• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    平行隧道開挖引起場地沉降的透明土模型試驗(yàn)研究

    2021-03-11 08:49:38劉漢龍鐘海怡顧鑫向鈺周仉文崗
    土木建筑與環(huán)境工程 2021年1期
    關(guān)鍵詞:砂質(zhì)模型試驗(yàn)損失率

    劉漢龍 鐘海怡 顧鑫 向鈺周 仉文崗

    摘 要:為了便捷現(xiàn)代城市交通,地鐵系統(tǒng)普遍采用平行隧道模式。平行隧道開挖引起的場地沉降預(yù)測一般基于單一隧道工況,利用簡化疊加法生成變形剖面,而沒有考慮兩個(gè)隧道之間的相互作用。采用透明土模型試驗(yàn)技術(shù),自主研發(fā)平行隧道模型試驗(yàn)裝置及試驗(yàn)方法,研究了在砂質(zhì)場地上開挖平行隧道引起的地表和地層沉降特性。通過模型試驗(yàn)探索了平行隧道間距、土體損失率、埋深等要素對地表和地表沉降的影響規(guī)律。在此基礎(chǔ)上,量化了土體損失率和場地沉降值間的數(shù)值關(guān)系。此數(shù)值關(guān)系可為砂質(zhì)場地中平行隧道施工與設(shè)計(jì)提供參考依據(jù),也為隧道間距初選以及埋深的初步確定提供理論支撐。

    關(guān)鍵詞:透明土;平行隧道;模型試驗(yàn);地表沉降;地層沉降

    1 Introduction

    With the rapid development of the modern city, burying the subway tunnels has proven to be an effective way to relieve traffic pressure on the ground. Accurate estimation of ground settlement is vital to ensure safety during the tunnel excavation. To this end, many early scholars have studied both the surface and the subsurface settlement for the excavation of the single tunnel[1-4]. However, single tunnel construction is rarely encountered in practice. Instead, parallel tunnels excavated sequentially are commonly constructed in urban subways to facilitate the movement of traffic in modern cities. In comparison to monitoring the deformation in clays[1-2], the settlement caused by tunneling in granular soils (e.g., sands and gravels) are more difficult and complex when considering key factors such as the relative density, which influences the shape and magnitude of the deformation[5]. Recently, the settlement of single tunnels in sand has been studied through model testing[6] and numerical simulation[7-8]. Yet the deformation induced by sequential excavation of parallel tunnels has not been fully revealed. Therefore, it may be a research hotspot in geotechnical engineering to investigate the deformation induced by the excavations of two parallel tunnels.

    Many studies based on analytical deduction have been carried out to investigate the deformation induced by tunnel excavation, but they mainly aimed at the single tunnel[9-13]. Parallel-tunneling deformation prediction generally utilizes the simplified superposition method with the assumption the deformation arising from the excavation of the 2nd tunnel is unaffected by that of the 1st tunnel. However, previous research, particularly numerical studies that can fully consider the interaction between two tunnels, have indicated that this method may not be directly applicable to estimating the parallel tunneling-induced settlement in practice, since it may underestimate the resultant settlement, which may exert a negative effect on the safety of the nearby constructions[14]. The numerical simulation of tunneling which permits calculating internal soil deformation is widely used in the last decade[14-18]. However, not only is internal soil deformation difficult to validate against the actual measurements, but the key input parameters, which can directly and significantly impact the accuracy of the results, are quite difficult to obtain. Many scholars have focused on in-situ surface settlement induced by sequential excavation of parallel tunnels in a variety of soils. Since the in-situ test is costly and time-consuming, laboratory tests are widely used in performing two-dimensional trap door tests in dry sand[19] and lining installation in a centrifuge[20-21]. However, it is challenging to obtain the inner soil deformation and the failure pattern from the conventional model tests. Moreover, the results from traditional laboratory test are inevitably affected by the boundary conditions and the embedment of the rigid sensors has an effect on instrumentation accuracy due to the arching effect[22-23]. Recently the development of data-driven and soft computing methods, Zhang et al.[24-25] and Shahrour and Zhang[26] predicted the surface settlement induced by earth pressure balance shield tunneling, estimated the lining response for twin-tunnel construction, and performed TBM tunneling optimization. However, this kind of data-based method has an obvious deficiency in revealing the deformation characteristics in tunneling constructions, where the internal physical failure mechanism is often ignored.

    To visualize the interioror the full-filed deformation, an advanced modeling technique using the transparent soil is adopted in this study, which was firstly developed by Allersma[27] and utilized by many scholars worldwide[28-29], including in tunneling by Ahmed and Iskander[30-31]. And the intend of this paper is to explore the parallel-tunnel interaction and its influence on surface and subsurface settlements due to the second tunnel in sandy ground considering the spacing (S) between two tunnels, the magnitude of the volume of ground loss at the tunnel (Vl )and burial depth (H and H0).

    2 Experimental design

    2.1 Testing apparatus

    The model testing system was adopted to monitor the settlement variation during excavation. It consisted of a computer, an optical platform, a charge coupled device (CCD) camera, a disk laser, a plexiglass model tank, and processing software for particle image velocimetry (PIV) digital images. The optical platform was ferromagnetic stainless steel and the inner core structure on the top side offered considerable anti-disturbance capacity. The high resolution of the CCD camera was 1280×960 pixels, which could record the settlement during tunnel excavation continuously operated by the control program of the computer. The disk laser was EP532-3W along with 3 W output power, 532 nm wavelength, 10°-25° light angle and less than 1 mm thickness. The multifunctional model box made of acrylic plexiglass with each surface bonded by strong glue was capable of simulating the single tunnel test, parallel tunnels test and cross tunnels test, for a total of four tunnels (three on the front and one on the side). Additionally, ribs were fixed at the bottom to restrain the deformation.

    2.2 Testing materials

    Fused silica sand, which has similar physical and mechanical properties to the proxy naturally graded sand, was adopted in this study to manufacture the transparent soil samples. The particles were 0.5-1.0 mm in size. The maximum dry density was 1.278 g/cm3, and the minimum was 0.907 g/cm3. The relative density was 55% and the internal friction angle was between 34° and 38°. The pore liquid was mixed with n-dodecane and the 15th mineral white oil with the mass ratio of 1:4 and its refractive index was 1.458 5. The periphery of the tunnel was isolated from the surrounding soil with a self-made film tube made of transparent and highly elastic thermoplastic polyurethane (TPU) film to prevent the pore liquid from flowing out along the tunnel model hole during the test. The drainage method was used to simulate the tunnel excavation process. One end of a rubber tube with a diameter of 50 mm was tied with a wire, and the other end was sleeved on a rubber plug with a drainage tube and tied with a rubber band to prevent potential water leakage. Before the test, the model box was cleaned, and the tunnel model, as well as the waterproof film tube, was set up.

    3 Testing result and analysis

    3.1 Surface settlement

    3.1.1 Surface settlement due to excavation of the 1st tunnel

    Fig.3 presents the measured surface settlement SV_A induced by TA under H (Depth from the surface to the tunnel axis level)/D=2.0 and 5.0, respectively. The normal probability Gaussian curves proposed by Peck[3] were used to fit the measured data. The surface settlement of the 1st tunnel excavation has good agreement with O'Reilly and New[2], which is expected since TA is excavated in a greenfield site and this behavior is reected in the first tunnel settlement for all tests. Moreover, the Gaussian curves give a good fit when Vl=1.455% and 2.911%, then the goodness of the fit declines with the increase in Vl, which coincides with the observations by Marshall et al.[5].

    As seen in Fig.4(a), the maximum surface settlement Smax_Alinearly increases with Vl, which can also be seen in Shahin et al.[34]. From Fig.4(b), the soil volume loss of surface settlement VS_A is smaller than Vl in all performed tests, especially at large Vl and H which is in good agreement with Zheng et al.[35], who points out that the soil within the subsurface ground may exhibit an overall dilating response considering that the tests were conducted in a low-stress condition.

    3.1.2 Surface settlement due to excavation of the 2nd tunnel

    The resultant surface settlement SV of different groups is plotted inFig.5. Fundamentally, the distribution of the resultant ground settlement under H/D=2.0 and 5.0 changes from a “V” shape to a “W” shape step by step as S becomes larger.

    From Fig.5, it is clear that the position corresponding to Smax_A is directly above TA during the tunnel excavation of TA. With the increase of Vl in TB, the position corresponding to Smax_B gradually moves towards the axis of TB and the asymmetry of the settlement trough becomes more significant in T1, T2, T3 and T4 (S=1.5D and 2.0D). But for the tests (T3 and T6) that have larger S, the position corresponding to Smax_B is also just above TB, which means the excavation of TA has little influence on TB.

    From Fig.6, it is clear that for T1, T2, T4 and T5, the corresponding location of the maximum surface settlement X moves toward TB as Vl increases and the asymmetry of the settlement trough also becomes more significant. For T3, the corresponding locations of the maximum surface settlement X remains constant and the excavation of TA has little impact on TB. For T4, although X does not change, the settlement trough curves appear as an inflection point at X=1.5D.

    To further investigate the settlement caused by each excavation, the net surface settlement SV_B induced by TB is shown in Fig.7. The settlement of TB is obtained from the resultant ground settlement subtracting the 1st tunnel settlement. Gaussian curves are again used to fit the experimental data. The goodness-of-fit of the Gaussian curves is shown to decrease with the development of Vl in the TB excavation, which is similar to the observations in the TA excavation.

    Fig.8(a) shows the Smax_B/D-Vl curves gained from the six tests. Basically, a non-linear relationship is found between Smax_B and Vl·Smax_B grows up gradually as Vl developed. Moreover, its magnitude is larger compared with Smax_A as plotted in Fig.3, which is consistent with the conclusion obtained in clayey soils that the larger settlement in the 2nd tunnel excavation is caused by the interaction between the two tunnels[36-37].

    To further illustrate the impact of parallel-tunnel interaction on Smax_B, variations in Smax_B/ Smax_A with different Vl are plotted in Fig.8(b). Basically, S appears to be the most dominant factor influencing the values of Smax_B/Smax_A. The influence of the twin-tunnel interaction is more significant in T1, T2, T4 and T5 (S=1.5D and 2.5D), than in T3 and T6 (S=4.5D) as well as in the case of smaller H(H=2D).

    Fig.9 presents the values of the empirical coefficient for surface settlement k under different Vl for different H/D. Here, kl and kr represent the empirical coefficients of the left and right sides of the settlement trough, respectively. k gradually increases with Vl under the same S. Conversely, it decreases step by step with the increase of S. Moreover, kl gets closer to kr as S increases, indicating that both sides of the settlement trough tend to be symmetrical.

    3.2 Subsurface settlement

    The resultant subsurface settlement Su of different groups is plotted in Fig.10. Basically, the distribution of Group 1 gradually changes from a “W” shape to a “V” shape as H0(Depth from the subsurface to the tunnel axis level)/D becomes larger. And the distribution of Group 2 remains in the shape of a “W”.From Fig.11, it is clear that for Group 1, the corresponding location of the maximum subsurface settlement Xumoves toward TB as Vl increases. The asymmetry of the settlement trough for U1 and U2 becomes more significant, while for U3, the curves of the settlement trough undergo a process from asymmetry to symmetry and then back to asymmetry. As for Group 2, Xu is also just above TB and their settlement trough curves are quite similar, which means the excavation of TA has little influence on TB.

    4 Summary and conclusions

    Based upon the surface and subsurface settlements observed during the transparent soil model test, some useful conclusions are drawn as shown below:

    1) With the increase of the ground volume loss, the Gaussian curve used to predict the ground settlement induced by the excavation of the two parallel tunnels demonstrates a decreasing trend.

    2) The interaction of the parallel tunnels leads to greater maximum surface settlement Smax_B during the excavation of TB compared with that of TA. This effect weakens as the spacing between the parallel tunnels increases.

    3) When S=1.5D and 2.0D, the excavation of the 1st tunnel has a significant effect on the surface settlement of the 2nd tunnel, and the corresponding location of Smax gradually moves towards the axis of the 2nd tunnel with the increase of Vl. Moreover, the asymmetry of the settlement trough becomes more obvious. When S=4.5D, the excavation of the 1st tunnel has a marginal influence on the deformation of the 2nd tunnel.

    4) Under the same S, k gradually increases with the growth of Vl while it declines as S develops. The empirical coefficients k of the left and right sides get closer as S increases.

    Acknowledgements

    The authors would like to acknowledge the financial support from the Chongqing Construction Science and Technology Plan Project (No. 2019-0045), Fundamental Research Funds for the Central Universities (No. 2019CDJDTM0007) and the Graduate Research and Innovation Foundation of Chongqing (Grant No. CYS18024).

    References:

    [1] MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays [J].Geotechnique, 1993, 43(2): 315-320.

    [2] O'REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom - Their magnitudes and prediction [C]//Proceedings of Tunnelling '82 Symposium, Springer, Berlin, 1982: 173-181.

    [3] PECK R B. Deep excavations and tunneling in soft ground [C]//Proceedings of the Seventh International Conference on Soil Mechanics and Foundation Engineering, Mexico, Balkema, 1969, 3: 225-290.

    [4] SCHMIDT B. Settlement and ground movement associated with tunneling in soils [D]. Urbana: University of Illinois, 1969.

    [5] MARSHALL A M, FARRELL R P, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements [J].Geotechnique, 2012, 62(5): 385-399.

    [6] FRANZA A, ZHOU B, MARSHALL A M. The effects of relative tunnel depth and volume loss on vertical settlements above tunnels in dense sands [C]//Fourth Geo-China International Conference. July 25-27, 2016, Shandong, China. Reston, VA, USA: American Society of Civil Engineers, 2016: 125-132.

    [7] YANG B W, BLOODWORTH A. Numerical analysis oftunnelling in sand-A case study of a centrifuge test [C]//Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction, 2018.

    [8] ZHOU B, ELKAYAM I, MARSHALL A. The effect of relative density on tunnelling-induced settlements - DEM simulations versus centrifuge test results[M]// Geomechanics from Micro to Macro. CRC Press, 2014: 589-594.

    [9] BOBET A. Analytical solutions for shallow tunnels in saturated ground [J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.

    [10] CHI S Y, CHERN J C, LIN C C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model [J]. Tunnelling and Underground Space Technology, 2001, 16(3): 159-165.

    [11] CHOU W I, BOBET A. Predictions of ground deformations in shallow tunnels in clay [J].Tunnelling and Underground Space Technology, 2002, 17(1): 3-19.

    [12] PARK K H. Analytical solution for tunnelling-induced ground movement in clays [J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.

    [13] VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane [J].Géotechnique, 1996, 46(4): 753-756.

    [14] ADDENBROOKE T, POTTS D M. Twin tunnel interaction: surface and subsurface effects [J]. International Journal of Geomechanics, 2001, 1(2): 249-271.

    [15] GONZLEZ N A, ROUAINIA M, ARROYO M, et al. Analysis of tunnel excavation in London Clay incorporating soil structure [J].Géotechnique, 2012, 62(12): 1095-1109.

    [16] KASPER T, MESCHKE G. A 3D finite element simulation model for TBM tunnelling in soft ground [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(14)1441-1460.

    [17] ZHANG W G, ZHANG R H, WU C Z, et al. State-of-the-art review of soft computing applications in underground excavations [J]. Geoscience Frontiers, 2020, 11(4): 1095-1106.

    [18] CHEN F Y, WANG L, ZHANG W G. Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties [J]. Tunnelling and Underground Space Technology, 2019, 88: 276-289.

    [19] VARDOULAKIS I, GRAF B, GUDEHUS G. Trap-door problem with dry sand:A statical approach based upon model test kinematics [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(1): 57-78.

    [20] CHAPMAN D N, AHN S K, HUNT D V L, et al. The use of model tests to investigate the ground displacements associated with multiple tunnel construction in soil [J].Tunnelling and Underground Space Technology, 2006, 21(3/4): 413.

    [21] KIM S H. Interaction between closely spaced tunnels in clay [D]. Oxford, UK: Oxford University, 1996: 242.

    [22] LEE C J, CHIANG K H, KUO C M. Ground movement and tunnel stability when tunneling in sandy ground [J]. Journal of the Chinese Institute of Engineers, 2004, 27(7): 1021-1032.

    [23] XIANG Y Z, LIU H L, ZHANG W G, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism [J].Tunnelling and Underground Space Technology, 2018, 74: 178-184.

    [24] ZHANG W G, LI H R, WU C Z, et al. Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling [J/OL]. Underground Space, 2020. https://doi.org/10.1016/j.undsp.2019.12.003.

    [25] ZHANG W G, LI Y Q, WU C Z, et al. Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques [J/OL]. Underground Space, 2020. DOI:10.1016/j.undsp.2020.02.007.

    [26] SHAHROUR I, ZHANG W G. Use of the soft computing techniques for TBM tunnelling optimization [J/OL]. Underground Space, 2020. https://doi.org/10.1016/j.undsp.2019.12.001

    [27] ALLERSMA H. Photo-elastic stress analysis and strains in simple shear[C]//Proc. Iutam Symposium on Deformation and Failure of Granular Materials, 1982: 345-353.

    [28] CAI M, KAISER P K, MORIOKA H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 550-564.

    [29] NG C W W, SHI J W, HONG Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand [J]. Canadian Geotechnical Journal, 2013, 50(8): 874-888.

    [30] AHMED M, ISKANDER M. Evaluation of tunnel face stability by transparent soil models [J].Tunnelling and Underground Space Technology, 2012, 27(1): 101-110.

    [31] AHMED M, ISKANDER M. Analysis of tunneling-induced ground movements using transparent soil models [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(5): 525-535.

    [32] LIU J Y. Visualizing 3-D internal soil deformation using laser speckle and transparent soil techniques [C]//GeoHunan International Conference 2009. August 3-6, 2009, Changsha, Hunan, China. Reston, VA, USA: American Society of Civil Engineers, 2009: 123-128.

    [33] SADEK S, ISKANDER M, LIU J Y. Geotechnical properties of transparent silica [J]. Canadian Geotechnical Journal, 2002, 39(1): 111-124.

    [34] SHAHIN H M, NAKAI T R, ZHANG F, et al. Behavior of ground and response of existing foundation due to tunneling [J]. Soils and Foundations, 2011, 51(3): 395-409.

    [35] ZHENG G, TONG J B, ZHANG T Q, et al. Experimental study on surface settlements induced by sequential excavation of two parallel tunnels in drained granular soil [J].Tunnelling and Underground Space Technology, 2020, 98: 103347.

    [36] CHAPMAN D, AHN S K, HUNT D V L. Investigating ground movements caused by the construction of multiple tunnels in soft ground using laboratory model tests [J]. Canadian Geotechnical Journal, 2007, 44(6): 631-643.

    [37] DIVALL S, GOODEY R J. Twin-tunnelling-induced ground movements in clay [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2015, 168(3): 247-256.

    (編輯 胡英奎)

    猜你喜歡
    砂質(zhì)模型試驗(yàn)損失率
    農(nóng)業(yè)農(nóng)村部印發(fā)《意見》提出到2025年農(nóng)產(chǎn)品加工環(huán)節(jié)損失率降到5%以下
    砂質(zhì)板巖地層下小斷面盾構(gòu)刀盤結(jié)構(gòu)設(shè)計(jì)方法
    河北省砂質(zhì)岸線修復(fù)現(xiàn)狀及思考
    基于砂質(zhì)海岸帶海水入侵模型試驗(yàn)分析研究
    反推力裝置模型試驗(yàn)臺的研制及驗(yàn)證
    帶有治療函數(shù)及免疫損失率的SIRS流行病模型的動(dòng)力學(xué)分析
    12部使用一年后最廉價(jià)轉(zhuǎn)售車
    海外星云(2016年19期)2016-10-24 11:53:42
    2014~2015年冬季美國蜂群損失調(diào)查
    臺階式短加筋土擋墻行為特征的離心模型試驗(yàn)
    巨厚堅(jiān)硬巖漿巖不同配比的模型試驗(yàn)研究
    十八禁人妻一区二区| 麻豆乱淫一区二区| 午夜两性在线视频| 丁香欧美五月| 高清视频免费观看一区二区| 日韩欧美免费精品| 69精品国产乱码久久久| 2018国产大陆天天弄谢| 亚洲成人手机| 色综合婷婷激情| 自拍欧美九色日韩亚洲蝌蚪91| 两性夫妻黄色片| 国产成人精品久久二区二区91| 男女之事视频高清在线观看| 香蕉丝袜av| 国产伦人伦偷精品视频| 电影成人av| 黄片大片在线免费观看| 如日韩欧美国产精品一区二区三区| 一区在线观看完整版| 一区在线观看完整版| 精品一区二区三区四区五区乱码| 亚洲人成伊人成综合网2020| 国产成人欧美在线观看 | 精品福利永久在线观看| 国产麻豆69| 国产日韩一区二区三区精品不卡| 免费在线观看日本一区| 757午夜福利合集在线观看| 中文字幕制服av| 久久久水蜜桃国产精品网| 亚洲人成电影观看| 日本av手机在线免费观看| 9热在线视频观看99| 亚洲色图av天堂| 老司机在亚洲福利影院| 精品久久久久久电影网| 亚洲国产精品一区二区三区在线| 久久精品91无色码中文字幕| 久久九九热精品免费| 桃红色精品国产亚洲av| 女警被强在线播放| 国产成人av教育| 女警被强在线播放| 国产单亲对白刺激| 欧美一级毛片孕妇| av网站在线播放免费| 国产人伦9x9x在线观看| 淫妇啪啪啪对白视频| 美国免费a级毛片| 曰老女人黄片| 女同久久另类99精品国产91| 悠悠久久av| 日韩成人在线观看一区二区三区| 涩涩av久久男人的天堂| 日本欧美视频一区| 国产高清激情床上av| 另类亚洲欧美激情| 岛国毛片在线播放| 亚洲人成电影免费在线| 人人澡人人妻人| 欧美成人午夜精品| 捣出白浆h1v1| 亚洲国产av影院在线观看| 中文字幕高清在线视频| 午夜福利视频在线观看免费| 天天操日日干夜夜撸| 国产97色在线日韩免费| 日韩一卡2卡3卡4卡2021年| 91字幕亚洲| 麻豆成人av在线观看| 在线十欧美十亚洲十日本专区| 99久久99久久久精品蜜桃| 美国免费a级毛片| 超碰成人久久| 黄色视频在线播放观看不卡| 国产成人欧美| 国产高清激情床上av| 母亲3免费完整高清在线观看| 亚洲欧洲日产国产| 国产无遮挡羞羞视频在线观看| 99国产精品免费福利视频| 香蕉国产在线看| 在线播放国产精品三级| av又黄又爽大尺度在线免费看| 精品国内亚洲2022精品成人 | 久9热在线精品视频| 色婷婷av一区二区三区视频| 成人影院久久| 亚洲五月色婷婷综合| 精品视频人人做人人爽| 亚洲精品自拍成人| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 啦啦啦 在线观看视频| 免费看十八禁软件| 久久热在线av| 久久久久久久大尺度免费视频| 19禁男女啪啪无遮挡网站| 91av网站免费观看| 最新在线观看一区二区三区| 亚洲自偷自拍图片 自拍| 国产真人三级小视频在线观看| 国产成人精品无人区| 午夜成年电影在线免费观看| 亚洲成人免费电影在线观看| 午夜福利在线免费观看网站| 一本—道久久a久久精品蜜桃钙片| av不卡在线播放| 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| 纵有疾风起免费观看全集完整版| 欧美日韩国产mv在线观看视频| 国产高清国产精品国产三级| 久久久久久久久免费视频了| 青青草视频在线视频观看| 99国产精品99久久久久| 午夜激情av网站| 人人妻,人人澡人人爽秒播| 久久国产精品男人的天堂亚洲| 国产精品久久电影中文字幕 | 精品久久久久久久毛片微露脸| 免费观看a级毛片全部| www.精华液| 久久国产亚洲av麻豆专区| 757午夜福利合集在线观看| 少妇粗大呻吟视频| 午夜福利乱码中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 制服诱惑二区| av又黄又爽大尺度在线免费看| 久久人人爽av亚洲精品天堂| 精品卡一卡二卡四卡免费| 色播在线永久视频| 亚洲熟女毛片儿| avwww免费| 免费在线观看完整版高清| 国产精品九九99| 母亲3免费完整高清在线观看| 99热网站在线观看| 国产成人啪精品午夜网站| 91精品国产国语对白视频| 动漫黄色视频在线观看| 性色av乱码一区二区三区2| 一级片'在线观看视频| 亚洲欧美精品综合一区二区三区| 一二三四社区在线视频社区8| 亚洲国产av影院在线观看| 欧美国产精品va在线观看不卡| 国产主播在线观看一区二区| 三级毛片av免费| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 国产精品九九99| 狂野欧美激情性xxxx| 亚洲欧美精品综合一区二区三区| 老司机影院毛片| 熟女少妇亚洲综合色aaa.| 亚洲熟女毛片儿| 午夜福利免费观看在线| 熟女少妇亚洲综合色aaa.| 亚洲成人免费电影在线观看| 国产又爽黄色视频| 日韩大码丰满熟妇| 精品卡一卡二卡四卡免费| 日韩 欧美 亚洲 中文字幕| 交换朋友夫妻互换小说| 777米奇影视久久| 欧美激情久久久久久爽电影 | 2018国产大陆天天弄谢| 国产精品久久久久久精品古装| 91精品三级在线观看| 国产麻豆69| 中文字幕高清在线视频| 757午夜福利合集在线观看| 新久久久久国产一级毛片| 国产在线视频一区二区| 18在线观看网站| 亚洲伊人久久精品综合| 正在播放国产对白刺激| 欧美人与性动交α欧美软件| 精品亚洲乱码少妇综合久久| 麻豆av在线久日| 99精品在免费线老司机午夜| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| 欧美性长视频在线观看| 国产一卡二卡三卡精品| 黄色片一级片一级黄色片| 欧美精品啪啪一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲国产欧美在线一区| 一边摸一边抽搐一进一出视频| 精品国产超薄肉色丝袜足j| 亚洲人成伊人成综合网2020| 日本vs欧美在线观看视频| 久久人妻av系列| 97人妻天天添夜夜摸| 欧美在线黄色| 久久精品国产亚洲av高清一级| 视频区图区小说| 91老司机精品| 热99国产精品久久久久久7| 国产高清视频在线播放一区| kizo精华| 亚洲一区二区三区欧美精品| 人妻久久中文字幕网| 亚洲自偷自拍图片 自拍| 亚洲伊人色综图| 亚洲国产精品一区二区三区在线| 亚洲中文日韩欧美视频| 高清视频免费观看一区二区| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 日韩欧美免费精品| 亚洲成国产人片在线观看| 日本vs欧美在线观看视频| 亚洲一码二码三码区别大吗| 久久午夜亚洲精品久久| 久久久久久久久免费视频了| 超碰97精品在线观看| 欧美黑人欧美精品刺激| 亚洲av第一区精品v没综合| 高清毛片免费观看视频网站 | 亚洲色图综合在线观看| 蜜桃国产av成人99| 欧美激情 高清一区二区三区| 久久免费观看电影| 夫妻午夜视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美精品高潮呻吟av久久| 国产三级黄色录像| 国产极品粉嫩免费观看在线| 搡老乐熟女国产| 热re99久久精品国产66热6| 捣出白浆h1v1| 国产aⅴ精品一区二区三区波| 伊人久久大香线蕉亚洲五| 日韩人妻精品一区2区三区| 大片免费播放器 马上看| 蜜桃在线观看..| av片东京热男人的天堂| 亚洲全国av大片| 一级片免费观看大全| 一区二区三区国产精品乱码| 亚洲久久久国产精品| 老司机福利观看| 成人av一区二区三区在线看| 亚洲av国产av综合av卡| 在线 av 中文字幕| 久久人妻福利社区极品人妻图片| 亚洲精品av麻豆狂野| 日韩欧美国产一区二区入口| 麻豆国产av国片精品| 亚洲午夜精品一区,二区,三区| 亚洲av日韩精品久久久久久密| svipshipincom国产片| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 日韩免费高清中文字幕av| 中文字幕人妻丝袜一区二区| 伦理电影免费视频| 国产不卡一卡二| 三级毛片av免费| 亚洲中文字幕日韩| 大型av网站在线播放| 国产免费视频播放在线视频| 国产成人系列免费观看| 人人妻人人澡人人爽人人夜夜| 久久久久久亚洲精品国产蜜桃av| 18禁观看日本| 国产欧美日韩一区二区精品| 久久久精品区二区三区| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 99re6热这里在线精品视频| 亚洲伊人久久精品综合| 好男人电影高清在线观看| 99riav亚洲国产免费| 不卡av一区二区三区| 性高湖久久久久久久久免费观看| 日本av手机在线免费观看| 久久精品国产亚洲av香蕉五月 | 99九九在线精品视频| 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3 | 午夜福利视频精品| 国产一区有黄有色的免费视频| 久久精品国产亚洲av高清一级| 亚洲综合色网址| 国产老妇伦熟女老妇高清| 午夜福利欧美成人| 久久免费观看电影| 国产亚洲午夜精品一区二区久久| 成人国产一区最新在线观看| 欧美日韩福利视频一区二区| 一区二区三区激情视频| 一边摸一边抽搐一进一小说 | 男女无遮挡免费网站观看| 国产一区二区在线观看av| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 一本综合久久免费| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕人妻熟女乱码| 超碰97精品在线观看| 亚洲精品自拍成人| 久热爱精品视频在线9| 51午夜福利影视在线观看| 午夜日韩欧美国产| 一个人免费在线观看的高清视频| 热re99久久国产66热| 欧美在线黄色| 后天国语完整版免费观看| 午夜日韩欧美国产| 久热这里只有精品99| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 午夜福利一区二区在线看| 精品国产乱码久久久久久小说| 亚洲情色 制服丝袜| 飞空精品影院首页| 国产成人精品久久二区二区91| 亚洲欧美日韩高清在线视频 | 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕欧美一区二区| 日韩视频一区二区在线观看| 9色porny在线观看| 久久国产精品男人的天堂亚洲| 欧美日韩视频精品一区| 成人永久免费在线观看视频 | 国产精品欧美亚洲77777| 激情视频va一区二区三区| 在线天堂中文资源库| 国产单亲对白刺激| 麻豆乱淫一区二区| 免费高清在线观看日韩| 午夜激情久久久久久久| 成人特级黄色片久久久久久久 | 日本撒尿小便嘘嘘汇集6| 黑人巨大精品欧美一区二区mp4| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| tube8黄色片| 国产熟女午夜一区二区三区| 成年版毛片免费区| 免费在线观看完整版高清| 精品久久蜜臀av无| 中文字幕制服av| 亚洲一区二区三区欧美精品| 免费一级毛片在线播放高清视频 | 欧美乱妇无乱码| 国产精品欧美亚洲77777| 咕卡用的链子| 99re在线观看精品视频| 欧美精品一区二区免费开放| 午夜福利视频精品| 无遮挡黄片免费观看| 国产免费福利视频在线观看| 一进一出抽搐动态| 香蕉久久夜色| 精品视频人人做人人爽| 日韩大片免费观看网站| 巨乳人妻的诱惑在线观看| 首页视频小说图片口味搜索| 少妇精品久久久久久久| 熟女少妇亚洲综合色aaa.| 男女无遮挡免费网站观看| av网站在线播放免费| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 免费看a级黄色片| 黄色片一级片一级黄色片| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区精品| 狠狠精品人妻久久久久久综合| 欧美日韩一级在线毛片| 中文字幕制服av| 最黄视频免费看| 亚洲全国av大片| 午夜老司机福利片| 国产野战对白在线观看| 最新在线观看一区二区三区| 精品国产一区二区三区四区第35| 夫妻午夜视频| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 国产91精品成人一区二区三区 | 老汉色av国产亚洲站长工具| 中文字幕av电影在线播放| 久久久水蜜桃国产精品网| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看| 亚洲中文日韩欧美视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情久久久久久爽电影 | 免费在线观看影片大全网站| 久久这里只有精品19| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 国产一卡二卡三卡精品| 脱女人内裤的视频| 老司机影院毛片| 夜夜骑夜夜射夜夜干| 亚洲av第一区精品v没综合| 五月天丁香电影| 欧美激情高清一区二区三区| 国产精品久久久久久精品电影小说| 天天操日日干夜夜撸| 亚洲专区国产一区二区| 国产av又大| 黄色 视频免费看| 黄色片一级片一级黄色片| 日本五十路高清| 日韩中文字幕视频在线看片| 久热这里只有精品99| 欧美大码av| 深夜精品福利| 一区二区三区国产精品乱码| 男女之事视频高清在线观看| 国产精品免费视频内射| 成人黄色视频免费在线看| 成人av一区二区三区在线看| 久久久精品国产亚洲av高清涩受| 无遮挡黄片免费观看| 大片电影免费在线观看免费| 国产精品免费一区二区三区在线 | 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 少妇 在线观看| 日本av免费视频播放| 91字幕亚洲| 亚洲免费av在线视频| 亚洲第一av免费看| 伦理电影免费视频| 日韩三级视频一区二区三区| 一本综合久久免费| 中亚洲国语对白在线视频| 国产亚洲一区二区精品| 一进一出抽搐动态| 亚洲第一av免费看| 91大片在线观看| 十八禁网站网址无遮挡| 丰满少妇做爰视频| 日本精品一区二区三区蜜桃| 男人操女人黄网站| 丰满饥渴人妻一区二区三| 69精品国产乱码久久久| 成人国产一区最新在线观看| 大码成人一级视频| 国产不卡av网站在线观看| 欧美久久黑人一区二区| 国产不卡av网站在线观看| 一级片'在线观看视频| 国产欧美日韩一区二区三| 免费黄频网站在线观看国产| www.熟女人妻精品国产| 国产一区二区三区综合在线观看| 美国免费a级毛片| 交换朋友夫妻互换小说| 成人特级黄色片久久久久久久 | 国产精品久久久久成人av| 国产成人精品无人区| 中文亚洲av片在线观看爽 | 真人做人爱边吃奶动态| 亚洲欧美一区二区三区黑人| 麻豆乱淫一区二区| 亚洲天堂av无毛| av线在线观看网站| 成年女人毛片免费观看观看9 | 亚洲精品美女久久久久99蜜臀| 亚洲精品av麻豆狂野| 国产精品av久久久久免费| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 自线自在国产av| 99久久精品国产亚洲精品| 国产成人系列免费观看| 国产高清videossex| 捣出白浆h1v1| 国产成+人综合+亚洲专区| 国产精品 国内视频| 久久久久久免费高清国产稀缺| 人人妻人人澡人人看| 国产精品久久久av美女十八| 夫妻午夜视频| 男女床上黄色一级片免费看| 9色porny在线观看| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 在线永久观看黄色视频| 一级片'在线观看视频| 国产日韩欧美在线精品| 国产区一区二久久| 99国产极品粉嫩在线观看| 99精品久久久久人妻精品| 精品国产亚洲在线| 91国产中文字幕| 麻豆成人av在线观看| 欧美在线一区亚洲| www日本在线高清视频| 精品免费久久久久久久清纯 | 91老司机精品| 久久久精品免费免费高清| 成年女人毛片免费观看观看9 | 久久精品国产综合久久久| 老汉色av国产亚洲站长工具| 91老司机精品| 深夜精品福利| 国产精品一区二区在线不卡| 91麻豆精品激情在线观看国产 | 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 国产午夜精品久久久久久| 亚洲欧美日韩高清在线视频 | 久久久久精品国产欧美久久久| 久久国产精品男人的天堂亚洲| 日韩中文字幕视频在线看片| 国产日韩欧美在线精品| 国产97色在线日韩免费| 91字幕亚洲| 午夜老司机福利片| 午夜精品国产一区二区电影| 免费看十八禁软件| 我要看黄色一级片免费的| 日韩欧美免费精品| 日日爽夜夜爽网站| h视频一区二区三区| av福利片在线| 在线观看免费视频日本深夜| 国产福利在线免费观看视频| 香蕉久久夜色| 亚洲av电影在线进入| 亚洲成人手机| 在线天堂中文资源库| 日日夜夜操网爽| 成年人免费黄色播放视频| 一级毛片女人18水好多| 国产一卡二卡三卡精品| 久久久久精品国产欧美久久久| 91麻豆精品激情在线观看国产 | 欧美人与性动交α欧美精品济南到| 精品亚洲成a人片在线观看| 午夜成年电影在线免费观看| 大香蕉久久网| 久久精品亚洲熟妇少妇任你| 如日韩欧美国产精品一区二区三区| 精品亚洲成a人片在线观看| 亚洲欧洲精品一区二区精品久久久| 日韩熟女老妇一区二区性免费视频| 中文字幕高清在线视频| 老司机影院毛片| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲真实| 麻豆乱淫一区二区| 欧美乱妇无乱码| 欧美日韩亚洲高清精品| av福利片在线| 亚洲专区中文字幕在线| 亚洲伊人久久精品综合| 国产精品久久久av美女十八| 亚洲avbb在线观看| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 高清视频免费观看一区二区| av网站在线播放免费| av视频免费观看在线观看| 国产精品欧美亚洲77777| 一进一出好大好爽视频| 久久热在线av| 捣出白浆h1v1| 大片免费播放器 马上看| 人人妻人人澡人人爽人人夜夜| 黑人操中国人逼视频| 男女免费视频国产| 亚洲专区国产一区二区| 中文欧美无线码| 精品国产超薄肉色丝袜足j| 最黄视频免费看| 啦啦啦免费观看视频1| 国产1区2区3区精品| 51午夜福利影视在线观看| 久久久久久人人人人人| 一本—道久久a久久精品蜜桃钙片| 日韩精品免费视频一区二区三区| 欧美大码av| av有码第一页| 欧美乱码精品一区二区三区| 亚洲精品中文字幕一二三四区 | 欧美在线一区亚洲| 成人特级黄色片久久久久久久 | 热re99久久国产66热| 亚洲精品中文字幕一二三四区 | 人妻久久中文字幕网| 久久精品人人爽人人爽视色| 日本黄色视频三级网站网址 | 亚洲午夜精品一区,二区,三区| 一区二区av电影网| 18禁国产床啪视频网站| 免费日韩欧美在线观看| 国产成人一区二区三区免费视频网站| 蜜桃在线观看..| 超碰成人久久| 三级毛片av免费| 人妻一区二区av| 老熟妇乱子伦视频在线观看| 色婷婷av一区二区三区视频| 天堂动漫精品| 777久久人妻少妇嫩草av网站| 性少妇av在线| 国产一区二区三区综合在线观看| 黄色成人免费大全| 中文字幕色久视频|