• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于提升直觀想象素養(yǎng)的“函數(shù)的零點”問題初探

    2019-10-21 07:12:31何開應(yīng)
    關(guān)鍵詞:直觀想象

    何開應(yīng)

    摘 要:直觀想象是指借助幾何直觀和空間想象感知事物的形態(tài)與變化,利用圖形理解和解決數(shù)學(xué)問題的過程。主要包括:利用圖形描述數(shù)學(xué)問題,建立形與數(shù)的聯(lián)系,構(gòu)建數(shù)學(xué)問題的直觀模型,探索解決問題的思路。

    關(guān)鍵詞:直觀想象;函數(shù)的零點;分段函數(shù)

    “函數(shù)的零點”是普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)A必修一 第三章第一節(jié)“函數(shù)與方程”中的內(nèi)容。教科書是這樣定義函數(shù)的零點:對于函數(shù) ,把使 的實數(shù) 叫做函數(shù) 的零點。因此,函數(shù)零點的定義中充分體現(xiàn)出直觀想象能力的要求。那么直觀想象素養(yǎng)的提升在“函數(shù)的零點”問題中有哪些體現(xiàn)呢?

    一、初等函數(shù)下的“函數(shù)的零點” 問題

    在中學(xué)數(shù)學(xué)課程中,基本初等函數(shù)有以下六個:常量函數(shù) ( 是常數(shù));冪函數(shù) ( 是常數(shù));指數(shù)函數(shù) ;對數(shù)函數(shù) ;三角函數(shù) 。由基本初等函數(shù)經(jīng)過有限次四則運算與復(fù)合運算所得到的函數(shù),統(tǒng)稱為初等函數(shù)。那么,初等函數(shù)下的“函數(shù)的零點”是如何體現(xiàn)直觀想象素養(yǎng)的?

    (一)可求出“函數(shù)的零點”問題

    例1【12湖北理-9】函數(shù) 在區(qū)間 上的零點個數(shù)為( )

    (A)4 (B)5 (C)6 (D)7

    【解析】令 得 ,則 或 ,

    即 或 .

    又 , ,共有6個零點.故選C.

    【初探一】對于可求出“函數(shù)的零點”的問題,常有兩種題型:第一,根據(jù)函數(shù)的解析式,求出方程的根與函數(shù)的零點或零點個數(shù);第二,已知函數(shù)的零點個數(shù),求函數(shù)解析式中的參數(shù)值或參數(shù)的取值范圍。

    這一問題下的直觀想象要求是:會畫基本初等函數(shù)的圖象,會根據(jù)圖象找到其與x軸交點的橫坐標(biāo)。

    (二)不可求出“方程的根與函數(shù)的零點”問題

    例2【13天津理-7】函數(shù) 的零點個數(shù)為( )

    (A)1 (B)2 (C)3 (D)4

    【解析】令 得 ,

    即 ,

    所以函數(shù) 的零點個數(shù)

    即為函數(shù) 與 圖像的交點個數(shù).

    在同一直角坐標(biāo)系中畫出函數(shù) 與

    的圖像如圖所示,易知有2個交點,

    即函數(shù) 有2個零點,故選B.

    【初探二】對于不可求出“函數(shù)的零點”的問題,三種題型:第一,根據(jù)函數(shù)的解析式,判斷方程的根或函數(shù)的零點所在的區(qū)間;第二,根據(jù)函數(shù)的解析式,判斷方程的根或函數(shù)的零點個數(shù);第三,已知函數(shù)的零點個數(shù),求函數(shù)解析式中的參數(shù)值或參數(shù)的取值范圍。

    這一問題下的直觀想象要求是:會將零點問題轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù)問題,會用變換法畫函數(shù)的圖象,會根據(jù)圖象找到交點個數(shù)。

    二、分段函數(shù)下的“函數(shù)的零點” 問題

    例3【12遼寧理-11】設(shè)函數(shù) 滿足 ,且當(dāng) 時, .又函數(shù) ,則函數(shù) 在 上的零點個數(shù)為( )

    (A)5 (B)6 (C)7 (D)8

    【解析】令 得 ,即 ,

    則 在 上的零點個數(shù)等價于函數(shù) 與 的圖像在區(qū)間 上的交點個數(shù).

    根據(jù)已知條件,函數(shù) 是偶函數(shù),

    且周期是2,在同一直角坐標(biāo)系中

    畫出函數(shù) 與 的圖像如圖所示,

    由圖可知函數(shù) 與 的圖像在區(qū)間 上的交點個數(shù)有6個,

    故函數(shù) 在 上的零點個數(shù)為6個.故選B.

    總之,數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),需要抽象和概括,也需要直觀和想象。通過直觀想象核心素養(yǎng)的培養(yǎng),學(xué)生能夠養(yǎng)成利用圖形思考問題的習(xí)慣,提升數(shù)形結(jié)合的能力,建立良好的數(shù)學(xué)直覺,理解事物本質(zhì)和發(fā)展規(guī)律。

    參考文獻(xiàn):

    [1]李霞,黃凱.以函數(shù)零點的問題為例——談數(shù)學(xué)核心素養(yǎng)培養(yǎng)[J].中國農(nóng)村教育,2019(20):192.

    猜你喜歡
    直觀想象
    充分發(fā)揮“直觀想象”讓解題更具韻味
    基于直觀想象素養(yǎng)的數(shù)學(xué)教學(xué)實踐與思考
    “直觀想象”在全國卷解幾試題中的應(yīng)用探析
    “直觀想象”在全國卷數(shù)列試題中的應(yīng)用探析
    培養(yǎng)直觀想象核心素養(yǎng)的HPM視角
    例談數(shù)學(xué)教學(xué)中學(xué)生“直觀想象”能力的培養(yǎng)
    試論通過數(shù)學(xué)實驗培養(yǎng)學(xué)生直觀想象能力
    調(diào)動非智力因素培養(yǎng)數(shù)學(xué)核心素養(yǎng)
    讓直觀想象根植在數(shù)學(xué)課堂教學(xué)中
    充分發(fā)揮“直觀想象”讓解題更具韻味
    甘南县| 南昌县| 武川县| 东宁县| 民丰县| 海晏县| 安吉县| 浮梁县| 五原县| 五华县| 湖口县| 光泽县| 沭阳县| 穆棱市| 阿拉善盟| 乌审旗| 波密县| 秭归县| 霍山县| 永安市| 辽宁省| 盈江县| 汉川市| 扬中市| 阿坝| 米脂县| 边坝县| 文登市| 开鲁县| 新建县| 县级市| 岳池县| 嘉兴市| 陆良县| 诏安县| 旬阳县| 永宁县| 芜湖县| 蓬安县| 彩票| 连城县|