• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平行隧道開挖引起場地沉降的透明土模型試驗(yàn)研究

    2021-03-11 08:49:38劉漢龍鐘海怡顧鑫向鈺周仉文崗
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:砂質(zhì)模型試驗(yàn)損失率

    劉漢龍 鐘海怡 顧鑫 向鈺周 仉文崗

    摘 要:為了便捷現(xiàn)代城市交通,地鐵系統(tǒng)普遍采用平行隧道模式。平行隧道開挖引起的場地沉降預(yù)測一般基于單一隧道工況,利用簡化疊加法生成變形剖面,而沒有考慮兩個(gè)隧道之間的相互作用。采用透明土模型試驗(yàn)技術(shù),自主研發(fā)平行隧道模型試驗(yàn)裝置及試驗(yàn)方法,研究了在砂質(zhì)場地上開挖平行隧道引起的地表和地層沉降特性。通過模型試驗(yàn)探索了平行隧道間距、土體損失率、埋深等要素對地表和地表沉降的影響規(guī)律。在此基礎(chǔ)上,量化了土體損失率和場地沉降值間的數(shù)值關(guān)系。此數(shù)值關(guān)系可為砂質(zhì)場地中平行隧道施工與設(shè)計(jì)提供參考依據(jù),也為隧道間距初選以及埋深的初步確定提供理論支撐。

    關(guān)鍵詞:透明土;平行隧道;模型試驗(yàn);地表沉降;地層沉降

    1 Introduction

    With the rapid development of the modern city, burying the subway tunnels has proven to be an effective way to relieve traffic pressure on the ground. Accurate estimation of ground settlement is vital to ensure safety during the tunnel excavation. To this end, many early scholars have studied both the surface and the subsurface settlement for the excavation of the single tunnel[1-4]. However, single tunnel construction is rarely encountered in practice. Instead, parallel tunnels excavated sequentially are commonly constructed in urban subways to facilitate the movement of traffic in modern cities. In comparison to monitoring the deformation in clays[1-2], the settlement caused by tunneling in granular soils (e.g., sands and gravels) are more difficult and complex when considering key factors such as the relative density, which influences the shape and magnitude of the deformation[5]. Recently, the settlement of single tunnels in sand has been studied through model testing[6] and numerical simulation[7-8]. Yet the deformation induced by sequential excavation of parallel tunnels has not been fully revealed. Therefore, it may be a research hotspot in geotechnical engineering to investigate the deformation induced by the excavations of two parallel tunnels.

    Many studies based on analytical deduction have been carried out to investigate the deformation induced by tunnel excavation, but they mainly aimed at the single tunnel[9-13]. Parallel-tunneling deformation prediction generally utilizes the simplified superposition method with the assumption the deformation arising from the excavation of the 2nd tunnel is unaffected by that of the 1st tunnel. However, previous research, particularly numerical studies that can fully consider the interaction between two tunnels, have indicated that this method may not be directly applicable to estimating the parallel tunneling-induced settlement in practice, since it may underestimate the resultant settlement, which may exert a negative effect on the safety of the nearby constructions[14]. The numerical simulation of tunneling which permits calculating internal soil deformation is widely used in the last decade[14-18]. However, not only is internal soil deformation difficult to validate against the actual measurements, but the key input parameters, which can directly and significantly impact the accuracy of the results, are quite difficult to obtain. Many scholars have focused on in-situ surface settlement induced by sequential excavation of parallel tunnels in a variety of soils. Since the in-situ test is costly and time-consuming, laboratory tests are widely used in performing two-dimensional trap door tests in dry sand[19] and lining installation in a centrifuge[20-21]. However, it is challenging to obtain the inner soil deformation and the failure pattern from the conventional model tests. Moreover, the results from traditional laboratory test are inevitably affected by the boundary conditions and the embedment of the rigid sensors has an effect on instrumentation accuracy due to the arching effect[22-23]. Recently the development of data-driven and soft computing methods, Zhang et al.[24-25] and Shahrour and Zhang[26] predicted the surface settlement induced by earth pressure balance shield tunneling, estimated the lining response for twin-tunnel construction, and performed TBM tunneling optimization. However, this kind of data-based method has an obvious deficiency in revealing the deformation characteristics in tunneling constructions, where the internal physical failure mechanism is often ignored.

    To visualize the interioror the full-filed deformation, an advanced modeling technique using the transparent soil is adopted in this study, which was firstly developed by Allersma[27] and utilized by many scholars worldwide[28-29], including in tunneling by Ahmed and Iskander[30-31]. And the intend of this paper is to explore the parallel-tunnel interaction and its influence on surface and subsurface settlements due to the second tunnel in sandy ground considering the spacing (S) between two tunnels, the magnitude of the volume of ground loss at the tunnel (Vl )and burial depth (H and H0).

    2 Experimental design

    2.1 Testing apparatus

    The model testing system was adopted to monitor the settlement variation during excavation. It consisted of a computer, an optical platform, a charge coupled device (CCD) camera, a disk laser, a plexiglass model tank, and processing software for particle image velocimetry (PIV) digital images. The optical platform was ferromagnetic stainless steel and the inner core structure on the top side offered considerable anti-disturbance capacity. The high resolution of the CCD camera was 1280×960 pixels, which could record the settlement during tunnel excavation continuously operated by the control program of the computer. The disk laser was EP532-3W along with 3 W output power, 532 nm wavelength, 10°-25° light angle and less than 1 mm thickness. The multifunctional model box made of acrylic plexiglass with each surface bonded by strong glue was capable of simulating the single tunnel test, parallel tunnels test and cross tunnels test, for a total of four tunnels (three on the front and one on the side). Additionally, ribs were fixed at the bottom to restrain the deformation.

    2.2 Testing materials

    Fused silica sand, which has similar physical and mechanical properties to the proxy naturally graded sand, was adopted in this study to manufacture the transparent soil samples. The particles were 0.5-1.0 mm in size. The maximum dry density was 1.278 g/cm3, and the minimum was 0.907 g/cm3. The relative density was 55% and the internal friction angle was between 34° and 38°. The pore liquid was mixed with n-dodecane and the 15th mineral white oil with the mass ratio of 1:4 and its refractive index was 1.458 5. The periphery of the tunnel was isolated from the surrounding soil with a self-made film tube made of transparent and highly elastic thermoplastic polyurethane (TPU) film to prevent the pore liquid from flowing out along the tunnel model hole during the test. The drainage method was used to simulate the tunnel excavation process. One end of a rubber tube with a diameter of 50 mm was tied with a wire, and the other end was sleeved on a rubber plug with a drainage tube and tied with a rubber band to prevent potential water leakage. Before the test, the model box was cleaned, and the tunnel model, as well as the waterproof film tube, was set up.

    3 Testing result and analysis

    3.1 Surface settlement

    3.1.1 Surface settlement due to excavation of the 1st tunnel

    Fig.3 presents the measured surface settlement SV_A induced by TA under H (Depth from the surface to the tunnel axis level)/D=2.0 and 5.0, respectively. The normal probability Gaussian curves proposed by Peck[3] were used to fit the measured data. The surface settlement of the 1st tunnel excavation has good agreement with O'Reilly and New[2], which is expected since TA is excavated in a greenfield site and this behavior is reected in the first tunnel settlement for all tests. Moreover, the Gaussian curves give a good fit when Vl=1.455% and 2.911%, then the goodness of the fit declines with the increase in Vl, which coincides with the observations by Marshall et al.[5].

    As seen in Fig.4(a), the maximum surface settlement Smax_Alinearly increases with Vl, which can also be seen in Shahin et al.[34]. From Fig.4(b), the soil volume loss of surface settlement VS_A is smaller than Vl in all performed tests, especially at large Vl and H which is in good agreement with Zheng et al.[35], who points out that the soil within the subsurface ground may exhibit an overall dilating response considering that the tests were conducted in a low-stress condition.

    3.1.2 Surface settlement due to excavation of the 2nd tunnel

    The resultant surface settlement SV of different groups is plotted inFig.5. Fundamentally, the distribution of the resultant ground settlement under H/D=2.0 and 5.0 changes from a “V” shape to a “W” shape step by step as S becomes larger.

    From Fig.5, it is clear that the position corresponding to Smax_A is directly above TA during the tunnel excavation of TA. With the increase of Vl in TB, the position corresponding to Smax_B gradually moves towards the axis of TB and the asymmetry of the settlement trough becomes more significant in T1, T2, T3 and T4 (S=1.5D and 2.0D). But for the tests (T3 and T6) that have larger S, the position corresponding to Smax_B is also just above TB, which means the excavation of TA has little influence on TB.

    From Fig.6, it is clear that for T1, T2, T4 and T5, the corresponding location of the maximum surface settlement X moves toward TB as Vl increases and the asymmetry of the settlement trough also becomes more significant. For T3, the corresponding locations of the maximum surface settlement X remains constant and the excavation of TA has little impact on TB. For T4, although X does not change, the settlement trough curves appear as an inflection point at X=1.5D.

    To further investigate the settlement caused by each excavation, the net surface settlement SV_B induced by TB is shown in Fig.7. The settlement of TB is obtained from the resultant ground settlement subtracting the 1st tunnel settlement. Gaussian curves are again used to fit the experimental data. The goodness-of-fit of the Gaussian curves is shown to decrease with the development of Vl in the TB excavation, which is similar to the observations in the TA excavation.

    Fig.8(a) shows the Smax_B/D-Vl curves gained from the six tests. Basically, a non-linear relationship is found between Smax_B and Vl·Smax_B grows up gradually as Vl developed. Moreover, its magnitude is larger compared with Smax_A as plotted in Fig.3, which is consistent with the conclusion obtained in clayey soils that the larger settlement in the 2nd tunnel excavation is caused by the interaction between the two tunnels[36-37].

    To further illustrate the impact of parallel-tunnel interaction on Smax_B, variations in Smax_B/ Smax_A with different Vl are plotted in Fig.8(b). Basically, S appears to be the most dominant factor influencing the values of Smax_B/Smax_A. The influence of the twin-tunnel interaction is more significant in T1, T2, T4 and T5 (S=1.5D and 2.5D), than in T3 and T6 (S=4.5D) as well as in the case of smaller H(H=2D).

    Fig.9 presents the values of the empirical coefficient for surface settlement k under different Vl for different H/D. Here, kl and kr represent the empirical coefficients of the left and right sides of the settlement trough, respectively. k gradually increases with Vl under the same S. Conversely, it decreases step by step with the increase of S. Moreover, kl gets closer to kr as S increases, indicating that both sides of the settlement trough tend to be symmetrical.

    3.2 Subsurface settlement

    The resultant subsurface settlement Su of different groups is plotted in Fig.10. Basically, the distribution of Group 1 gradually changes from a “W” shape to a “V” shape as H0(Depth from the subsurface to the tunnel axis level)/D becomes larger. And the distribution of Group 2 remains in the shape of a “W”.From Fig.11, it is clear that for Group 1, the corresponding location of the maximum subsurface settlement Xumoves toward TB as Vl increases. The asymmetry of the settlement trough for U1 and U2 becomes more significant, while for U3, the curves of the settlement trough undergo a process from asymmetry to symmetry and then back to asymmetry. As for Group 2, Xu is also just above TB and their settlement trough curves are quite similar, which means the excavation of TA has little influence on TB.

    4 Summary and conclusions

    Based upon the surface and subsurface settlements observed during the transparent soil model test, some useful conclusions are drawn as shown below:

    1) With the increase of the ground volume loss, the Gaussian curve used to predict the ground settlement induced by the excavation of the two parallel tunnels demonstrates a decreasing trend.

    2) The interaction of the parallel tunnels leads to greater maximum surface settlement Smax_B during the excavation of TB compared with that of TA. This effect weakens as the spacing between the parallel tunnels increases.

    3) When S=1.5D and 2.0D, the excavation of the 1st tunnel has a significant effect on the surface settlement of the 2nd tunnel, and the corresponding location of Smax gradually moves towards the axis of the 2nd tunnel with the increase of Vl. Moreover, the asymmetry of the settlement trough becomes more obvious. When S=4.5D, the excavation of the 1st tunnel has a marginal influence on the deformation of the 2nd tunnel.

    4) Under the same S, k gradually increases with the growth of Vl while it declines as S develops. The empirical coefficients k of the left and right sides get closer as S increases.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Chongqing Construction Science and Technology Plan Project (No. 2019-0045), Fundamental Research Funds for the Central Universities (No. 2019CDJDTM0007) and the Graduate Research and Innovation Foundation of Chongqing (Grant No. CYS18024).

    References:

    [1] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays [J].Geotechnique, 1993, 43(2): 315-320.

    [2] O'REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom - Their magnitudes and prediction [C]//Proceedings of Tunnelling '82 Symposium, Springer, Berlin, 1982: 173-181.

    [3] PECK R B. Deep excavations and tunneling in soft ground [C]//Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico, Balkema, 1969, 3: 225-290.

    [4] SCHMIDT B. Settlement and ground movement associated with tunneling in soils [D]. Urbana: University of Illinois, 1969.

    [5] MARSHALL A M, FARRELL R P, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements [J].Geotechnique, 2012, 62(5): 385-399.

    [6] FRANZA A, ZHOU B, MARSHALL A M. The effects of relative tunnel depth and volume loss on vertical settlements above tunnels in dense sands [C]//Fourth Geo-China International Conference. July 25-27, 2016, Shandong, China. Reston, VA, USA: American Society of Civil Engineers, 2016: 125-132.

    [7] YANG B W, BLOODWORTH A. Numerical analysis oftunnelling in sand-A case study of a centrifuge test [C]//Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction, 2018.

    [8] ZHOU B, ELKAYAM I, MARSHALL A. The effect of relative density on tunnelling-induced settlements - DEM simulations versus centrifuge test results[M]// Geomechanics from Micro to Macro. CRC Press, 2014: 589-594.

    [9] BOBET A. Analytical solutions for shallow tunnels in saturated ground [J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.

    [10] CHI S Y, CHERN J C, LIN C C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model [J]. Tunnelling and Underground Space Technology, 2001, 16(3): 159-165.

    [11] CHOU W I, BOBET A. Predictions of ground deformations in shallow tunnels in clay [J].Tunnelling and Underground Space Technology, 2002, 17(1): 3-19.

    [12] PARK K H. Analytical solution for tunnelling-induced ground movement in clays [J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.

    [13] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane [J].Géotechnique, 1996, 46(4): 753-756.

    [14] ADDENBROOKE T, POTTS D M. Twin tunnel interaction: surface and subsurface effects [J]. International Journal of Geomechanics, 2001, 1(2): 249-271.

    [15] GONZLEZ N A, ROUAINIA M, ARROYO M, et al. Analysis of tunnel excavation in London Clay incorporating soil structure [J].Géotechnique, 2012, 62(12): 1095-1109.

    [16] KASPER T, MESCHKE G. A 3D finite element simulation model for TBM tunnelling in soft ground [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(14)1441-1460.

    [17] ZHANG W G, ZHANG R H, WU C Z, et al. State-of-the-art review of soft computing applications in underground excavations [J]. Geoscience Frontiers, 2020, 11(4): 1095-1106.

    [18] CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties [J]. Tunnelling and Underground Space Technology, 2019, 88: 276-289.

    [19] VARDOULAKIS I, GRAF B, GUDEHUS G. Trap-door problem with dry sand:A statical approach based upon model test kinematics [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(1): 57-78.

    [20] CHAPMAN D N, AHN S K, HUNT D V L, et al. The use of model tests to investigate the ground displacements associated with multiple tunnel construction in soil [J].Tunnelling and Underground Space Technology, 2006, 21(3/4): 413.

    [21] KIM S H. Interaction between closely spaced tunnels in clay [D]. Oxford, UK: Oxford University, 1996: 242.

    [22] LEE C J, CHIANG K H, KUO C M. Ground movement and tunnel stability when tunneling in sandy ground [J]. Journal of the Chinese Institute of Engineers, 2004, 27(7): 1021-1032.

    [23] XIANG Y Z, LIU H L, ZHANG W G, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism [J].Tunnelling and Underground Space Technology, 2018, 74: 178-184.

    [24] ZHANG W G, LI H R, WU C Z, et al. Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling [J/OL]. Underground Space, 2020. https://doi.org/10.1016/j.undsp.2019.12.003.

    [25] ZHANG W G, LI Y Q, WU C Z, et al. Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques [J/OL]. Underground Space, 2020. DOI:10.1016/j.undsp.2020.02.007.

    [26] SHAHROUR I, ZHANG W G. Use of the soft computing techniques for TBM tunnelling optimization [J/OL]. Underground Space, 2020. https://doi.org/10.1016/j.undsp.2019.12.001

    [27] ALLERSMA H. Photo-elastic stress analysis and strains in simple shear[C]//Proc. Iutam Symposium on Deformation and Failure of Granular Materials, 1982: 345-353.

    [28] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.

    [29] NG C W W, SHI J W, HONG Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand [J]. Canadian Geotechnical Journal, 2013, 50(8): 874-888.

    [30] AHMED M, ISKANDER M. Evaluation of tunnel face stability by transparent soil models [J].Tunnelling and Underground Space Technology, 2012, 27(1): 101-110.

    [31] AHMED M, ISKANDER M. Analysis of tunneling-induced ground movements using transparent soil models [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 525-535.

    [32] LIU J Y. Visualizing 3-D internal soil deformation using laser speckle and transparent soil techniques [C]//GeoHunan International Conference 2009. August 3-6, 2009, Changsha, Hunan, China. Reston, VA, USA: American Society of Civil Engineers, 2009: 123-128.

    [33] SADEK S, ISKANDER M, LIU J Y. Geotechnical properties of transparent silica [J]. Canadian Geotechnical Journal, 2002, 39(1): 111-124.

    [34] SHAHIN H M, NAKAI T R, ZHANG F, et al. Behavior of ground and response of existing foundation due to tunneling [J]. Soils and Foundations, 2011, 51(3): 395-409.

    [35] ZHENG G, TONG J B, ZHANG T Q, et al. Experimental study on surface settlements induced by sequential excavation of two parallel tunnels in drained granular soil [J].Tunnelling and Underground Space Technology, 2020, 98: 103347.

    [36] CHAPMAN D, AHN S K, HUNT D V L. Investigating ground movements caused by the construction of multiple tunnels in soft ground using laboratory model tests [J]. Canadian Geotechnical Journal, 2007, 44(6): 631-643.

    [37] DIVALL S, GOODEY R J. Twin-tunnelling-induced ground movements in clay [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2015, 168(3): 247-256.

    (編輯 胡英奎)

    猜你喜歡
    砂質(zhì)模型試驗(yàn)損失率
    農(nóng)業(yè)農(nóng)村部印發(fā)《意見》提出到2025年農(nóng)產(chǎn)品加工環(huán)節(jié)損失率降到5%以下
    砂質(zhì)板巖地層下小斷面盾構(gòu)刀盤結(jié)構(gòu)設(shè)計(jì)方法
    河北省砂質(zhì)岸線修復(fù)現(xiàn)狀及思考
    基于砂質(zhì)海岸帶海水入侵模型試驗(yàn)分析研究
    反推力裝置模型試驗(yàn)臺的研制及驗(yàn)證
    帶有治療函數(shù)及免疫損失率的SIRS流行病模型的動(dòng)力學(xué)分析
    12部使用一年后最廉價(jià)轉(zhuǎn)售車
    海外星云(2016年19期)2016-10-24 11:53:42
    2014~2015年冬季美國蜂群損失調(diào)查
    臺階式短加筋土擋墻行為特征的離心模型試驗(yàn)
    巨厚堅(jiān)硬巖漿巖不同配比的模型試驗(yàn)研究
    日韩在线高清观看一区二区三区| 五月开心婷婷网| 九九在线视频观看精品| 欧美bdsm另类| 久久人人爽av亚洲精品天堂| 亚洲欧美一区二区三区国产| 成人美女网站在线观看视频| 久久久久久久久久人人人人人人| 亚洲天堂av无毛| 久久ye,这里只有精品| 国产亚洲精品久久久com| 国产欧美日韩一区二区三区在线 | 免费人成在线观看视频色| av福利片在线观看| 亚洲精品日韩av片在线观看| 综合色丁香网| 建设人人有责人人尽责人人享有的| 国产色婷婷99| av.在线天堂| 一区二区av电影网| 亚洲高清免费不卡视频| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 91aial.com中文字幕在线观看| 激情五月婷婷亚洲| 麻豆乱淫一区二区| 国产伦理片在线播放av一区| 黄片无遮挡物在线观看| 视频中文字幕在线观看| 亚洲精品中文字幕在线视频 | 亚洲伊人久久精品综合| 王馨瑶露胸无遮挡在线观看| 纯流量卡能插随身wifi吗| 欧美+日韩+精品| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 男人狂女人下面高潮的视频| 国产探花极品一区二区| 69精品国产乱码久久久| 热re99久久国产66热| 三上悠亚av全集在线观看 | 精品久久久精品久久久| 在线观看一区二区三区激情| 亚洲欧美一区二区三区黑人 | 丝袜脚勾引网站| 丝袜脚勾引网站| 国产淫语在线视频| 婷婷色麻豆天堂久久| 国产精品三级大全| 秋霞在线观看毛片| 高清视频免费观看一区二区| 欧美bdsm另类| 一本大道久久a久久精品| videos熟女内射| 国产av精品麻豆| 亚洲伊人久久精品综合| 国产老妇伦熟女老妇高清| 日本欧美视频一区| 精品人妻偷拍中文字幕| 成人18禁高潮啪啪吃奶动态图 | 黑人巨大精品欧美一区二区蜜桃 | 亚洲在久久综合| 国产精品福利在线免费观看| 午夜福利在线观看免费完整高清在| 免费人妻精品一区二区三区视频| 久久ye,这里只有精品| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 日本午夜av视频| 最近中文字幕高清免费大全6| 国产一级毛片在线| 黑丝袜美女国产一区| 精品久久久久久电影网| 久久久久网色| 国产精品不卡视频一区二区| 日韩伦理黄色片| 啦啦啦中文免费视频观看日本| 欧美成人精品欧美一级黄| 久久鲁丝午夜福利片| 高清黄色对白视频在线免费看 | 日韩制服骚丝袜av| 亚洲图色成人| 午夜影院在线不卡| av天堂中文字幕网| 国产精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 一级,二级,三级黄色视频| 日韩av在线免费看完整版不卡| 国产熟女午夜一区二区三区 | 五月伊人婷婷丁香| 亚洲av欧美aⅴ国产| 最后的刺客免费高清国语| 偷拍熟女少妇极品色| 久久国产亚洲av麻豆专区| 亚洲国产欧美日韩在线播放 | 国产伦理片在线播放av一区| 欧美最新免费一区二区三区| 亚洲精品自拍成人| 少妇人妻久久综合中文| 丰满乱子伦码专区| 性色avwww在线观看| 国产无遮挡羞羞视频在线观看| 国产日韩欧美在线精品| 亚洲国产日韩一区二区| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 亚洲av综合色区一区| 黄色一级大片看看| 亚洲内射少妇av| 国产中年淑女户外野战色| 高清视频免费观看一区二区| 最近最新中文字幕免费大全7| 大香蕉97超碰在线| 国产在线男女| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 少妇人妻 视频| 一本久久精品| 亚洲欧美成人精品一区二区| 欧美日韩视频精品一区| 日韩免费高清中文字幕av| 成人综合一区亚洲| 国产亚洲5aaaaa淫片| 久久精品久久精品一区二区三区| 久久国产精品男人的天堂亚洲 | 我的老师免费观看完整版| 夫妻午夜视频| 亚洲人成网站在线播| 国产熟女欧美一区二区| 夫妻午夜视频| 亚洲图色成人| 成人毛片60女人毛片免费| 国产视频首页在线观看| av在线app专区| 我的老师免费观看完整版| 成人影院久久| 91成人精品电影| 永久免费av网站大全| 国产高清国产精品国产三级| 欧美日韩亚洲高清精品| 寂寞人妻少妇视频99o| 狂野欧美激情性xxxx在线观看| 晚上一个人看的免费电影| 老司机影院毛片| 久久人人爽人人爽人人片va| 中文字幕亚洲精品专区| 天天操日日干夜夜撸| 国产精品一区二区在线不卡| 涩涩av久久男人的天堂| 黄片无遮挡物在线观看| 在现免费观看毛片| 十八禁网站网址无遮挡 | 久久久精品免费免费高清| 国产精品福利在线免费观看| 日本欧美国产在线视频| 国产成人freesex在线| 精品国产一区二区久久| 久久久久国产精品人妻一区二区| 欧美日韩综合久久久久久| 国产亚洲欧美精品永久| 亚洲人成网站在线播| 制服丝袜香蕉在线| 一二三四中文在线观看免费高清| 免费少妇av软件| 久久久午夜欧美精品| 亚洲欧美日韩卡通动漫| 人妻 亚洲 视频| 国产精品久久久久久久电影| 久久久国产一区二区| 免费黄色在线免费观看| 欧美一级a爱片免费观看看| 欧美精品一区二区大全| 王馨瑶露胸无遮挡在线观看| 亚洲性久久影院| 亚洲av男天堂| 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 一级毛片 在线播放| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 国产精品免费大片| 日日啪夜夜爽| 日本av免费视频播放| av国产久精品久网站免费入址| 国产欧美日韩精品一区二区| 久久久久久伊人网av| 韩国av在线不卡| 国产精品一区二区在线观看99| 九色成人免费人妻av| 人妻系列 视频| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 纯流量卡能插随身wifi吗| 久久99一区二区三区| 少妇裸体淫交视频免费看高清| 精品亚洲成a人片在线观看| 男人舔奶头视频| 18禁在线播放成人免费| 国产一区有黄有色的免费视频| 日本与韩国留学比较| 久久午夜福利片| 国产av一区二区精品久久| 久久久久精品久久久久真实原创| 青春草国产在线视频| 国产男女超爽视频在线观看| 午夜免费鲁丝| 国产在线男女| 777米奇影视久久| 亚洲精品456在线播放app| 精品熟女少妇av免费看| 日日摸夜夜添夜夜爱| 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 久久99热6这里只有精品| 精品国产一区二区三区久久久樱花| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 哪个播放器可以免费观看大片| 久久国内精品自在自线图片| 国产成人精品福利久久| 中国国产av一级| 国产乱人偷精品视频| 男人舔奶头视频| 插阴视频在线观看视频| 少妇高潮的动态图| 久久ye,这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 欧美 亚洲 国产 日韩一| 人人妻人人爽人人添夜夜欢视频 | 如何舔出高潮| 日韩一本色道免费dvd| 国产精品久久久久久av不卡| 十八禁网站网址无遮挡 | 日韩,欧美,国产一区二区三区| 亚洲伊人久久精品综合| 日韩成人av中文字幕在线观看| 国产高清国产精品国产三级| 午夜福利影视在线免费观看| 熟妇人妻不卡中文字幕| 黄色配什么色好看| 欧美日韩精品成人综合77777| 午夜免费鲁丝| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 黄片无遮挡物在线观看| 久久久久久久精品精品| 特大巨黑吊av在线直播| 大香蕉久久网| 久久精品国产自在天天线| 男男h啪啪无遮挡| 又爽又黄a免费视频| 日本黄大片高清| 夫妻午夜视频| 免费看日本二区| 国产成人精品久久久久久| 中文字幕av电影在线播放| 国产午夜精品一二区理论片| 国产男人的电影天堂91| 丝袜喷水一区| 美女国产视频在线观看| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 插逼视频在线观看| 少妇猛男粗大的猛烈进出视频| kizo精华| 国产精品偷伦视频观看了| 深夜a级毛片| 丝瓜视频免费看黄片| 午夜免费观看性视频| 欧美亚洲 丝袜 人妻 在线| 国产高清有码在线观看视频| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 国产亚洲欧美精品永久| 精品99又大又爽又粗少妇毛片| 日韩欧美 国产精品| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 91成人精品电影| av.在线天堂| 国产成人免费观看mmmm| 美女福利国产在线| 国产在线一区二区三区精| 肉色欧美久久久久久久蜜桃| 啦啦啦在线观看免费高清www| 狂野欧美激情性bbbbbb| 欧美人与善性xxx| 国产精品秋霞免费鲁丝片| 老司机亚洲免费影院| 成人午夜精彩视频在线观看| 日本与韩国留学比较| 国产免费视频播放在线视频| 久久久a久久爽久久v久久| 亚洲精品视频女| 亚洲欧美日韩卡通动漫| 欧美一级a爱片免费观看看| 蜜臀久久99精品久久宅男| 热re99久久国产66热| 极品教师在线视频| 午夜日本视频在线| 日韩 亚洲 欧美在线| 成年美女黄网站色视频大全免费 | 国产淫片久久久久久久久| 熟女电影av网| 美女cb高潮喷水在线观看| 日韩熟女老妇一区二区性免费视频| 国产日韩一区二区三区精品不卡 | 亚洲中文av在线| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线观看播放| 亚洲国产欧美在线一区| 嘟嘟电影网在线观看| 我的老师免费观看完整版| 久久国产亚洲av麻豆专区| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 美女视频免费永久观看网站| 精华霜和精华液先用哪个| 免费看av在线观看网站| 成人黄色视频免费在线看| 少妇熟女欧美另类| 蜜臀久久99精品久久宅男| 国产黄色视频一区二区在线观看| 国产免费一级a男人的天堂| 亚洲va在线va天堂va国产| 看十八女毛片水多多多| 高清不卡的av网站| 伦理电影大哥的女人| 精品少妇久久久久久888优播| 日日摸夜夜添夜夜添av毛片| 青春草亚洲视频在线观看| 夜夜爽夜夜爽视频| 国产精品免费大片| av视频免费观看在线观看| 九色成人免费人妻av| 国产色婷婷99| 精品久久国产蜜桃| 午夜免费男女啪啪视频观看| 久久午夜综合久久蜜桃| 久久av网站| 久久影院123| 欧美高清成人免费视频www| 亚洲天堂av无毛| 啦啦啦啦在线视频资源| av免费观看日本| 美女视频免费永久观看网站| av福利片在线| 黑人巨大精品欧美一区二区蜜桃 | 亚洲真实伦在线观看| 午夜激情福利司机影院| 国产黄频视频在线观看| 91精品国产九色| 欧美日韩视频精品一区| 亚洲国产成人一精品久久久| 草草在线视频免费看| 中文字幕亚洲精品专区| 99久久精品热视频| 久久久a久久爽久久v久久| 3wmmmm亚洲av在线观看| 亚洲国产欧美日韩在线播放 | 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 中文字幕人妻熟人妻熟丝袜美| 色婷婷av一区二区三区视频| 国产亚洲av片在线观看秒播厂| 国产精品秋霞免费鲁丝片| 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 午夜精品国产一区二区电影| 精品一区二区免费观看| 精品亚洲成国产av| 少妇的逼好多水| 秋霞伦理黄片| 成人漫画全彩无遮挡| 久久av网站| 观看美女的网站| 日韩,欧美,国产一区二区三区| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看| 亚洲va在线va天堂va国产| av.在线天堂| 一本一本综合久久| 一级,二级,三级黄色视频| 秋霞在线观看毛片| 成人黄色视频免费在线看| 晚上一个人看的免费电影| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美 | 一级毛片我不卡| 国产熟女欧美一区二区| 亚洲国产精品成人久久小说| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲网站| 观看av在线不卡| 蜜桃久久精品国产亚洲av| 亚洲国产精品专区欧美| 国产色婷婷99| 久久ye,这里只有精品| 国产伦理片在线播放av一区| 国产日韩一区二区三区精品不卡 | 久久av网站| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 日日摸夜夜添夜夜添av毛片| 一本—道久久a久久精品蜜桃钙片| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 亚洲国产最新在线播放| 不卡视频在线观看欧美| 国产精品欧美亚洲77777| 久久久国产欧美日韩av| 欧美日韩在线观看h| 国产淫片久久久久久久久| 国产精品一区二区在线观看99| 少妇裸体淫交视频免费看高清| 免费人成在线观看视频色| 日日撸夜夜添| 超碰97精品在线观看| 欧美三级亚洲精品| 99久久精品国产国产毛片| 纯流量卡能插随身wifi吗| 国产精品无大码| 国产爽快片一区二区三区| 日本vs欧美在线观看视频 | 久久久久人妻精品一区果冻| 国产在线视频一区二区| 一区二区三区乱码不卡18| 在线看a的网站| 曰老女人黄片| 亚洲美女黄色视频免费看| 中文字幕亚洲精品专区| 18禁裸乳无遮挡动漫免费视频| 一级毛片aaaaaa免费看小| av一本久久久久| 91精品一卡2卡3卡4卡| 校园人妻丝袜中文字幕| 国产av精品麻豆| 男人爽女人下面视频在线观看| 这个男人来自地球电影免费观看 | 日韩熟女老妇一区二区性免费视频| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说| 亚洲精品久久久久久婷婷小说| 美女视频免费永久观看网站| 我的女老师完整版在线观看| av视频免费观看在线观看| 综合色丁香网| 美女脱内裤让男人舔精品视频| 亚洲国产精品成人久久小说| 深夜a级毛片| 精品亚洲乱码少妇综合久久| 少妇的逼好多水| 色5月婷婷丁香| 91久久精品国产一区二区成人| 日本免费在线观看一区| 亚洲人与动物交配视频| 最黄视频免费看| 97在线人人人人妻| 欧美少妇被猛烈插入视频| 精品人妻熟女毛片av久久网站| 国产成人a∨麻豆精品| 精品熟女少妇av免费看| 国产精品国产三级国产专区5o| 3wmmmm亚洲av在线观看| 国产成人精品一,二区| 国产精品一区二区在线不卡| h日本视频在线播放| 女性被躁到高潮视频| 日产精品乱码卡一卡2卡三| 国产91av在线免费观看| 午夜激情久久久久久久| 麻豆成人av视频| 好男人视频免费观看在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩另类电影网站| 日韩中字成人| 99热这里只有是精品50| 欧美性感艳星| 九九在线视频观看精品| 99热全是精品| 国产成人91sexporn| 99久久精品一区二区三区| 黄色怎么调成土黄色| 欧美日韩综合久久久久久| 日韩 亚洲 欧美在线| 精品久久久久久久久亚洲| 一个人免费看片子| 欧美性感艳星| 一级毛片黄色毛片免费观看视频| 秋霞在线观看毛片| 极品人妻少妇av视频| 男女无遮挡免费网站观看| 免费大片18禁| 中文字幕人妻丝袜制服| 久久精品久久久久久久性| 久久久久久伊人网av| 午夜视频国产福利| 91精品伊人久久大香线蕉| 亚洲精品aⅴ在线观看| 国产精品伦人一区二区| 一本—道久久a久久精品蜜桃钙片| 人人妻人人看人人澡| 国产成人a∨麻豆精品| 91久久精品电影网| 中文字幕免费在线视频6| 国产精品人妻久久久影院| 国产成人一区二区在线| 亚洲精品国产av成人精品| 2022亚洲国产成人精品| 新久久久久国产一级毛片| 成人影院久久| 精品国产一区二区三区久久久樱花| 97精品久久久久久久久久精品| 成人国产麻豆网| 国产伦精品一区二区三区四那| 久久97久久精品| 国产成人精品无人区| 国产一级毛片在线| 啦啦啦在线观看免费高清www| 一个人看视频在线观看www免费| 国产亚洲精品久久久com| 91aial.com中文字幕在线观看| 乱码一卡2卡4卡精品| 国产日韩一区二区三区精品不卡 | 蜜臀久久99精品久久宅男| 伊人久久国产一区二区| 中国国产av一级| 人体艺术视频欧美日本| 国产亚洲一区二区精品| 日韩三级伦理在线观看| 十八禁网站网址无遮挡 | 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 一级黄片播放器| 黑人高潮一二区| 少妇被粗大的猛进出69影院 | 丰满人妻一区二区三区视频av| 国产又色又爽无遮挡免| 最后的刺客免费高清国语| 免费人妻精品一区二区三区视频| 一个人免费看片子| 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 欧美成人午夜免费资源| 亚洲国产欧美在线一区| 欧美激情极品国产一区二区三区 | 婷婷色综合www| 日本av免费视频播放| 国产免费又黄又爽又色| 黄色毛片三级朝国网站 | 蜜桃久久精品国产亚洲av| 欧美少妇被猛烈插入视频| 国产一区二区三区综合在线观看 | 国产精品久久久久久精品电影小说| 亚洲av二区三区四区| 久久韩国三级中文字幕| 久久久久久久久久人人人人人人| 免费观看性生交大片5| 成人亚洲精品一区在线观看| 国模一区二区三区四区视频| 黄色日韩在线| 美女cb高潮喷水在线观看| 亚洲欧美一区二区三区黑人 | 中国三级夫妇交换| 亚洲在久久综合| av女优亚洲男人天堂| 草草在线视频免费看| 中文资源天堂在线| 国产亚洲精品久久久com| 日韩中字成人| 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 日本午夜av视频| 日韩欧美一区视频在线观看 | 亚洲精品视频女| 日本91视频免费播放| 91在线精品国自产拍蜜月| 天天躁夜夜躁狠狠久久av| 中文字幕人妻熟人妻熟丝袜美| 视频中文字幕在线观看| 伊人亚洲综合成人网| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区| 99热网站在线观看| 久久精品久久久久久久性| 最黄视频免费看| 国产深夜福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩精品一区二区| 少妇裸体淫交视频免费看高清| 久久女婷五月综合色啪小说| 女性被躁到高潮视频| 久久99蜜桃精品久久| 老熟女久久久| 国产男女内射视频| 欧美激情国产日韩精品一区| 国产免费一区二区三区四区乱码| 我的老师免费观看完整版| 建设人人有责人人尽责人人享有的| 99热国产这里只有精品6| 国产日韩欧美在线精品| 91久久精品国产一区二区三区| 人妻制服诱惑在线中文字幕| 美女cb高潮喷水在线观看| 日韩一本色道免费dvd| 久热久热在线精品观看| 中国三级夫妇交换| 欧美高清成人免费视频www| 久久 成人 亚洲|