• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    S690Q高強(qiáng)鋼對(duì)接節(jié)點(diǎn)的焊后性能

    2021-03-11 08:49:38周誠(chéng)彬陳成趙明善李子敬馮達(dá)清
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:微觀結(jié)構(gòu)硬度

    周誠(chéng)彬 陳成 趙明善 李子敬 馮達(dá)清

    摘 要:通過試驗(yàn)研究了S690Q高強(qiáng)鋼對(duì)接節(jié)點(diǎn)的焊后性能。利用手工電弧焊焊接了3個(gè)厚度為8 mm的S690Q高強(qiáng)鋼對(duì)接節(jié)點(diǎn),焊接過程中對(duì)3個(gè)節(jié)點(diǎn)分別采用不同的焊接熱量。在微觀層面上,用微觀結(jié)構(gòu)測(cè)試和微觀硬度測(cè)試研究焊接對(duì)于節(jié)點(diǎn)的影響;在宏觀層面上,通過拉伸試驗(yàn)研究焊接對(duì)于節(jié)點(diǎn)力學(xué)性能的影響。微觀結(jié)構(gòu)測(cè)試結(jié)果表明,S690Q高強(qiáng)鋼的主要微觀結(jié)構(gòu)是回火馬氏體。焊接后,在粗晶熱影響區(qū)會(huì)轉(zhuǎn)化為粒狀貝氏體,在細(xì)晶熱影響區(qū)會(huì)轉(zhuǎn)化為鐵素體和滲碳體,在回火區(qū)部分回火馬氏體會(huì)分解成鐵素體?;谟捕葴y(cè)試結(jié)果,可以在熱影響區(qū)內(nèi)發(fā)現(xiàn)軟化層的存在,軟化層與母材相比具有較低的硬度。此外,熱影響區(qū)的寬度也隨著焊接熱量的升高而增大。拉伸試驗(yàn)表明,焊接對(duì)于S690Q高強(qiáng)鋼節(jié)點(diǎn)的強(qiáng)度具有劣化作用,這主要是由焊接過程中形成的軟化層造成的。所有測(cè)試節(jié)點(diǎn)的失效位置均位于熱影響區(qū),而且隨著焊接熱量的升高,強(qiáng)度的劣化現(xiàn)象也變得越來越嚴(yán)重。

    關(guān)鍵詞:高強(qiáng)鋼;對(duì)接節(jié)點(diǎn);微觀結(jié)構(gòu);硬度;拉伸性能

    1 Introduction

    High strength to weight ratio in steel structures is an important advantage since it can result in better architectural expression and economic benefits such as less labor and transportation costs[1]. With the development of metallurgical technology, the strength to weight ratio of steel is further improved by using high strength steel with yield strength higher than 460 MPa. Among different high strength steel available in the market, reheated, quenched and tempered high strength steel is preferred since it has prominent weldability due to similar chemical composition with normal steel. Generally, reheated, quenched and tempered high strength steel is available in the form of plate since it is more conducive to achieving uniform material properties under the quenching and tempering process. That means welding, which is usually accompanied by dramatic temperature change around the joint, is inevitable for the built-up reheated, quenched and tempered high strength steel structural member. According to related investigations, reheated, quenched and tempered high strength steel is quite susceptible to high temperatures[2-3], and its strength could be significantly reduced after cooling[4-5]. Previous study also revealed that welded high strength steel butt joints lost 3% to 8% tensile strength in the condition of the area with reduced strength (soft layer) ranging from 0.33 to 0.6 times of specimen thickness[6].

    The formation of a soft layer in welded high strength steel butt joints is mainly caused by microstructure transformation in the heat-affected zone. The heat-affected zone of the welded butt joints can be roughly divided into three sub-heat-affected zones, including the coarse-grained heat-affected zone, the fine-grained heat-affected zone and the tempering zone[7]. In the coarse-grained heat-affected zone, the bainitic microstructure and martensite-austenite (M-A) constituents constitute the main microstructure after welding[8]. These microstructures have slightly lower hardness compared with the base material (tempered martensite) but are sensitive to cleavage cracking, especially when some austenite is retained after the bainite transformation. The main microstructures of the fine-grained heat-affected zone are generally composed of ferrite, pearlite or cementite[9]. In the tempering zone, parts of the tempered martensite decompose to ferrite after the welding process. Since ferrite, pearlite or cementite commonly have lower hardness compared with tempered martensite or bainite, the fine-grained heat-affected zone and the tempering zone are usually regarded as soft layer[10]. Overall, the microstructure transformation caused by welding leads to not only the reduction of tensile strength but also significant nonhomogeneity of the material within the heat-affected zone[11].

    In this study,the post-welding behaviour of S690Q high strength steel butt joints was investigated experimentally. Three butt joints were welded with 8 mm thickness reheated, quenched and tempered S690Q high strength steel plate by shield metal arc welding with different welding heat inputs. The microstructure transformation and hardness distribution in the heat-affected zones of the joints were revealed by light optical microscopy and micro-hardness tests, respectively. After this, tensile tests were conducted to find out the welding influence on the strength of the S690Q high strength steel butt joints.

    2 Material property and joint fabrication

    The high strength steel used in the tests was grade S690Q with nominal yield strength 690 MPa and tensile strength between 790 MPa and 930 MPa. The plate is delivered by the reheated, quenched and tempered procedure, and its chemical composition is similar to that of mild steel. Therefore, it has favorable weldability[12-13]. The weld material LB-80L was used as filler metal, satisfying the specification of AWS A5.5 E11018-G[14]. The mechanical property and chemical composition (together with the carbon equivalent CE) of S690Q high strength steel and LB-80L are listed in Table 1 and 2, respectively. It can be seen from Table 1 that the mechanical property of the filler metal is quite similar to that of the S690Q high strength steel used.

    Three S690Q high strength steel butt joints with 8 mm thickness were welded by shield metal arc welding. Different diameter electrodes, such as 3.2 mm, 4.0 mm and 5.0 mm, were used to gain different welding heat inputs. Four type-K thermocouples with 1 000 ℃ measuring limitation were employed to monitor the temperature history of the butt joints during welding, named thermocouple- 1, 2, 3 and 4, respectively. The arrangement of the thermocouples is presented in Fig.1(a), and the corresponding positions are described in Fig.3(a). The temperature measurement device is TDS-530 datalogger, as shown in Fig.1(b). The joints were all welded with four passes marked by 1, 2, 3 and 4 in Fig 2.

    The welding parameters of each welding pass for the three joints are listed in Table 3. It should be noted that the root pass for all the joints in this study was completed using a 3.2 mm electrode with voltage 30 V and current 73 A. In fact, the average welding heat input of BJ8-5.0 was lower than BJ8-4.0. That is because the deposition rate of the 5 mm diameter electrode was too high for BJ8-5.0 to control the welding quality if using the same welding speed for BJ8-4.0. Therefore, the welding speed of BJ8-5.0 was increased, and its average welding heat input was reduced. The temperature history curves of the butt joint are described in Fig.4.

    After the welding process was completed, an 8 mm×12 mm×40 mm block and two coupons were machined out. The position of the block and coupons in the butt joint is presented in Fig.3(a). The block was further cut into two halves from the center line of the weld. One was used for microstructure observation, and the other was used for the micro-hardness test. The microstructure and micro-hardness tests were employed to reveal the welding influence on the joint at the micro level. The coupons were used in the tensile test to find out the welding impact on the strength of the S690Q high strength steel butt joints at the macro level. The corresponding dimension is illustrated in Fig.3(b).

    3 Test results

    3.1 Microstructure test

    One half of the block was cast with epoxy, polished, etched with 2% nital solution and then observed under a light optical microscope to study the detailed microstructure transformation in heat-affected zone. In the welding process, the peak temperature of the coarse-grained heat-affected zone is almost up to the melting point (higher than Ac3), and the cooling rate of the coarse-grained heat-affected zone in the following cooling stage is quite fast. This welding thermal cycle directly results in the coarsening of the grain size[15]. From the perspective of microstructure, with the temperature of the coarse-grained heat-affected zone above Ac3,

    the growth of austenite grains is improved due to extended time at high temperature. The consecutive fast cooling leads to the generation of a coarse martensitic microstructure from the austenite[16]. The coarse-grained heat-affected zone of the high strength steel joint is generally accompanied by several detrimental characteristics (large prior austenite grain size, upper bainite, martensite-austenite (M-A) constituents, and microalloy precipitates) which may lead to lowest toughness in the heat-affected zone. Among the mentioned microstructural features, the M-A constituent (crack susceptibility) plays an important role in leading to the decrease of joint toughness[17]. The peak temperature of the fine-grained heat-affected zone also exceeds Ac3, resulting in a fully austenitized local microstructure. Nevertheless, the time above Ac3 in the fine-grained heat-affected zone is short and limits the grain growth. The microstructures mainly consist of ferrite and a little pearlite with grain size 1-3 mm. Compared with martensite in the coarse grain heat-affected zone, the ferrite and pearlite in the fine-grained heat-affected zone have lower hardness, and therefore have a softening effect on the mechanical performance of high strength steel welded joints[18].

    Fig.5 shows the microstructure of the base material, the coarse-grainedheat-affected zone, the fine-grained heat-affected zone and the tempering zone. As show in Fig.5(a), the main microstructure of the S690Q high strength steel used in the tests was tempered martensite. After welding, the tempered martensite of the base material was transformed to granular bainite in the coarse-grained heat-affected zone (Fig.5(b)). The granular bainite was composed of a bainitic ferrite matrix and the martensite-austenite (M-A) phase as the second phase. In the fine-grained heat-affected zone, the microstructure was transformed to ferrite and cementite (Fig.5(c)). Compared with ferrite and cementite, granular bainite is generally harder, but is lower in toughness. In the tempering zone of the heat-affected zone, some of the tempered martensite decomposed to ferrite, as shown in Fig.5(d).

    3.2 Micro-hardness test

    Vickers hardness measurement was carried out on a micro-hardness tester according to ISO 6507-1[19] using 500 g force. Four lines of indentations were made at different thickness position of the butt joints, and the indentations were located through weld, coarse-grained heat-affected zone, fine-grained heat-affected zone, tempering zone and base material sequentially for each line, as presented in Fig.6. The obtained micro-hardness values of the butt joints are shown in Fig.7. The black line shows the physical boundary of the weld bevel which could be confidently taken as the boundary between the weld materials and the heat-affected zone.

    As a result of the severe temperature changes in the heat-affected zone during the welding process, the microstructures with lower hardness formed in the fine-grained heat-affected zone and the tempering zone lead to the formation of a soft layer. In Fig.7, the soft layer is defined as the area between the two red dash lines, having relatively lower hardness values compared with the base material (S690Q high strength steel) with the hardness ranging from 270 Hv0.5 to 280 Hv0.5. The width of the soft layer was 6 mm, 8.875 mm, and 7.125 mm for BJ8-3.2, BJ8-4.0 and BJ8-5.0, respectively, which means the relative thickness of the soft layer (the ratio of the width of the soft layer over the plate thickness) was 0.75, 1.11, and 0.89, respectively. Considering the average welding heat input for BJ8-3.2, BJ8-4.0 and BJ8-5.0 was 1.25 kJ/mm, 1.58 kJ/mm and 1.49 kJ/mm (listed in Table 3), respectively, it can be concluded that the soft layer becomes wider for the welded S690Q high strength steel butt joints with the same thickness when higher welding heat input is adopted. The same conclusion is also suggested by Hochhauser and Rauch[6].

    3.3 Tensile test

    Tensile tests of the S690Q high strength steel butt joints were conducted on the 5900 series universal testing instruments according to EN 10002-1[20]. An extensometer with 50 mm gauge length was used to capture the deformation of the coupon. The loading rate was set as 0.5 mm/min until the joint fractured. From Fig.8, it can be seen that the tested butt joints all fractured within the heat-affected zone. The corresponding stress-strain curves are presented in Fig.9.

    Both the strength and the ductility of the S690Q high strength steel butt joint deteriorated after welding, and the deterioration of mechanical performance became more serious with the increase of welding heat input. The characteristic strength of the three joints are listed in Table 4, as well as the fracture elongation. The reduction of yield strength ranged from 19% to 27% and the deterioration of ultimate tensile strength changed from 13% to 18%, when the welding heat input was increased from 1.25 kJ/mm to 1.58 kJ/mm, leading to relative thickness of the soft layer raised from 0.75 to 1.11. Compared with the conclusion obtained by Hochhauser and Rauch[6], the variation tendency of tensile strength with different relative thicknesses of soft layer was the same, although the strength deterioration was more serious due to the wider soft layer based on the results in this study.

    The mechanical behaviour deterioration of the S690 high strength steel butt joints tested after welding was mainly caused by the soft layer, which was generated during welding, due to microstructure transformation. Additionally, the residual stress caused by the welding process led to the stiffness reduction of the S690Q high strength steel butt joint, which explains why the deterioration of yield strength was more serious compared with the ultimate tensile strength. The decreased elongation can be explained by two reasons. The first is the high concentration of plastic strain caused by the welding process, and the second is that the deformation of S690Q high strength steel butt joints mainly occurs within the heat-affected zone due to the existence of the soft layer instead of uniform deformation in the whole gauge length.

    4 Conclusion

    This study reveals the post-welding behaviour of S690Q high strength steel butt joints, taking the welding heat input as the principle factor. By microstructure observation, the microstructure transformation was confirmed in the heat-affected zone during the welding process, such as the granular bainite formed in the coarse-grained heat-affected zone, the ferrite and cementite generated in the fine-grained heat-affected zone, and the ferrite occurring in the tempering zone. The micro-hardness test revealed that a “soft layer” was generated in the heat-affected zone and the relative thickness of the soft layer was increased from 0.75 to 1.11 with the welding heat input raised from 1.25 kJ/mm to 1.58 kJ/mm for the 8 mm thickness joints. In the followed tensile tests, the softening effect of the welding process on S690Q high strength steel butt joints was indicated in view of the fact that the reduction of yield strength ranged from 19% to 27% and the deterioration of ultimate tensile strength changed from 13% to 18%, when the welding heat input was increased from 1.25 kJ/mm to 1.58 kJ/mm for the fabrication of butt joints with 8 mm thickness with the relative thickness of the soft layer ranging from 0.75 to 1.11. The reason why the deterioration of the yield strength is more serious compared with the ultimate tensile strength is that the the residual stress caused by the welding process leads to reduction in the stiffness of the S690Q high strength steel butt joint.

    Acknowledgements

    The financial support from the Regency Steel Asia Endowment Fund at Nanyang Technological University to the authors is gratefully acknowledged.

    References:

    [1] MIKI C, HOMMA K, TOMINAGA T. High strength and high performance steels and their use in bridge structures [J]. Journal of Constructional Steel Research, 2002, 58(1): 3-20.

    [2] CHEN J, YOUNG B, UY B. Behavior of high strength structural steel at elevated temperatures [J]. Journal of Structural Engineering, 2006, 132(12): 1948-1954.

    [3] QIANG X H, BIJLAARD F S K, KOLSTEIN H. Dependence of mechanical properties of high strength steel S690 on elevated temperatures [J]. Construction and Building Materials, 2012, 30: 73-79.

    [4] CHIEW S P, ZHAO M S, LEE C K. Mechanical properties of heat-treated high strength steel under fire/post-fire conditions [J]. Journal of Constructional Steel Research, 2014, 98: 12-19.

    [5] QIANG X H, BIJLAARD F S K, KOLSTEIN H. Post-fire mechanical properties of high strength structural steels S460 and S690 [J]. Engineering Structures, 2012, 35: 1-10.

    [6] HOCHHAUSER F, ERNST W, RAUCH R, et al. Influence of the soft zone on the strength of welded modern HSLA steels [J]. Welding in the World, 2012, 56(5/6): 77-85.

    [7] BOUMERZOUG Z, DERFOUF C, BAUDIN T. Effect of welding on microstructure and mechanical properties of an industrial low carbon steel [J]. Engineering, 2010, 2(7): 502-506.

    [8] LAMBERT-PERLADE A, GOURGUES A F, PINEAU A. Austenite tobainite phase transformation in the heat-affected zone of a high strength low alloy steel [J]. Acta Materialia, 2004, 52(8): 2337-2348.

    [9] WOJNOWSKI D, OH Y K, INDACOCHEA J E. Metallurgical assessment of the softened HAZ region during multipass welding [J]. Journal of Manufacturing Science and Engineering, 2000, 122(2): 310-315.

    [10] MAURER W, ERNST W, RAUCH R, et al. Evaluation of the factors influencing the strength of HSLA steel weld joint with softened HAZ [J]. Welding in the World, 2015, 59(6): 809-822.

    [11] CHEN C, CHIEW S P, ZHAO M S, et al. Welding effect on tensile strength of grade S690Q steel butt joint [J]. Journal of Constructional Steel Research, 2019, 153: 153-168.

    [12] KLEIN M, SPINDLER H, LUGER A, et al.Thermomechanically hot rolled high and ultra high strength steel grades-processing, properties and application [J]. Materials Science Forum, 2005, 500/501: 543-550.

    [13] DE MEESTER B. The weldability of modern structural TMCP steels [J]. ISIJ International, 1997, 37(6): 537-551.

    [14] Structural Welding Code-Steel: AWS D1.1 [S]. American National Standards Institute, Miami, 2008.

    [15] LI Y, CROWTHER D N, GREEN M J W, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels [J]. ISIJ International, 2001, 41(1): 46-55.

    [16] KHAN M I, KUNTZ M L, BIRO E, et al. Microstructure and mechanical properties of resistance spot welded advanced high strength steels [J]. Materials Transactions, 2008, 49(7): 1629-1637.

    [17] PENG K, YANG C L, FAN C L, et al. Thermal processes, microstructure, and mechanical properties near weld toe in double-sided double gas tungsten arc backing welding joint of 10CrNi3MoV steel [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1-4): 677-684.

    [18] RAN M M, SUN F F, LI G Q, et al. Experimental study on the behavior of mismatched butt welded joints of high strength steel [J]. Journal of Constructional Steel Research, 2019, 153: 196-208.

    [19] Metallic Materials-Vickers Hardness Test: BSI 6507-1 [S]. British Standards Institution, London, 2005.

    [20] Tensile Testing of Metallic Materials: Part1 Method of Test at Ambient Temperature: BSI, EN 10002-1 [S]. British Standards Institution, London, 2001.

    (編輯 胡英奎)

    猜你喜歡
    微觀結(jié)構(gòu)硬度
    終軋溫度對(duì)F460海工鋼組織及硬度影響
    山東冶金(2022年1期)2022-04-19 13:40:34
    65Mn表面電噴鍍Ni-Co-P/BN復(fù)合鍍層的硬度分析
    (TiB2+Al3Ti)/ZL102復(fù)合材料的硬度測(cè)試與增強(qiáng)機(jī)理分析
    冷卻速率對(duì)聚合物熔紡纖維結(jié)構(gòu)及性能的影響
    不同氧化預(yù)處理對(duì)疏浚底泥干燥特性的影響
    淺析燃料芯塊微觀結(jié)構(gòu)對(duì)芯塊制造質(zhì)量的影響
    科技視界(2016年21期)2016-10-17 16:48:41
    非晶合金的微觀結(jié)構(gòu)研究
    英漢雙語詞典收錄文化的方式
    煤渣陶瓷的微觀結(jié)構(gòu)分析
    科技視界(2015年27期)2015-10-08 14:48:05
    淺析12Cr5Mo管道焊縫的硬度值控制
    可以在线观看毛片的网站| 人人妻人人澡人人爽人人夜夜| 亚洲美女搞黄在线观看| 亚洲国产成人一精品久久久| 婷婷色综合www| 深爱激情五月婷婷| 婷婷色综合大香蕉| 国产精品久久久久久久电影| 亚洲精品一区蜜桃| 建设人人有责人人尽责人人享有的 | 国产精品一区二区性色av| 日韩欧美精品v在线| 日本猛色少妇xxxxx猛交久久| 欧美成人a在线观看| 午夜日本视频在线| 欧美高清性xxxxhd video| 啦啦啦中文免费视频观看日本| 国产精品无大码| av天堂中文字幕网| 真实男女啪啪啪动态图| 日韩免费高清中文字幕av| 夫妻午夜视频| 亚洲精品aⅴ在线观看| 国产乱人偷精品视频| 欧美xxxx黑人xx丫x性爽| 美女主播在线视频| 日韩,欧美,国产一区二区三区| 欧美一级a爱片免费观看看| 男人狂女人下面高潮的视频| 最后的刺客免费高清国语| 国产欧美另类精品又又久久亚洲欧美| 婷婷色麻豆天堂久久| 亚洲成人av在线免费| 日韩电影二区| 99热全是精品| 丝袜美腿在线中文| 我的女老师完整版在线观看| 国内精品美女久久久久久| 人妻 亚洲 视频| 亚洲精品第二区| 欧美日韩国产mv在线观看视频 | 亚洲欧美精品专区久久| 日韩在线高清观看一区二区三区| 久久精品熟女亚洲av麻豆精品| freevideosex欧美| 高清视频免费观看一区二区| 香蕉精品网在线| 免费大片18禁| 亚洲怡红院男人天堂| 我的老师免费观看完整版| 久久久欧美国产精品| 99久久人妻综合| 成年人午夜在线观看视频| 一级二级三级毛片免费看| 精品国产乱码久久久久久小说| 一个人看的www免费观看视频| 亚洲精品乱码久久久v下载方式| 少妇人妻精品综合一区二区| 一区二区三区免费毛片| 高清av免费在线| 一区二区三区精品91| 三级经典国产精品| 可以在线观看毛片的网站| 亚洲精品中文字幕在线视频 | 亚洲成人久久爱视频| 2021天堂中文幕一二区在线观| 欧美极品一区二区三区四区| 欧美成人午夜免费资源| 免费黄网站久久成人精品| 日韩视频在线欧美| 五月开心婷婷网| 亚洲激情五月婷婷啪啪| 视频区图区小说| av免费在线看不卡| 亚洲av男天堂| 国产男女内射视频| 偷拍熟女少妇极品色| av在线播放精品| 18禁裸乳无遮挡免费网站照片| 最近2019中文字幕mv第一页| 久久久久性生活片| 嫩草影院精品99| 看十八女毛片水多多多| 最近的中文字幕免费完整| 少妇人妻 视频| 日日啪夜夜爽| 久久久成人免费电影| 最近中文字幕高清免费大全6| 亚洲第一区二区三区不卡| 99热全是精品| 亚洲国产精品成人久久小说| 一个人观看的视频www高清免费观看| 国产精品人妻久久久影院| 亚洲精品亚洲一区二区| 国产老妇女一区| 国产精品国产av在线观看| av在线观看视频网站免费| 欧美激情国产日韩精品一区| 亚洲av免费高清在线观看| 亚洲精品色激情综合| www.av在线官网国产| 国产乱来视频区| 亚洲欧美日韩卡通动漫| www.色视频.com| 亚洲av欧美aⅴ国产| 欧美潮喷喷水| 中文乱码字字幕精品一区二区三区| 国产精品三级大全| 91aial.com中文字幕在线观看| 国产毛片在线视频| 久热久热在线精品观看| 免费观看的影片在线观看| 听说在线观看完整版免费高清| 欧美亚洲 丝袜 人妻 在线| 免费看光身美女| 狂野欧美白嫩少妇大欣赏| 嫩草影院新地址| 一区二区三区精品91| 综合色av麻豆| 国产白丝娇喘喷水9色精品| 国产一级毛片在线| 男人和女人高潮做爰伦理| 久久人人爽人人爽人人片va| 亚洲天堂av无毛| 久久精品国产亚洲av涩爱| 日日啪夜夜爽| 69av精品久久久久久| 大码成人一级视频| 黄片wwwwww| 国产男女超爽视频在线观看| av在线app专区| 午夜爱爱视频在线播放| 免费大片18禁| 久久久久久伊人网av| 午夜福利高清视频| 亚洲,欧美,日韩| 秋霞伦理黄片| 精品99又大又爽又粗少妇毛片| 久久久久九九精品影院| 观看美女的网站| 少妇人妻久久综合中文| 午夜福利高清视频| 肉色欧美久久久久久久蜜桃 | 成人漫画全彩无遮挡| 日本wwww免费看| 只有这里有精品99| 男的添女的下面高潮视频| 国产有黄有色有爽视频| 亚洲性久久影院| 国产色爽女视频免费观看| 乱系列少妇在线播放| 在线观看美女被高潮喷水网站| 亚洲一级一片aⅴ在线观看| 五月伊人婷婷丁香| 国产老妇女一区| 国产精品国产av在线观看| 97在线人人人人妻| 少妇人妻精品综合一区二区| 18禁在线无遮挡免费观看视频| 777米奇影视久久| 中文在线观看免费www的网站| 久久综合国产亚洲精品| 在线观看三级黄色| 日韩不卡一区二区三区视频在线| 国产黄色免费在线视频| 十八禁网站网址无遮挡 | 久久久久国产精品人妻一区二区| 女人十人毛片免费观看3o分钟| 国产男女内射视频| 在线观看一区二区三区| 亚洲av日韩在线播放| av专区在线播放| 婷婷色av中文字幕| 一本久久精品| 校园人妻丝袜中文字幕| 2018国产大陆天天弄谢| 五月伊人婷婷丁香| 久久精品人妻少妇| 三级国产精品欧美在线观看| 夫妻性生交免费视频一级片| 久久久久久久久久成人| 日韩欧美一区视频在线观看 | 久久99热这里只频精品6学生| 国产精品爽爽va在线观看网站| 国产精品国产三级国产av玫瑰| 亚洲精品色激情综合| 只有这里有精品99| 神马国产精品三级电影在线观看| 日产精品乱码卡一卡2卡三| 国产精品偷伦视频观看了| 2021天堂中文幕一二区在线观| 老司机影院毛片| 欧美区成人在线视频| 日本-黄色视频高清免费观看| 老司机影院毛片| 制服丝袜香蕉在线| 国内精品美女久久久久久| 亚洲最大成人中文| 五月玫瑰六月丁香| 亚洲av男天堂| 亚洲av.av天堂| 大码成人一级视频| av一本久久久久| 青春草亚洲视频在线观看| 各种免费的搞黄视频| 国产成年人精品一区二区| 国产精品av视频在线免费观看| 亚洲欧美成人综合另类久久久| eeuss影院久久| 少妇被粗大猛烈的视频| 精品一区二区免费观看| 国产成人福利小说| 黄色怎么调成土黄色| 成人特级av手机在线观看| 亚洲内射少妇av| 久久久久久国产a免费观看| 国产一区二区亚洲精品在线观看| 亚洲精品乱久久久久久| 中国国产av一级| 午夜福利视频精品| 在线免费十八禁| 建设人人有责人人尽责人人享有的 | 国产黄片视频在线免费观看| 舔av片在线| 亚洲精品久久午夜乱码| 国产精品精品国产色婷婷| 日韩av免费高清视频| 国产精品三级大全| 一级二级三级毛片免费看| 欧美日韩视频高清一区二区三区二| 色播亚洲综合网| 一区二区三区乱码不卡18| 亚洲国产精品成人久久小说| 三级国产精品片| 一级黄片播放器| 香蕉精品网在线| 亚洲精品一区蜜桃| av在线老鸭窝| 久久久欧美国产精品| 久久精品国产亚洲av涩爱| 国产男女超爽视频在线观看| 国产高清不卡午夜福利| 成人毛片60女人毛片免费| 国产免费福利视频在线观看| 天天躁夜夜躁狠狠久久av| 日韩欧美精品v在线| 少妇人妻 视频| 亚洲精品色激情综合| 嫩草影院精品99| 超碰av人人做人人爽久久| 国精品久久久久久国模美| 丝袜美腿在线中文| 国产精品熟女久久久久浪| 精品人妻熟女av久视频| 亚洲精品第二区| 亚洲av不卡在线观看| 国产一区有黄有色的免费视频| 久久精品国产亚洲av涩爱| 欧美xxⅹ黑人| 国内精品美女久久久久久| 神马国产精品三级电影在线观看| 国产精品无大码| 国产精品久久久久久精品电影| 久久精品综合一区二区三区| 一级a做视频免费观看| 综合色av麻豆| 一区二区三区免费毛片| 国产精品嫩草影院av在线观看| 欧美xxxx性猛交bbbb| 女人被狂操c到高潮| av在线老鸭窝| 欧美潮喷喷水| 成人免费观看视频高清| 老司机影院毛片| 亚洲成人av在线免费| freevideosex欧美| 免费av毛片视频| 久久人人爽av亚洲精品天堂 | 亚洲精品久久午夜乱码| 少妇猛男粗大的猛烈进出视频 | 韩国高清视频一区二区三区| 伊人久久国产一区二区| 国产日韩欧美亚洲二区| 欧美老熟妇乱子伦牲交| 国产一区二区三区综合在线观看 | 天堂俺去俺来也www色官网| 中文字幕亚洲精品专区| 久久久久久久久久久丰满| 80岁老熟妇乱子伦牲交| 黄色一级大片看看| 国产爱豆传媒在线观看| 看非洲黑人一级黄片| 午夜激情久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 中文天堂在线官网| 亚洲精品视频女| 国产精品秋霞免费鲁丝片| 中国国产av一级| 禁无遮挡网站| 亚洲精品国产av蜜桃| 成人美女网站在线观看视频| 日韩国内少妇激情av| 国产高潮美女av| 深夜a级毛片| 国产欧美另类精品又又久久亚洲欧美| 在线观看美女被高潮喷水网站| 久久国内精品自在自线图片| 韩国高清视频一区二区三区| 极品少妇高潮喷水抽搐| 国产精品一区二区三区四区免费观看| 亚洲国产高清在线一区二区三| 亚洲精品亚洲一区二区| 精品久久久久久久久亚洲| 777米奇影视久久| 一区二区三区四区激情视频| 国产综合精华液| 国产一区二区亚洲精品在线观看| 久久99热这里只频精品6学生| 色婷婷久久久亚洲欧美| 国产亚洲一区二区精品| 亚洲av成人精品一区久久| 特级一级黄色大片| 国产精品一区二区性色av| 国产极品天堂在线| 大码成人一级视频| 亚洲欧美清纯卡通| 狂野欧美白嫩少妇大欣赏| 亚洲不卡免费看| 日韩欧美一区视频在线观看 | 免费大片18禁| 六月丁香七月| 久热久热在线精品观看| 成人欧美大片| 欧美+日韩+精品| 亚洲av日韩在线播放| 久久久久精品久久久久真实原创| 日韩三级伦理在线观看| 偷拍熟女少妇极品色| 2021少妇久久久久久久久久久| 国产精品一二三区在线看| 大又大粗又爽又黄少妇毛片口| 人妻制服诱惑在线中文字幕| 精品酒店卫生间| 天堂中文最新版在线下载 | 男的添女的下面高潮视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲最大成人av| av在线播放精品| 久久久色成人| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久v下载方式| 高清在线视频一区二区三区| 尾随美女入室| 欧美日韩一区二区视频在线观看视频在线 | 五月玫瑰六月丁香| av女优亚洲男人天堂| 久久人人爽人人片av| av女优亚洲男人天堂| 亚洲国产精品专区欧美| 亚洲精品乱码久久久久久按摩| 日本免费在线观看一区| 国产黄频视频在线观看| a级毛片免费高清观看在线播放| 一级毛片我不卡| 亚洲人与动物交配视频| 国产免费又黄又爽又色| 熟女电影av网| 菩萨蛮人人尽说江南好唐韦庄| 亚州av有码| 在线观看免费高清a一片| 中文字幕亚洲精品专区| 少妇的逼水好多| 日韩av不卡免费在线播放| 菩萨蛮人人尽说江南好唐韦庄| 久久韩国三级中文字幕| 免费看日本二区| 特级一级黄色大片| 日日啪夜夜撸| 亚洲精品国产色婷婷电影| 久久精品国产亚洲网站| 可以在线观看毛片的网站| 亚洲欧美精品自产自拍| 精品久久久久久电影网| 99九九线精品视频在线观看视频| 人妻少妇偷人精品九色| 内地一区二区视频在线| 亚洲国产日韩一区二区| 少妇丰满av| 国产精品爽爽va在线观看网站| 国产美女午夜福利| 精品一区二区三卡| 大话2 男鬼变身卡| 99久久中文字幕三级久久日本| 久久人人爽人人爽人人片va| 一个人观看的视频www高清免费观看| 在现免费观看毛片| 在线观看免费高清a一片| 国产乱来视频区| 亚洲人成网站在线观看播放| 久久热精品热| 国产av不卡久久| 亚洲成人久久爱视频| 成年女人在线观看亚洲视频 | 国产精品福利在线免费观看| 精品久久久久久电影网| 视频中文字幕在线观看| 日韩一区二区三区影片| 白带黄色成豆腐渣| 久久久成人免费电影| 欧美日韩国产mv在线观看视频 | av又黄又爽大尺度在线免费看| 午夜福利视频精品| 国产欧美日韩一区二区三区在线 | 免费看a级黄色片| 噜噜噜噜噜久久久久久91| 免费看日本二区| 女人久久www免费人成看片| 亚洲最大成人中文| 亚洲天堂av无毛| 午夜免费鲁丝| 女人被狂操c到高潮| 日韩欧美一区视频在线观看 | 看非洲黑人一级黄片| 一二三四中文在线观看免费高清| 国产精品蜜桃在线观看| 亚洲成色77777| 精品午夜福利在线看| 精品久久久精品久久久| 真实男女啪啪啪动态图| 亚洲天堂av无毛| 下体分泌物呈黄色| 尾随美女入室| 一本色道久久久久久精品综合| 水蜜桃什么品种好| 精品国产露脸久久av麻豆| 亚洲精品国产成人久久av| 香蕉精品网在线| 国产免费福利视频在线观看| 亚洲精品国产色婷婷电影| 久久久久久久久久久丰满| 三级国产精品欧美在线观看| 九色成人免费人妻av| 好男人在线观看高清免费视频| 国产乱人偷精品视频| 国产欧美亚洲国产| 精品一区二区免费观看| 国产免费一区二区三区四区乱码| 伊人久久国产一区二区| 99久久九九国产精品国产免费| 亚洲国产av新网站| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久久丰满| 亚洲成色77777| 国产成人91sexporn| av天堂中文字幕网| 亚洲成色77777| 草草在线视频免费看| 女人十人毛片免费观看3o分钟| 国产亚洲一区二区精品| 亚洲国产日韩一区二区| 中文天堂在线官网| 久久精品综合一区二区三区| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 交换朋友夫妻互换小说| 少妇的逼好多水| 亚洲欧美一区二区三区国产| 中文在线观看免费www的网站| 日本免费在线观看一区| 大片电影免费在线观看免费| 乱系列少妇在线播放| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 精品久久国产蜜桃| 国产精品久久久久久精品电影小说 | 黄色欧美视频在线观看| 肉色欧美久久久久久久蜜桃 | 91在线精品国自产拍蜜月| 超碰97精品在线观看| 日韩国内少妇激情av| 国产精品久久久久久精品电影| 99久国产av精品国产电影| 真实男女啪啪啪动态图| 亚洲精品aⅴ在线观看| 亚洲最大成人av| 热re99久久精品国产66热6| 国产探花极品一区二区| 欧美日韩精品成人综合77777| 激情 狠狠 欧美| 人妻系列 视频| 国产精品.久久久| 男女下面进入的视频免费午夜| 免费观看无遮挡的男女| 亚洲天堂国产精品一区在线| 中文字幕av成人在线电影| 成人特级av手机在线观看| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 综合色av麻豆| 天堂中文最新版在线下载 | 草草在线视频免费看| 99久国产av精品国产电影| av专区在线播放| 男人舔奶头视频| 亚洲,一卡二卡三卡| 欧美高清性xxxxhd video| 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 欧美高清性xxxxhd video| 两个人的视频大全免费| 七月丁香在线播放| 国产免费一区二区三区四区乱码| 大又大粗又爽又黄少妇毛片口| 男人舔奶头视频| 青青草视频在线视频观看| 亚洲图色成人| 人体艺术视频欧美日本| 夫妻午夜视频| 国产亚洲一区二区精品| 天天一区二区日本电影三级| 日韩精品有码人妻一区| 日韩免费高清中文字幕av| 日日摸夜夜添夜夜添av毛片| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 欧美激情国产日韩精品一区| 18禁在线播放成人免费| 爱豆传媒免费全集在线观看| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 国产黄片美女视频| 欧美少妇被猛烈插入视频| 一本久久精品| 麻豆成人av视频| 91久久精品国产一区二区三区| 亚洲在线观看片| 亚洲国产精品专区欧美| 欧美极品一区二区三区四区| 黄片无遮挡物在线观看| 亚洲国产精品成人久久小说| 精品国产一区二区三区久久久樱花 | 日韩 亚洲 欧美在线| 成年女人看的毛片在线观看| 国产成人免费无遮挡视频| 伦精品一区二区三区| 激情 狠狠 欧美| 欧美变态另类bdsm刘玥| 欧美精品国产亚洲| 日日啪夜夜爽| 久久精品国产自在天天线| a级毛色黄片| 久久久午夜欧美精品| 国产人妻一区二区三区在| 人体艺术视频欧美日本| 嫩草影院入口| 大香蕉久久网| 久久综合国产亚洲精品| 麻豆成人av视频| 国产男女内射视频| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 久久久久久久久久久丰满| 亚洲av成人精品一二三区| 久热久热在线精品观看| 五月伊人婷婷丁香| 超碰97精品在线观看| 亚洲成人精品中文字幕电影| 亚洲欧美日韩另类电影网站 | 免费少妇av软件| 免费不卡的大黄色大毛片视频在线观看| 中文在线观看免费www的网站| 高清日韩中文字幕在线| 精品亚洲乱码少妇综合久久| 精品久久久久久久久亚洲| 热re99久久精品国产66热6| 国产黄色免费在线视频| 最近2019中文字幕mv第一页| 日韩av在线免费看完整版不卡| 亚洲欧美日韩另类电影网站 | 伦理电影大哥的女人| 69人妻影院| 国产欧美亚洲国产| 69av精品久久久久久| av天堂中文字幕网| 亚洲最大成人手机在线| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| av国产久精品久网站免费入址| 特级一级黄色大片| 嫩草影院新地址| 黄色配什么色好看| 精品少妇久久久久久888优播| 99久久九九国产精品国产免费| 亚洲婷婷狠狠爱综合网| 色网站视频免费| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 国产成人aa在线观看| 亚洲精品久久久久久婷婷小说| 天堂俺去俺来也www色官网| 亚洲一区二区三区欧美精品 | 欧美xxⅹ黑人| av女优亚洲男人天堂| 日韩av在线免费看完整版不卡| 亚洲精品456在线播放app| 哪个播放器可以免费观看大片| 婷婷色av中文字幕| 草草在线视频免费看| 乱码一卡2卡4卡精品| xxx大片免费视频| 99久久精品一区二区三区| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添av毛片| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区在线观看99|