• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    考慮空間變異性的基坑降水支護(hù)開挖引起地面沉降的可靠度評估

    2021-03-11 08:49章潤紅GOHAnthony周廷強(qiáng)仉文崗
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:擋墻變異性方差

    章潤紅 GOH Anthony 周廷強(qiáng) 仉文崗

    摘 要:對于軟黏土或殘積土中的深基坑支護(hù)開挖,開挖后的地面沉降與基底隆起和擋墻變形密切相關(guān),且受墻后地下水變化的影響顯著。提出一種基于最新開發(fā)的簡化對數(shù)回歸模型的可靠性分析方法預(yù)測地面最大沉降,采用考慮土體空間變異性的方差縮減技術(shù)實(shí)現(xiàn)一階可靠性方法(FORM),探討了地面沉降超過既定閾值的概率,驗(yàn)證了方差縮減技術(shù)的高效性。通過分析關(guān)于空間平均及關(guān)鍵設(shè)計(jì)參數(shù)的影響發(fā)現(xiàn),土體空間變異性會導(dǎo)致較高的破壞概率,擋墻的系統(tǒng)剛度、地面沉降閾值的大小、土體特性的變化系數(shù)以及地下水下降深度也對可靠性指標(biāo)有不同程度的影響,忽略其影響會導(dǎo)致不可靠的設(shè)計(jì),較大的特征長度會導(dǎo)致較低的破壞概率和較高的?,同時考慮的空間變異性會比單獨(dú)考慮其中一項(xiàng)對影響更大。

    關(guān)鍵詞:地面沉降;基坑支護(hù)開挖;降水;空間變異性;方差縮減

    1 Introduction

    Rapid urbanization and continuous development of infrastructure construction have led to an increased demand for deep braced excavations in urban built environments. One major concern with the construction of deep excavation support systems is the potential damage to nearby buildings and tunnels caused by excavation-induced ground movement. The ground movement behind the excavation is correlated with the extent of basal heaves and the magnitude of the wall deflections. Ground settlement is an important hydro-geological factor influencing the groundwater drawdown behind the excavation, due to possible leakage through the wall, flow along the wall interface, or poor connections between wall panels as a result of poor quality control. Therefore, assessing the distribution and magnitude of the ground surface settlement adjacent to a braced excavation is the most important consideration in the design phase. Numerical modeling is widely used, but it's time-consuming and requires considerable computational effort, especially three-dimensional computation. The use of empirical/semi-empirical methods to predict excavation-induced ground movement is more convenient [1-10].

    Reliability-based analysis via the first-order reliability method (FORM) is increasingly employed in various geotechnical applications [11-13] to calculate the reliability index as well as the probability of failure. This method adopts the mean average and the standard deviation or the equivalent value to present uncertain parameters. The safety factor or safety margin is determined by measuring the shortest distance from the safety average to the directional standard deviation of the most likely failure combination of parameters on the limit state surface. However, natural soil properties vary spatially due to the complicated geological, environmental, and physical-chemical processes to which the soil has been subjected during its formation[14-15]. Several researchers have highlighted the effects of the spatial variation of soil properties on various geotechnical problems[16-21]. Reliability analysis considering spatial variability has been carried out by many researchers. Luo et al.[22] presented a simplified approach for the reliability analysis of basal heave in a braced excavation considering the spatial variability of the soil parameters using the first-order reliability method (FORM). Wang et al.[23] modeled the inherent spatial variability of the soil properties of drilled shafts by developing a reliability-based design (RBD) approach that integrated a Monte Carlo simulation (MCS)-based RBD with the random field theory. Cheon et al.[24] described the spatial variability of geotechnical properties for foundation design in deep water in the Gulf of Mexico, via a random field model that depicted spatial variations in the design of undrained shear strength. Li et al.[25] investigated the reliability of strip footing in the presence of spatially variable undrained shear strength with a non-stationary random field. Gong et al.[26] proposed a new framework considering the spatial variability of soil properties to analyze the probabilistic ability of a braced excavation in clay, which was modeled with the random field theory. Liu et al.[27] analyzed the reliability of slopes considering the spatial variability of the soil using a simplified framework that applied a strategy of variance reduction to enable more than one shear strength value to be considered in slope reliability problems based on Monte Carlo simulation and the multiple response surface method (MRSM). However, studies on the probabilistic assessment of ground surface settlement induced by the braced excavation that consider the uncertainties arising from the soil stiffness and strength parameters are limited. In addition, the influence of the spatial variability of soil properties, as well as the influence of groundwater drawdown, are scarcely investigated.

    A simple logarithm regression (LR) model based on the numerical results from 746 hypothetical cases[28], was developed to predict the maximum ground settlement δvm. It is validated by a total of 19 well-documented actual case histories from various sites. The equation for δvm (mm) with the coefficient of determination R2=0.924 5 takes the following form:

    The index for the drawdown in the LR analysis was only 0.101 3, which is relatively small compared to the excavation depth, the relative shear strength ratio, and the system stiffness value. Based on Eq. (2), when other parameters are kept constant, an increase of dw from 0.3 m to 6.0 m will almost double the maximum ground surface settlement, which is consistent with the findings by Wen et al.[35].

    3 Reliability analysis considering spatial variability

    Since the FE analysis and the proposed LR estimation model are unable to take into account the inherent spatial variability of soil properties, this section introduces a reliability-based method to estimate the braced excavation induced ground surface settlement considering groundwater drawdown by adopting the FORM spreadsheet method and implementing the spatial factors.

    3.1 Brief introduction to spatial variability

    Spatial variability refers to the nonuniform distribution of basic soil properties such as permeability or the deformation modulus. The change in the spatial average of soil properties in a certain area is smaller than at a certain point, to some extent, and as the size of the area increases, the change in the soil properties decreases. A dimensionless variance reduction function Γ2 calculated by the scale of fluctuation θ and the characteristic length L, as proposed by Vanmarcke[36], was used to quantify the reduction in the point variance under local averaging. It is subsequently adopted by Vanmarcke to reveal spatial averaging for reliability analysis[37], by means of which the soil parameter variances can be reduced by multiplying a factor less than the unity, i.e. the variance reduction factor. This variance reduction technique has been successfully applied using different constant, triangular, and exponential models[37-38], among which the latter is more commonly assumed for geotechnical random field modeling, expressed as:

    The reduced variance σ2Γ can be obtained through:

    in which σ is the standard deviation of cu/σ′v or E50/cu. In this study, Γ is the standard deviation reduction factor.

    For reliability analysis using the variance reduction technique, the characteristic length is of most importance. Schweiger et al.[39] found that for the analysis of supported excavations, the characteristic length is correlated to the length of the sliding surface. Luo et al.[22] investigated the value of L that should be used and examined the influence of different L on the probability of excavation-induced basal-heave failure. For simplicity, the commonly adopted scale of fluctuation values θ of 2, 5, 20, 50, 100 m[40-41], and the characteristic lengths L=19, 26, 72 m are considered, which are closely associated with the excavation depth, the diaphragm wall depth, and the final strut depth.

    As shown in Fig. 1, the 1st L=19 m is the length of od (the distance of the final strut to the bottom of the diaphragm wall), the 2nd L=26 m equals the length of the arc cd, and the 3rd L=72 m is the length of the sliding surface (arc abcde). This method has been similarly adopted by Wu et al.[16]and Luo et al.[22].

    3.2 Developed Excel spreadsheet

    Fig.2 plots the FORM EXCEL Spreadsheet setup that implements the spatial variability for the calculation of the reliability index??and the probability of failure Pf based on the proposed estimation model of ground surface settlement. The spatial factors are inserted via Cells R3∶S5. The two variables of cuv′ and E50/cu are assumed to be normally distributed. Other parameters including B, T, He, ln S, and dw are assumed to be deterministic. In the example shown in Fig. 2, B=30 m, T=30 m, and He=20 m are adopted in the spatial variability analysis for the detailed use of the developed spreadsheet[13]. The reliability index?is calculated in Cell O4, numerically expressed as Eq. (5)

    where x is the vector of random variables; m is the vector of mean values; σ is the vector of standard deviation; R is the correlation matrix; and F is the failure region. Cell g(x) contains the expression of δvm-δvm_cr, which indicates that if the induced maximum ground surface settlement is greater than the threshold value δvm_cr, it would be regarded as a failure or unsatisfactory performance. The column labeled xi contains the design point. For spatial variance, SD=Mean×COV, in which SD is the standard deviation, Mean is the mean value, COV is the coefficient of variation,?is the standard deviation reduction factor. For random variables, the off-diagonal terms are zero. For Gaussian-distributed random variables, a direct relationship exists between??and ?in which Φ is the cumulative normal density function.

    5 Summary and conclusions

    A reliability-based framework that considers the spatial averaging effect of soil properties is proposed to assess the probability that threshold maximum ground surface settlement is exceeded by combining the FORM spreadsheet and the LR model proposed previously by Zhang et al.[28]. It is concluded that soil spatial variability results in a higher probability of failure (i.e., a lower reliability index).

    The parametric analysis shows that the spatial variability of soil, the threshold ground settlement, the stiffness of the system, the level of groundwater drawdown, as well as the COV of cu/sv′ and E50/cu have a significant influence on the reliability index. When the spatial variability of both cu/σ′v and E50/cu are considered, the influence on? is more significant. A larger characteristic length results in a lower probability of failure and a higher reliability index. The proposed approach requires much less computational effort in dealing with the spatial variability of soil properties. It is expected that these conclusions will provide useful references and insights for the design of future excavation projects involving spatial variability.

    For further study, a detailed characterization of geotechnical model uncertainties, especially from the perspective of the spatial variability of in situ soil properties, is indispensable. The authors are working on this by collecting borehole and bore log information regarding field instrumentation and tests.

    Acknowledgements

    The authors would like to acknowledge the financial support from National Natural Science Foundation of China (Grant No. 52078086), Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0632), Chongqing Engineering Research Center of Disaster Prevention & Control for Banks and Structures in Three Gorges Reservoir Area (No. SXAPGC18YB01).References:

    [1] PECK R B. Deep excavation and tunneling in soft ground [C]//7th International Conference on Soil Mechanics and Foundation Engineering, Sociedad Mexicana deMecanica, Mexico City, 1969: 225-290.

    [2] HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation [J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.

    [3] KUNG G T C, HSIAO E C L, JUANG C H. Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements [J]. Canadian Geotechnical Journal, 2007, 44(6): 726-736.

    [17] FAN H J, LIANG R. Reliability-based design of laterally loaded piles considering soil spatial variability [C]//Geo-Congress 2013. March 3-7, 2013, San Diego, California, USA. Reston, VA, USA: American Society of Civil Engineers, 2013: 475-486.

    [18] XIAO T, LI D Q, CAO Z J, et al. CPT-based probabilistic characterization of three-dimensional spatial variability using MLE [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(5): 04018023.

    [19] CHING J, HU Y G, PHOON K K. Effective Young's modulus of a spatially variable soil mass under a footing [J]. Structural Safety, 2018, 73: 99-113.

    [20] GOH A T C, ZHANG W G, WONG K S. Deterministic and reliability analysis of basal heave stability for excavation in spatial variable soils [J]. Computers and Geotechnics, 2019, 108: 152-160.

    [21] CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties [J]. Tunnelling and Underground Space Technology, 2019, 88: 276-289.

    [22] LUO Z, ATAMTURKTUR S, CAI Y Q, et al. Simplified approach for reliability-based design against basal-heave failure in braced excavations considering spatial effect [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 441-450.

    [23] WANG Y, CAO Z J. Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations [J]. Soils and Foundations, 2013, 53(6): 820-834.

    [24] CHEON J Y, GILBERT R B. Modeling spatial variability in offshore geotechnical properties for reliability-based foundation design [J]. Structural Safety, 2014, 49: 18-26.

    [25] LI D Q, QI X H, CAO Z J, et al. Reliability analysis of strip footing considering spatially variable undrained shear strength that linearly increases with depth [J]. Soils and Foundations, 2015, 55(4): 866-880.

    [26] GONG W, JUANG C H, MARTIN J R. A new framework for probabilistic analysis of the performance of a supported excavation in clay considering spatial variability [J]. Géotechnique, 2017, 67(6): 546-552.

    [27] LIU L L, DENG Z P, ZHANG S H, et al. Simplified framework for system reliability analysis of slopes in spatially variable soils [J]. Engineering Geology, 2018, 239: 330-343.

    [28] ZHANG R H, ZHANG W G, GOH A T C, et al. A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown [J]. Geomechanics and Engineering, 2018, 16(6): 635-642.

    [29] BRINKGREVE L B J, KUMARSWAMY S, SWOLFS W M. Plaxis 2D user manual [M]. PLAXIS bv, Netherlands, 2016.

    [30] HASHASH Y M A, WHITTLE A J. Ground movement prediction for deep excavations in soft clay [J]. Journal of Geotechnical Engineering, 1996, 122(6): 474-486.

    [31] LAM S Y. Ground movements due to excavation in clay: physical and analytical models [D]. University of Cambridge, UK, 2010.

    [32] ZHANG W G, GOH A T C, XUAN F. A simple prediction model for wall deflection caused by braced excavation in clays [J]. Computers and Geotechnics, 2015, 63: 67-72.

    [33] WROTH C P, HOULSBY G T. Soil mechanics-property characterization and analysis procedures [C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundations Engineering, San Francisco, California, U.S.A., 1985.

    [34] XUAN F. Behavior of diaphragm walls in clays and reliablity analysis[D]. Nanyang Technological University, 2009.

    [35] WEN D Z, LIN K Q. The effect of deep excavation on pore water pressure changes in the Old Alluvium and under-drainage of marine clay in Singapore [M]//Geotechnical Aspects of Underground Construction in Soft Ground. Specifique, Lyon, 2002.

    [36] VANMARCKE E H. Probabilistic modeling of soil profiles [J] Journal of the Geotechnical Engineering Division, 1977, 103(11), 1227-1246.

    [37] VANMARCKE E H. Random Fields: Analysis and synthesis [M]. 2nd ed. Hoboken, NJ: John Wiley & Sons, 2010.

    [38] RACKWITZ R. Reviewing probabilistic soils modelling [J]. Computers and Geotechnics, 2000, 26(3/4): 199-223.

    [39] SCHWEIGER H F, PESCHL G M. Reliability analysis in geotechnics with the random set finite element method [J]. Computers and Geotechnics, 2005, 32(6): 422-435.

    [40] JIANG S H, LI D Q, CAO Z J, et al. Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(2): 04014096.

    [41] LI X Y, ZHANG L M, GAO L, et al. Simplified slope reliability analysis considering spatial soil variability [J]. Engineering Geology, 2017, 216: 90-97.

    (編輯 胡英奎)

    猜你喜歡
    擋墻變異性方差
    孟魯司特鈉治療小兒咳嗽變異性哮喘的療效觀察
    氨氯地平、纈沙坦聯(lián)用對老年高血壓患者療效及血壓變異性的影響
    淺析下穿通道擋墻模板設(shè)計(jì)與施工技術(shù)
    預(yù)應(yīng)力鋼筋混凝土板加固高速病害擋墻的應(yīng)用研究
    丙酸氟替卡松、孟魯司特、地氯雷他定治療咳嗽變異性哮喘的臨床研究
    既有鐵路線漿砌石擋墻加固施工技術(shù)應(yīng)用
    擋土墻組合結(jié)構(gòu)型式選用的探討
    方差生活秀
    揭秘平均數(shù)和方差的變化規(guī)律
    方差越小越好?
    天堂av国产一区二区熟女人妻| 中文字幕免费在线视频6| 国产 一区精品| .国产精品久久| 久久精品国产亚洲av天美| 国产淫片久久久久久久久| a级毛片免费高清观看在线播放| 欧美日韩在线观看h| 黄色配什么色好看| 国产精品麻豆人妻色哟哟久久 | 一本一本综合久久| 国产视频首页在线观看| 午夜a级毛片| 三级国产精品欧美在线观看| 国产精品野战在线观看| 午夜精品国产一区二区电影 | 欧美最新免费一区二区三区| 免费人成在线观看视频色| 如何舔出高潮| 欧美成人一区二区免费高清观看| 在线观看美女被高潮喷水网站| 美女国产视频在线观看| 99国产精品一区二区蜜桃av| 99视频精品全部免费 在线| 麻豆一二三区av精品| 91精品国产九色| 日日摸夜夜添夜夜爱| 久久精品综合一区二区三区| 搡女人真爽免费视频火全软件| 久久精品人妻少妇| 精品熟女少妇av免费看| 久久精品国产亚洲av涩爱 | 国产亚洲精品久久久久久毛片| 国产午夜精品一二区理论片| 女的被弄到高潮叫床怎么办| 亚洲国产精品成人综合色| 国产一区二区在线av高清观看| 久久精品久久久久久噜噜老黄 | 免费av不卡在线播放| h日本视频在线播放| 三级经典国产精品| 18+在线观看网站| 精品久久久久久久久久久久久| 亚洲精品456在线播放app| 精品免费久久久久久久清纯| 久久中文看片网| 国产真实伦视频高清在线观看| 国产成人精品久久久久久| 国产女主播在线喷水免费视频网站 | 又爽又黄无遮挡网站| 成人欧美大片| 精品日产1卡2卡| 亚洲成a人片在线一区二区| 69av精品久久久久久| 亚洲精品自拍成人| 在线观看免费视频日本深夜| 欧美日本视频| 十八禁国产超污无遮挡网站| 国产精品久久久久久久久免| 国产精品嫩草影院av在线观看| 我要看日韩黄色一级片| 亚洲一级一片aⅴ在线观看| 久久人人精品亚洲av| 国产熟女欧美一区二区| 国产精品.久久久| 中文字幕av在线有码专区| 蜜桃亚洲精品一区二区三区| 久久久久网色| 青青草视频在线视频观看| 麻豆国产97在线/欧美| 午夜福利在线在线| 国产午夜福利久久久久久| 在线观看免费视频日本深夜| 成年版毛片免费区| 国产精品不卡视频一区二区| 国产精品电影一区二区三区| 国产大屁股一区二区在线视频| 性欧美人与动物交配| 亚洲国产色片| 一本久久精品| 免费观看人在逋| 成人特级av手机在线观看| 五月玫瑰六月丁香| 亚洲国产欧洲综合997久久,| 成人国产麻豆网| 此物有八面人人有两片| av.在线天堂| 婷婷精品国产亚洲av| 人妻制服诱惑在线中文字幕| 久久久久久久久中文| av专区在线播放| 亚洲三级黄色毛片| 男女那种视频在线观看| 国产又黄又爽又无遮挡在线| 亚洲av不卡在线观看| 国产一级毛片在线| 成熟少妇高潮喷水视频| 女的被弄到高潮叫床怎么办| 欧美高清性xxxxhd video| 亚洲精品456在线播放app| 99久久成人亚洲精品观看| 久久韩国三级中文字幕| 免费看美女性在线毛片视频| 九九热线精品视视频播放| 亚洲精品粉嫩美女一区| 精品午夜福利在线看| 久久精品国产清高在天天线| 久久精品国产自在天天线| 免费电影在线观看免费观看| 变态另类丝袜制服| 久久精品影院6| 中文精品一卡2卡3卡4更新| 国产精品日韩av在线免费观看| 一级毛片电影观看 | 国产成人午夜福利电影在线观看| 成人一区二区视频在线观看| 日韩欧美在线乱码| 午夜视频国产福利| 熟妇人妻久久中文字幕3abv| 白带黄色成豆腐渣| 99久久九九国产精品国产免费| 久久鲁丝午夜福利片| 国语自产精品视频在线第100页| 欧美最新免费一区二区三区| 欧美三级亚洲精品| 人体艺术视频欧美日本| 午夜福利在线观看免费完整高清在 | 国产女主播在线喷水免费视频网站 | 哪里可以看免费的av片| 亚洲精品色激情综合| 狂野欧美激情性xxxx在线观看| 亚洲18禁久久av| 久久中文看片网| 一边亲一边摸免费视频| 久久精品国产清高在天天线| 哪个播放器可以免费观看大片| 精品国产三级普通话版| eeuss影院久久| 2022亚洲国产成人精品| 久久精品91蜜桃| 国内精品美女久久久久久| 日韩欧美 国产精品| 国产三级中文精品| 欧美又色又爽又黄视频| 村上凉子中文字幕在线| 国产伦精品一区二区三区视频9| 精华霜和精华液先用哪个| 美女黄网站色视频| 亚洲欧美日韩卡通动漫| 97热精品久久久久久| 性色avwww在线观看| 在现免费观看毛片| 1024手机看黄色片| 久久久国产成人精品二区| 午夜精品国产一区二区电影 | 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩高清专用| 美女cb高潮喷水在线观看| 国产老妇伦熟女老妇高清| 国产精品久久视频播放| 国产亚洲精品久久久com| a级毛色黄片| 性欧美人与动物交配| 亚洲久久久久久中文字幕| 午夜精品国产一区二区电影 | 美女cb高潮喷水在线观看| 国产成人a∨麻豆精品| 日韩亚洲欧美综合| 51国产日韩欧美| 嘟嘟电影网在线观看| 日本黄色片子视频| 中文在线观看免费www的网站| 精品久久久久久久久久久久久| 99精品在免费线老司机午夜| 18+在线观看网站| 国产白丝娇喘喷水9色精品| 国产熟女欧美一区二区| 一区二区三区高清视频在线| 2021天堂中文幕一二区在线观| 精品久久久久久久久亚洲| 国产成人91sexporn| 国产精品人妻久久久影院| 国产亚洲91精品色在线| 91久久精品国产一区二区三区| 亚洲av成人av| 成人特级av手机在线观看| 色播亚洲综合网| 乱系列少妇在线播放| 免费看日本二区| 国产色爽女视频免费观看| 国产探花极品一区二区| 亚洲色图av天堂| 日本黄色视频三级网站网址| 亚洲最大成人中文| 看十八女毛片水多多多| 国内精品美女久久久久久| 日韩一本色道免费dvd| 亚洲欧美日韩无卡精品| 精品一区二区免费观看| 国产国拍精品亚洲av在线观看| 日本av手机在线免费观看| 国产亚洲av嫩草精品影院| 精品久久久久久成人av| 老女人水多毛片| 成人午夜精彩视频在线观看| 少妇熟女aⅴ在线视频| ponron亚洲| 色噜噜av男人的天堂激情| 精品午夜福利在线看| 淫秽高清视频在线观看| 最近中文字幕高清免费大全6| 一本久久中文字幕| 熟女人妻精品中文字幕| 又爽又黄a免费视频| 国产探花在线观看一区二区| 国产精品99久久久久久久久| 亚洲成人av在线免费| 国产女主播在线喷水免费视频网站 | 黄片无遮挡物在线观看| 美女黄网站色视频| a级毛片免费高清观看在线播放| 成人午夜高清在线视频| 在现免费观看毛片| 成人亚洲精品av一区二区| 99久久精品一区二区三区| 中文亚洲av片在线观看爽| 日韩精品青青久久久久久| 18禁黄网站禁片免费观看直播| 乱人视频在线观看| 久久久久九九精品影院| 特大巨黑吊av在线直播| 中文字幕av在线有码专区| 在线天堂最新版资源| 欧美日韩在线观看h| 99在线人妻在线中文字幕| 99国产精品一区二区蜜桃av| 国产精华一区二区三区| 久久草成人影院| 欧美潮喷喷水| 女同久久另类99精品国产91| 午夜福利高清视频| 婷婷六月久久综合丁香| 国产视频首页在线观看| 一本久久中文字幕| 国产单亲对白刺激| 日韩大尺度精品在线看网址| 色哟哟哟哟哟哟| 日韩制服骚丝袜av| av在线天堂中文字幕| 99久国产av精品国产电影| 人妻久久中文字幕网| 成人综合一区亚洲| 黄色配什么色好看| 边亲边吃奶的免费视频| 亚洲成人中文字幕在线播放| 国产一区二区在线av高清观看| 亚洲精品久久国产高清桃花| 国产69精品久久久久777片| 久久久久久久亚洲中文字幕| 欧美激情国产日韩精品一区| 熟女电影av网| av免费观看日本| 天堂√8在线中文| 性色avwww在线观看| 成人二区视频| 亚洲av中文字字幕乱码综合| 在线a可以看的网站| www日本黄色视频网| 精品久久久久久久久av| 中国美女看黄片| 人妻系列 视频| 亚洲三级黄色毛片| 国产精品一区二区在线观看99 | 亚洲自偷自拍三级| 嫩草影院入口| 男人的好看免费观看在线视频| 亚洲av电影不卡..在线观看| 国产欧美日韩精品一区二区| 国产高清不卡午夜福利| 五月伊人婷婷丁香| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 国产单亲对白刺激| 久久久久久久久中文| 寂寞人妻少妇视频99o| 日本五十路高清| 国产一区亚洲一区在线观看| 少妇猛男粗大的猛烈进出视频 | 一个人观看的视频www高清免费观看| 成人二区视频| 久久精品国产亚洲av涩爱 | 亚洲欧美清纯卡通| 99久久人妻综合| 欧美不卡视频在线免费观看| 村上凉子中文字幕在线| 综合色av麻豆| 久久久国产成人免费| 老师上课跳d突然被开到最大视频| 岛国毛片在线播放| 哪个播放器可以免费观看大片| 黄色视频,在线免费观看| 亚洲欧美清纯卡通| 成年av动漫网址| 2021天堂中文幕一二区在线观| av免费在线看不卡| 亚洲va在线va天堂va国产| 成人亚洲精品av一区二区| www.av在线官网国产| 久久精品久久久久久噜噜老黄 | 色哟哟·www| 精品欧美国产一区二区三| 十八禁国产超污无遮挡网站| 欧美+日韩+精品| 国产av在哪里看| 有码 亚洲区| 男人的好看免费观看在线视频| 亚洲av电影不卡..在线观看| 伦精品一区二区三区| 日本与韩国留学比较| 亚洲无线在线观看| 国产黄色视频一区二区在线观看 | 成人亚洲精品av一区二区| 欧美人与善性xxx| 国产乱人视频| АⅤ资源中文在线天堂| 国产精品嫩草影院av在线观看| 欧美潮喷喷水| av在线观看视频网站免费| 99九九线精品视频在线观看视频| 成人二区视频| 亚洲无线观看免费| 亚洲精品自拍成人| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| 青春草视频在线免费观看| 熟女电影av网| 26uuu在线亚洲综合色| 日本av手机在线免费观看| 国产日本99.免费观看| 亚洲精华国产精华液的使用体验 | 99久久无色码亚洲精品果冻| 国产91av在线免费观看| 国产成人精品久久久久久| 婷婷六月久久综合丁香| 久久6这里有精品| 麻豆乱淫一区二区| 亚洲欧美成人精品一区二区| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 久久午夜亚洲精品久久| 亚洲av成人精品一区久久| 在线观看av片永久免费下载| 久久久精品94久久精品| 1024手机看黄色片| 观看免费一级毛片| 天堂中文最新版在线下载 | 99久久精品一区二区三区| 国产高潮美女av| 最近视频中文字幕2019在线8| 午夜激情欧美在线| 日韩欧美在线乱码| 91午夜精品亚洲一区二区三区| 丰满人妻一区二区三区视频av| 成人无遮挡网站| 观看免费一级毛片| 色哟哟哟哟哟哟| 我要看日韩黄色一级片| 久久九九热精品免费| 联通29元200g的流量卡| 国产一级毛片七仙女欲春2| 欧美一区二区国产精品久久精品| 日韩 亚洲 欧美在线| 久久久久久久亚洲中文字幕| 在线观看66精品国产| 亚洲一级一片aⅴ在线观看| 午夜精品在线福利| 国产伦精品一区二区三区四那| 免费看a级黄色片| 欧美性猛交╳xxx乱大交人| 欧美丝袜亚洲另类| 久久精品国产亚洲av天美| 三级经典国产精品| 免费不卡的大黄色大毛片视频在线观看 | 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 亚洲在线观看片| 日韩人妻高清精品专区| 亚洲国产欧美在线一区| 99热这里只有是精品在线观看| 国产欧美日韩精品一区二区| av天堂在线播放| 国产一区二区激情短视频| 免费在线观看成人毛片| 亚洲在久久综合| 久久99热这里只有精品18| 国产老妇伦熟女老妇高清| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕日韩| 久久人人爽人人爽人人片va| 午夜激情福利司机影院| 内射极品少妇av片p| 国内揄拍国产精品人妻在线| 最后的刺客免费高清国语| 久久人妻av系列| 国产爱豆传媒在线观看| 成人漫画全彩无遮挡| 女的被弄到高潮叫床怎么办| av天堂中文字幕网| 在线观看一区二区三区| 一夜夜www| 九九爱精品视频在线观看| 欧美区成人在线视频| 欧美精品国产亚洲| 久久精品国产亚洲网站| 亚洲欧美日韩东京热| 黑人高潮一二区| 成年免费大片在线观看| 久久久久久久久中文| av免费观看日本| 国产精品久久视频播放| 男女那种视频在线观看| 日日啪夜夜撸| 欧美xxxx黑人xx丫x性爽| 美女被艹到高潮喷水动态| 最好的美女福利视频网| 性色avwww在线观看| 成人午夜精彩视频在线观看| 亚洲真实伦在线观看| 亚洲天堂国产精品一区在线| 色综合色国产| 五月玫瑰六月丁香| 麻豆av噜噜一区二区三区| 夫妻性生交免费视频一级片| 又粗又硬又长又爽又黄的视频 | 亚洲欧美中文字幕日韩二区| 国产精品99久久久久久久久| 只有这里有精品99| 91久久精品国产一区二区成人| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 国产精品一二三区在线看| 99久久九九国产精品国产免费| 国产一区二区亚洲精品在线观看| 日日干狠狠操夜夜爽| 国产综合懂色| 国产午夜福利久久久久久| 综合色丁香网| 亚洲第一电影网av| 亚洲人成网站在线播放欧美日韩| 亚洲内射少妇av| 桃色一区二区三区在线观看| av福利片在线观看| 国产一区二区激情短视频| 久久久国产成人精品二区| .国产精品久久| 久久精品影院6| 青春草国产在线视频 | 1000部很黄的大片| 我要搜黄色片| 色尼玛亚洲综合影院| ponron亚洲| 狠狠狠狠99中文字幕| 成人美女网站在线观看视频| 亚洲欧美精品专区久久| 18禁在线无遮挡免费观看视频| 啦啦啦观看免费观看视频高清| 久久国产乱子免费精品| 能在线免费看毛片的网站| 青春草视频在线免费观看| 国产av在哪里看| 91在线精品国自产拍蜜月| 校园春色视频在线观看| 边亲边吃奶的免费视频| 一个人免费在线观看电影| 免费黄网站久久成人精品| av在线蜜桃| 色播亚洲综合网| 可以在线观看毛片的网站| 午夜a级毛片| 青春草国产在线视频 | 精华霜和精华液先用哪个| 99国产精品一区二区蜜桃av| 成熟少妇高潮喷水视频| 日本成人三级电影网站| 麻豆国产97在线/欧美| 蜜桃亚洲精品一区二区三区| 小说图片视频综合网站| 亚洲欧洲日产国产| 乱系列少妇在线播放| 三级经典国产精品| 国产精品爽爽va在线观看网站| 欧美色欧美亚洲另类二区| 久久久久国产网址| 国产午夜精品久久久久久一区二区三区| 国产一区二区在线av高清观看| 成年av动漫网址| 国产女主播在线喷水免费视频网站 | 亚洲av男天堂| 麻豆av噜噜一区二区三区| 亚洲最大成人中文| 在线观看一区二区三区| 69av精品久久久久久| av专区在线播放| 婷婷色综合大香蕉| 好男人在线观看高清免费视频| 欧美成人免费av一区二区三区| 美女脱内裤让男人舔精品视频 | 日韩欧美三级三区| 成人无遮挡网站| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 色综合站精品国产| 在线播放国产精品三级| 欧美又色又爽又黄视频| 国产精品久久久久久av不卡| 波多野结衣巨乳人妻| 爱豆传媒免费全集在线观看| 久久人人爽人人片av| 成年女人看的毛片在线观看| 一夜夜www| 欧美潮喷喷水| 精品久久久久久久久亚洲| 日韩欧美精品免费久久| 日日摸夜夜添夜夜添av毛片| 国产高清激情床上av| 中文字幕精品亚洲无线码一区| 亚洲中文字幕日韩| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄 | 99久久中文字幕三级久久日本| 蜜桃久久精品国产亚洲av| 深夜a级毛片| 最近的中文字幕免费完整| 女同久久另类99精品国产91| 欧美激情在线99| 欧美日本视频| 国国产精品蜜臀av免费| 久久这里有精品视频免费| 我的女老师完整版在线观看| 成熟少妇高潮喷水视频| 99久久久亚洲精品蜜臀av| 亚洲高清免费不卡视频| 黄色一级大片看看| av在线播放精品| 天天一区二区日本电影三级| 激情 狠狠 欧美| 日韩欧美在线乱码| 亚洲无线在线观看| 联通29元200g的流量卡| 免费不卡的大黄色大毛片视频在线观看 | 看非洲黑人一级黄片| 男人的好看免费观看在线视频| 免费av不卡在线播放| 欧美zozozo另类| 亚洲在久久综合| 狂野欧美激情性xxxx在线观看| 可以在线观看毛片的网站| 又粗又硬又长又爽又黄的视频 | 久久久久国产网址| 久久久久久大精品| 国产成人精品一,二区 | 亚洲人成网站在线播| 日韩欧美精品v在线| 又爽又黄无遮挡网站| 亚洲欧美日韩无卡精品| 午夜精品在线福利| av在线蜜桃| 一本一本综合久久| 亚洲一区二区三区色噜噜| 久久久久网色| 精品人妻偷拍中文字幕| 1024手机看黄色片| 国语自产精品视频在线第100页| 一区二区三区四区激情视频 | 日韩三级伦理在线观看| 成熟少妇高潮喷水视频| 欧美bdsm另类| 国产单亲对白刺激| 国产亚洲5aaaaa淫片| 日本黄色片子视频| 国产av在哪里看| 欧美色欧美亚洲另类二区| 波多野结衣高清无吗| 午夜激情欧美在线| 欧美又色又爽又黄视频| 国产精品一区www在线观看| 国产高潮美女av| 久99久视频精品免费| 12—13女人毛片做爰片一| 久久久国产成人免费| 国产免费一级a男人的天堂| 一本一本综合久久| 人妻夜夜爽99麻豆av| 久久久久网色| 国产乱人视频| 美女 人体艺术 gogo| 99国产极品粉嫩在线观看| 国产美女午夜福利| 国产免费一级a男人的天堂| 午夜爱爱视频在线播放| 精品一区二区三区人妻视频| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看 | 久久韩国三级中文字幕| av天堂中文字幕网| 一本久久精品| 欧美三级亚洲精品| 国产淫片久久久久久久久| 午夜福利高清视频| 国产人妻一区二区三区在| 国产精品综合久久久久久久免费| 久99久视频精品免费| 亚洲精品久久久久久婷婷小说 |