夜| 欧美成狂野欧美在线观看| www.自偷自拍.com| 久久久久视频综合| 宅男免费午夜| 男男h啪啪无遮挡| 99国产精品一区二区蜜桃av | 久久这里只有精品19| 91成人精品电影| 免费av中文字幕在线| 国产一区二区三区综合在线观看| 香蕉久久夜色| 亚洲欧美一区二区三区黑人| 亚洲欧美激情在线| 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 中文字幕av电影在线播放| 男女免费视频国产| 在线观看www视频免费| 两人在一起打扑克的视频| 丁香欧美五月| xxx96com| 日韩熟女老妇一区二区性免费视频| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 热99国产精品久久久久久7| 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久| 国产熟女午夜一区二区三区| ponron亚洲| 国产男女内射视频| 亚洲精品国产精品久久久不卡| 免费在线观看视频国产中文字幕亚洲| 久久性视频一级片| 久久国产乱子伦精品免费另类| 久久人妻av系列| 啦啦啦免费观看视频1| 青草久久国产| 国产精品久久视频播放| 久久人人爽av亚洲精品天堂| 国产野战对白在线观看| 亚洲黑人精品在线| 脱女人内裤的视频| 一级a爱片免费观看的视频| 丝袜人妻中文字幕| 一级毛片女人18水好多| 国产主播在线观看一区二区| 久久久精品国产亚洲av高清涩受| 亚洲熟女毛片儿| 啪啪无遮挡十八禁网站| 不卡av一区二区三区| 亚洲人成77777在线视频| 国产成人免费无遮挡视频| 老鸭窝网址在线观看| 国产精品综合久久久久久久免费 | 19禁男女啪啪无遮挡网站| 激情在线观看视频在线高清 | 精品国产一区二区三区四区第35| 免费观看精品视频网站| 亚洲av熟女| 999久久久国产精品视频| 成熟少妇高潮喷水视频| 色94色欧美一区二区| 亚洲精品成人av观看孕妇| 女人精品久久久久毛片| 高清视频免费观看一区二区| 国产精品乱码一区二三区的特点 | 国产精品成人在线| 亚洲国产看品久久| 99国产精品99久久久久| 夜夜爽天天搞| 亚洲伊人色综图| 91大片在线观看| 国产av精品麻豆| 丝袜在线中文字幕| www.精华液| 午夜福利在线免费观看网站| 午夜两性在线视频| 成年女人毛片免费观看观看9 | 国产日韩一区二区三区精品不卡| 国产亚洲精品久久久久5区| 国产成人欧美| 黄色丝袜av网址大全| 黄频高清免费视频| 免费日韩欧美在线观看| 人妻一区二区av| 多毛熟女@视频| 免费黄频网站在线观看国产| 久久天躁狠狠躁夜夜2o2o| 免费在线观看视频国产中文字幕亚洲| 天天添夜夜摸| 久久国产亚洲av麻豆专区|