• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adso rp tion of Hyd razoic Acid on Pristine Graphyne Sheet:A Com pu tational Study

    2018-05-25 00:57:59DEBJyotirmoyPAULDebolinaPEGUDavidSARKARUtpal
    物理化學(xué)學(xué)報(bào) 2018年5期

    DEB Jyotirmoy, PAUL Debolina, PEGU David, SARKAR Utpal

    Department of Physics, Assam University, Silchar-788011, India.

    1 In troduction

    In recent years low dimensional structures1–5have gained immense attention due to their potential application in next-generation nanoelectronics6–8. Among these, graphyne9,10is a latest proposed allotrope of carbon which is built from double and triple bonded unit of carbon atoms. It has attracted an extensive interest of the scientific society due to its extraordinary properties. Graphynes can be arranged as multiple lattice types, e.g., α, β, γ graphynes, and out of these, α and β graphynes present Dirac cone-like band structure around the Fermi level11, while γ graphyne is a sem iconductor12.Unlike graphene, γ graphyne has non-zero band gap and this is due to the presence of the acetylenic linkages and non-uniform π bindings. As graphyne and their derivatives possess various versatile characteristics, thus these systems may be strongly recommended for several technological applications such as nano-electronics13–16, optoelectronics17–19, spintronics20, for storing hydrogen21,22, as an electrode in batteries23,24, for the detection of gas molecules25–28and also as an energy storage device29,30.

    Interaction of atoms and molecules w ith electromagnetic field modifies its ground as well as excited state reactivity trends in greater extent31–33. Similarly, when confinement of systems takes place its reactivity profile changes significantly compared to unconfined one34–37, which is one of the major reason for a large number of investigations on gas molecule interaction w ith various systems. Recent literature survey reveals that detection of various gas molecules present in the atmosphere is now recognized as an emerging field for many of the researchers for the designing of the suitable gas sensor in order to detect chem ical and biological hazardous elements present in the environment and alsofor the monitoring purposes. It has been also noticed that graphyne material is a promising candidate for designing of the gas sensor. Beheshtian et al.25have investigated the interaction of HCN on pristine and Si-doped graphynes and their study indicate that the electronic properties of the graphyne system are highly influenced due to the presence of HCN and thus graphyne is a suitable candidate for the detection of HCN. In the year 2016,Deb et al. have reported that adsorption of BX3 (X = F, Cl and I)molecule on graphyne has induced significant changes in the electronic properties of the graphyne system. Thus we have concluded that graphyne based gas sensor can be designed for the detection of BX3(X = F, Cl and I) molecule38. Some other gas molecules (CO, NH3, formaldehyde etc.), nucleobases and amino acid adsorption on graphyne have been investigated in order to see their sensing capability27,39–41.

    Here we have studied the interaction of hydrazoic acid (HN3)on pristine graphyne. We have chosen HN3 molecule as it is a colorless, volatile, highly toxic and explosive molecule. It has a pungent odor and causes various diseases such as headaches,irritation to eyes, nose, throat, skin, respiratory system and mucous membrane. Direct exposures of HN3molecule on human being also results in multi-organ failure and even in many cases, it leads to death. On contact w ith heat, it becomes very dangerous explosive. Thus, some efficient methods should be designed in order to detect HN3molecule present in the environment. In this article, we have investigated the structural properties, electronic properties, band structure and charge transfer analysis of HN3 adsorbed graphyne system.

    2 Com pu tational m ethod

    All the quantum chemical computations have been performed using density functional theory as suggested in SIESTA code42,43. The exchange-correlation functional part of the generalized gradient approximation (GGA) has been represented using Perdew-Burke-Ernzerhof (PBE)44form.Troullier-Martin type norm-conserving pseudo potentials45and double zeta polarized basis set is used for the calculation. The sampling of Brillouin zone is achieved using 11 × 11 × 2 Monkhorst-Pack set of k points and mesh kinetic energy cutoff value was set at 300 Ryd. To avoid any undesirable interactions a vacuum space of 15 ? (1 ? = 0.1 nm) is maintained between the different layers of the graphyne system. Different orientations of the HN3molecule in different positions (on the top of triangular hollow, hexagonal hollow, acetylene linkage etc.) of graphyne have been tested tofind the ground state geometry of the HN3adsorbed graphyne system.

    The adsorption energy of hydrazoic acid adsorbed on graphyne sheet can be determined using the relation:Eads= E(Graphyne + molecule) – E(Graphyne) –(molecule)

    where, E(Graphyne + molecule), E(Graphyne) and E(molecule)are the energies of hydrazoic acid adsorbed graphyne system,pristine graphyne and hydrazoic acid respectively.

    In order to consider the interaction due to van der Waals(vdW) forces, we have also incorporated the van der Waals dispersion correction explicitly by using the empirical correction scheme as proposed by Grimme46.

    Fig.1 Optim ized geometry of (a) pristine graphyne; (b) Hmolecule adsorbed graphyne system (top view); (c) Hmolecu le adsorbed graphyne system (side view).

    3 Resu lts and discussion

    3.1 Elec tronic s truc tu re

    In our present study, we have placed HN3molecule in various adsorption sites (parallelly and perpendicularly) of the molecule w ith respect to graphyne sheet (see Fig.S1 of Supporting Information). Depending on their adsorption energy we have investigated the most stable configuration. The result reflects that parallel orientation is more stable in comparison to perpendicular orientation due to minimum energy in parallel configuration, which well agrees w ith our previous finding38.The optim ized structure of pristine and HN3adsorbed graphyne system is shown in Fig.1 and detailed analysis of various parameters such as optimal distance (D), adsorption energy(E ads), energy gap (E g), Mulliken charge transfer (Q) and electric dipole moment (μ) of the minimum energy structure of HN3adsorbed on graphyne sheet are represented in Table 1.Sim ilar to BX3(X = F, Cl and I) molecule38there is also no notable structural deformation observed in graphyne sheet due to the presence of HN3molecule on it. The bond length between the C atoms of intrinsic graphyne remains unaltered not only in our present study of the adsorption of HN3molecule on graphyne sheet but also in the case of several other molecules such as NH339, HCN25etc. on graphyne system.The adsorption energy of HN3adsorbed on graphyne system is found to be ?0.550 eV w ithout considering the van der Waals(vdW) correction and when vdW dispersion correction is taken care of, the adsorption energy of the same system is found to be?0.725 eV. The negative adsorption energy value in both the cases confirms the stability of the HN3adsorbed on graphyne system but the stability of system increases to a certain extent when vdW correction is considered. When NH339, HCN25are adsorbed on hydrogen terminated pristine graphyne, adsorption energy value of NH3, HCN adsorbed graphyne are found to be?0.191, ?0.108 eV respectively, using B3LYP functional and 6-31G(d) basis set. It is already reported40that graphyne can also sense formaldehyde and the adsorption energy is 0.40 eV which is higher than our observed adsorption energy. Since our system possesses lower adsorption energy compared to other small gas molecules such as NH3, HCN and formaldehyde so HN3adsorbed graphyne system is more stable. Thus, reflects its capability of acting as a sensor. The optimal distance (D) is the minimal distance between the pristine system and the interacting molecule. Here the optimal distance is found between the C atom (nearest to HN3molecule) of graphyne sheet and H atom of HN3molecule. The magnitude of D is 2.884 ? (Table 1) for both, w ith and w ithout vdW correction.The larger value of optimal distance and smaller magnitude of adsorption energy confirms the weak interaction of HN3molecule w ith graphyne sheet. This means weak physical adsorption of HN3molecule has taken place on graphyne system25,28,39. Also, the adsorption energy value of BX3(X = F,Cl and I) molecule adsorbed on graphyne system38is much higher in comparison to HN3 adsorbed graphyne system.

    Tab le 1 The op timal distance (D), adsorption energy (E ads), energy gap (E g), M u lliken charge transfer (Q) and electric dipole moment (μ) ofthe adsorp tion of hydrazoic acid on pristine graphyne.

    Fig.2 Band structure of HN3 molecule adsorbed graphyne system (a) w ithout vdW correction; (b) w ith vdW correction.

    3.2 Elec tronic p roperties

    3.2.1 Charge transfer analysis

    The magnitude of Mulliken charge transfer is 0.078e (Table 1) w ithout accounting the vdW correction but the magnitude of charge transfer decreases to 0.021e when vdW interaction is taken into consideration. The result shows that a very small amount of electron transfer has taken place between HN3molecule and graphyne sheet and the smaller Q value again suggesting the physisorption of HN3molecule on graphyne sheet25. This charge transfer occurs from HN3molecule to pristine graphyne. In our previous study38, we have shown that BCl3 and BI3 adsorbed graphyne system behaves as an n-type semiconductor, likew ise HN3adsorbed graphyne system also acts as an n-type semiconductor as the number of valence electrons of this system increases significantly. But, the magnitude of charge transfer is much higher when BCl3and BI3interact w ith graphyne system. On the basis of charge transfer,we may remark that although chemisorption of BX3 (X = F, Cl and I) molecule is observed on graphyne sheet, the HN3molecule, on the other hand, is physisorbed on the pristine graphyne system. In HCN adsorbed graphyne, 0.041e amount of charge calculated using B3LYP functional and 6-31G(d)basis set, is transferred from graphyne to HCN molecule.However, the present study reveals that 0.021e amount of charge is transferred from HN3molecule to graphyne. So the charge transfer direction of HCN adsorbed graphyne shows a reverse trend w ith respect to HN3adsorbed graphyne.Interaction of formaldehyde w ith graphyne system40also shows that formaldehyde is physically adsorbed on graphyne system similar to HN3adsorbed graphyne system but the charge transfer is quite large when formaldehyde correlates w ith graphyne system as compare to HN3interaction w ith graphyne system.

    3.2.2 Dipole m om ent

    The detailed study of dipole moment leads us to infer that although pristine graphyne has zero dipole moment the interaction of HN3molecule induces a significant amount of dipole moment into the system. The magnitude of dipole moment in case of HN3adsorbed graphyne system is found to be 0.173 Debye both for vdW and w ithout vdW correction. The sudden change in dipole moment may be detected w ith the help of a suitable detector and hence may ensure the possibility of designing as a sensor. This moderate value of dipole moment may be due to the rearrangement of charge carriers between graphyne system and HN3molecule. On comparing, it has been noticed that the magnitude of dipole moment in case of BF3adsorbed graphyne38is smaller than HN3 adsorbed graphyne whereas, increase in dipole moment are observed for BCl3and BI3adsorbed graphyne38system. Therefore, based on this comparison, we may conclude that the chance of detection of HN3molecule is higher than that of BF3molecule using graphyne as a host material.

    3.2.3 Band structure ana lysis

    In this work, we have analyzed the band structure of pristine graphyne when hydrazoic acid is adsorbed on it and presented a comparative discussion w ith its pristine counterpart. Our analysis and plot of band structure (see Fig.2) for HN3adsorbed graphyne system clearly shows that there is no spin splitting taking place for up and down spins and this is certainly because of the zero magnetic moment of the system. A lso, it has been observed that the valance band maximum (VBM) and the conduction band m inimum (CBM) of the HN3adsorbed graphyne system are located at the Г point of the hexagonal Brillouin zone and this observation of the VBM and CBM exactly matches w ith that of pristine graphyne38. For the pristine graphyne, the difference in energy level between the VBM and CBM is found to be approximately 0.453 eV13,38.But just when the adsorption of HN3molecule takes place on the surface of the pristine graphyne, its band gap gets changed and decreases to 0.424 eV (Table 1) w ithout incorporating vdW correction. There is no change in magnitude of the band gap when vdW interaction is considered. It is known that electrical conductivity is proportional tow here E,K and Tgbrepresents band gap, Boltzmann constant and temperature respectively. Since the band gap decreases when pristine graphyne interacts w ith HN3molecule, the HN3adsorbed system possesses larger electrical conductivity than that of the pristine system. The decrease in band gap is also observed in case of formaldehyde interaction w ith graphyne system40.However, our previous study on BX3 (X = F, Cl and I)molecule adsorption on graphyne sheet shows that38, the band gap of the pristine sheet slightly got increased, which is just opposite from the results of our present study of gas adsorption.Again from the literature survey, it is known that systems w ith low energy gap are less chem ically hard and consequently shows relatively low chem ical hardness profile47,48. Hence from our present work, we can infer that as the band gap of the pristine graphyne decreases on HN3adsorption on its surface,the resulting system becomes more reactive as compared to the pristine structure but less reactive compare toformaldehyde adsorbed graphyne system40. This is because the band gap of formaldehyde adsorbed graphyne is minimum compared to our studied molecule. Further, it is a known fact that pristine graphyne is a direct band gap intrinsic sem iconductor and it sustains this particular characteristic even when HN3 interacts w ith its surface. But the adsorption of HN3molecule on the graphyne system makes it an extrinsic sem iconductor (n-type).

    Fig.3 Total density of states (DOS) and projected density of states(PDOS) of HN3 molecule adsorbed graphyne system,(a) w ithout vdW correction; (b) w ith vdW correction.

    Fig.4 PDOS of pristine graphyne and HN3 adsorbed graphyne.

    3.2.4 Density of states

    The total density of states (DOS) and projected density of states (PDOS) considering w ith and w ithout vdW correction of each of the constituted atoms of ‘HN3 molecule adsorbed graphyne system’ show ing their individual orbital contribution has been picturized in Fig.3. There is no spin splitting in the system since it shows zero magnetism. So only the up-spin of the system has been plotted. The valence band (VB), as well as the conduction band (CB) in the total DOS, is primarily contributed by the energy states of C atom. The N and H atoms add some states to the TDOS. The absence of any energy state on the Ferm i level (Fig.4) confirms that HN3molecule adsorbed system is show ing sem iconducting behavior. The Fig.3(a, b)clearly shows that C atom is dom inating the HOMO, LUMO and their adjacent energy states in the TDOS. The VB region of C atom [Fig.3a(ii)] is strictly governed by the pz orbital except?2.7 to ?2.0 eV where the pxand pyorbitals overlap each other and dom inate over the contribution of pzorbitals. In the CB region, again the magnitude of pzorbital of C atom is dom inating and is spread all over before it vanishes at the extreme part of our considered energy range. But, as we move farther away from the Fermi level, towards the higher energy range, it is observed that the pxand pyorbitals start contributing together from 3.4 eV onwards. It may also be noted that in a very small region between 3.5 to 4.1 eV, the contribution from pzorbital of C atom is suppressed by pxand pyorbitals. Again,the states of px and py orbitals arise from 4.6 eV onwards and dom inate in the rest of the region of C atom (where pz vanishes). The s orbital of C atom hardly adds to the DOS. On the other hand, the contribution of the only s orbital of H atom is negligible w ith two peaks of least magnitude, one at VB and the other at CB region [Fig.3a(iii)]. However, the peak at CB is comparatively of greater amplitude than that of VB. In the case of N atom, the VB and the CB are composed of two peaks,each one from the contribution of pxand pzorbitals [Fig.3a(iv)]separately. The highest energy states of pxfalls between ?3.2 to?2.5 eV in the VB region and 3.0 to 3.3 eV in the CB region,while that of pzit lies from ?1.5 to ?1.4 eV in the VB region and 4.1 to 4.6 eV in the CB region of the N atom. Interestingly,the peak of the pz orbital of N atom is higher than that of px orbital in the VB area and vice versa in case of the CB region.Our study on the DOS analysis of HN3adsorbed graphyne system is dom inated especially by the energy states of the pzorbital of C atom, which well matches w ith the DOS of pristine graphyne13,38, where the pz orbital of C atom is dominant. We find that the presence of the dopant (HN3) in graphyne produces less impact on the TDOS. Specifically, the graph of TDOS of the adsorbed system is found to be very sim ilar to that of its pristine counterpart only w ith an increase in the amplitude. Further, vdW correction produced no effect on the DOS and PDOS of the HN3 adsorbed graphyne system. In order to verify the intrinsic mechanism of the change of band gap,especially the contribution of the band near the Fermi level, the zoom version of pzorbital of contributing atoms of pristine graphyne and HN3adsorbed graphyne system is presented in Fig.4. For the pristine system, the pzorbital of C atom starts contributed at ?0.058 eV away from the Ferm i level. However,when HN3 is adsorbed, the pz orbitals started contributing nearly from the Fermi level, and this is the main reason for lowering the band gap apart from the very small contribution of the pzorbital of N atom which was m issing for the pristine system.

    4 Conc lusions

    In order to investigate the sensing behavior of graphyne for the detection of HN3molecule based on first principle calculations w ith vdW correction, we have studied the adsorption of HN3molecule on pristine graphyne. The result shows that parallel orientation of HN3molecule on graphyne sheet is found to be more stable in contrast to transverse orientation and is in good accordance w ith our previous findings. The negative value of adsorption energy clearly reflects the stability of HN3adsorbed graphyne system. The smaller magnitude of adsorption energy and higher value of optimal distance signifies that physisorption of HN3 molecule occurs on graphyne system whereas BX3(X = F, Cl and I)molecule is chem isorbed on it. The band structure analysis indicates that HN3adsorbed graphyne is also exhibiting sem iconducting characteristics like pristine as well as BX3(X =F, Cl and I) adsorbed graphyne system. The band gap decreases slightly w ith respect to the pristine system which is also confirming the increase in chemical reactivity profile of the HN3adsorbed graphyne system. It has been noticed that sim ilar to BCl3, BI3and other molecules adsorbed graphyne system,HN3molecule adsorbed graphyne system also behaves like an n-type semiconductor. The pristine graphyne possesses zero dipole moment but a considerable value of dipole moment,even higher than BF3adsorbed graphyne system, is obtained when the interaction of HN3molecule occurs w ith pristine graphyne. The PDOS analysis reveals that pzorbital of C atom is mostly contributed to the total density of states of HN3adsorbed graphyne system. Finally, the electronic properties of the graphyne system are highly influenced due to the presence of HN3molecule on it which ensures the possibility to use graphyne system for the identification of hydrazoic acid in the atmosphere.

    Acknow ledgm en t: US would like to acknow ledge the support from Prof. Paul W Ayers, Department of Chemistry,McMaster University, Canada, in various ways and SHARCNET Canada for providing computational facilities for this research work.

    Suppo rting In fo rm ation: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R .E.Nature 1985, 318, 162. doi: 10.1038/318162a0

    (2) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0

    (3) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.;Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306,666. doi: 10.1126/science.1102896

    (4) Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015,115, 4744. doi: 10.1021/cr500304f

    (5) Lu, H.; Li, S. -D. J. Mater. Chem. C 2013, 1, 3677.doi: 10.1039/C3TC30302K

    (6) Yang, M. -Q.; Zhang, N.; Xu, Y. -J. ACS Appl. Mater. Interfaces 2013,5, 1156. doi: 10.1021/am3029798

    (7) Deng, W. -Q.; Matsuda, Y.; Goddard, W. A. J. Am. Chem. Soc. 2007,129, 9834. doi: 10.1021/ja061443r

    (8) Romo-Herrera, J. M.; Terrones, M.; Terrones, H.; Meunier, V. ACS Nano 2008, 2, 2585. doi: 10.1021/nn800612d

    (9) Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87,6687. doi: 10.1063/1.453405

    (10) Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 1998, 58,11009. doi: 10.1103/PhysRevB.58.11009

    (11) Malko, D.; Neiss, C.; Vi?es, F.; G?rling, A. Phys. Rev. Lett. 2012,108, 086804. doi: 10.1103/PhysRevLett.108.086804

    (12) Kondo, M.; Nozaki, D.; Tachibana, M.; Yumura, T.; Yoshizawa, K.Chem. Phys. 2005, 312, 289. doi: 10.1016/j.chemphys.2004.11.029

    (13) Singh, N. B.; Bhattacharya, B.; Sarkar, U. Struct. Chem. 2014, 25,1695. doi: 10.1007/s11224-014-0440-4

    (14) Koo, J.; Huang, B.; Lee, H.; Kim, G.; Nam, J.; Kwon, Y.; Lee, H.J. Phys. Chem. C 2014, 118, 2463. doi: 10.1021/jp4087464

    (15) Shayeganfar, F. J. Phys. Chem. C 2015, 119, 12681.doi: 10.1021/acs.jpcc.5b01560

    (16) Deb, J.; Bhattacharya, B.; Sarkar, U. J. Phys.: Conf. Ser. 2016, 759,012038(1/6). doi:10.1088/1742-6596/759/1/012038

    (17) Bhattacharya, B.; Sarkar, U. J. Phys. Chem. C 2016, 120, 26793.doi: 10.1021/acs.jpcc.6b07478

    (18) Kang, J.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B. J. Phys. Chem. C 2011,115, 20466. doi: 10.1021/jp206751m

    (19) Bhattacharya, B.; Singh, N. B.; Sarkar, U. Int. J. Quantum Chem.2015, 115, 820. doi: 10.1002/qua.24910

    (20) Pan, J.; Du, S.; Zhang, Y.; Pan, L.; Zhang, Y.; Gao, H.; Pantelides, S.T. Phys. Rev. B 2015, 92, 205429(1/6).doi: 10.1103/PhysRevB.92.205429

    (21) Li, C.; Li, J.; Wu, F.; Li, S.-S.; Xia, J.-B.; Wang, L.-W. J. Phys. Chem.C 2011, 115, 23221. doi: 10.1021/jp208423y

    (22) Guo, Y.; Jiang, K.; Xu, B.; Xia, Y.; Yin, J.; Liu, Z. J. Phys. Chem. C 2012, 116, 13837. doi: 10.1021/jp302062c

    (23) Hwang, H. J.; Koo, J.; Park, M.; Park, N.; Kwon, Y.; Lee, H. J. Phys.Chem. C 2013, 117, 691. doi: 10.1021/jp3105198

    (24) Deb, J.; Paul, D.; Sarkar, U. AIP Conf. Proc. 2017, 1832, 050106.doi: 10.1063/1.4980339

    (25) Baheshtian, J.; Peyghan, A. A.; Bagheri, Z.; Tabar, M. B. Struct.Chem. 2014, 25, 1. doi: 10.1007/s11224-013-0230-4

    (26) Deb, J.; Bhattacharya, B.; Sarkar, U. AIP Conf. Proc. 2016, 1731,050081. doi: 10.1063/1.4947735

    (27) Omidvar, A.; Mohajeri, A. Mol. Phys. 2015, 113, 3900.doi: 10.1080/00268976.2015.1080388

    (28) Deb, J.; Bhattacharya, B.; Paul, D.; Sarkar, U. Phys. E 2016, 84, 330.doi: 10.1016/j.physe.2016.08.006

    (29) Srinivasu, K.; Ghosh, S. K. J. Phys. Chem. C 2012, 116, 5951.doi: 10.1021/jp212181h

    (30) Bhattacharya, B.; Sarkar, U.; Seriani, N. J. Phys. Chem. C 2016, 120,26579. doi: 10.1021/acs.jpcc.6b07092

    (31) Chattaraj, P. K.; Sarkar, U. Int. J. Quantum Chem. 2003, 91, 633.doi: 10.1002/qua.10486

    (32) Chattaraj, P. K.; Sarkar, U.; Parthasarathi, R.; Subramanian, V. Int. J.Quantum Chem. 2005, 101, 690. doi: 10.1002/qua.20334

    (33) Chattaraj, P. K.; Sarkar, U. Comp. Theor. Chem. 2007, 19, 269.doi: 10.1016/S1380-7323(07)80014-8

    (34) Sarkar, U.; Khatua, M.; Chattaraj, P. K. Phys. Chem. Chem. Phys.2012, 14, 1716. doi: 10.1039/c1cp22862e

    (35) Sarkar, U.; Giri, S.; Chattaraj, P. K. J. Phys. Chem. A 2009, 113,10759. doi: 10.1021/jp902374d

    (36) Khatua, M.; Sarkar, U.; Chattaraj, P. K. Eur. Phys. J. D 2014, 68, 1.doi: 10.1140/epjd/e2013-40472-y

    (37) Chattaraj, P. K.; Khatua, M.; Sarkar, U. Int. J. Quantum Chem. 2015,115, 144. doi: 10.1002/qua.24801

    (38) Deb, J.; Bhattacharya, B.; Singh, N. B.; Sarkar, U. Struct. Chem.2016, 27, 1221. doi: 10.1007/s11224-016-0747-4

    (39) Peyghan, A. A.; Rastegar, S. F.; Hadipour, N. L. Phys. Lett. A 2014,378, 2184. doi: 10.1016/j.physleta.2014.05.016

    (40) Majidi, R.; Karam i, A. R. Phys. E 2014, 59, 169.doi: 10.1016/j.physe.2014.01.019

    (41) Shekar, S. C.; Swathi, R. S. J. Phys. Chem. C 2014, 118, 4516.doi: 10.1021/jp412791v

    (42) Ordejón, P.; Artacho, E.; Soler, J. M. Phys. Rev. B 1996, 53, R10441.doi: 10.1103/PhysRevB.53.R10441

    (43) Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.;Ordejón, P.; Portal, D. S. J. Phys. Condens. Matter 2002, 14, 2745.doi: 10.1088/0953-8984/14/11/302

    (44) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,3865. doi: 10.1103/PhysRevLett.77.3865

    (45) Troullier, N.; Martins, J. Solid State Commun. 1990, 74, 613.doi: 10.1016/0038-1098(90)90686-6

    (46) Grimme, S. J. Comput. Chem. 2006, 27, 1787.doi: 10.1002/jcc.20495

    (47) Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854.doi: 10.1021/ja00005a072

    (48) Ghara, M.; Pan, S.; Deb, J.; Kumar, A.; Sarkar, U.; Chattaraj, P. K.J. Chem. Sci. 2016, 10, 15378. doi: 10.1007/s12039-016-1150-9

    91麻豆精品激情在线观看国产 | 亚洲 欧美一区二区三区| 黄色丝袜av网址大全| 欧美久久黑人一区二区| 精品少妇久久久久久888优播| 热99国产精品久久久久久7| 国产高清视频在线播放一区| 99国产精品免费福利视频| 亚洲黑人精品在线| 色尼玛亚洲综合影院| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻1区二区| 日韩三级视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产99久久九九免费精品| 一边摸一边做爽爽视频免费| 久久久精品免费免费高清| 日本a在线网址| av片东京热男人的天堂| 成人永久免费在线观看视频 | 大码成人一级视频| 午夜福利影视在线免费观看| 色在线成人网| 国产免费福利视频在线观看| √禁漫天堂资源中文www| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 老司机影院毛片| 18禁黄网站禁片午夜丰满| 免费在线观看日本一区| 成人国产一区最新在线观看| 国产精品自产拍在线观看55亚洲 | 亚洲成人手机| 91成人精品电影| 午夜福利免费观看在线| e午夜精品久久久久久久| 国产成人精品久久二区二区免费| 国产日韩欧美亚洲二区| 最近最新中文字幕大全免费视频| 亚洲国产中文字幕在线视频| 在线观看免费视频日本深夜| 精品少妇黑人巨大在线播放| 视频区图区小说| 中文字幕av电影在线播放| 久久婷婷成人综合色麻豆| 99国产精品免费福利视频| 中文欧美无线码| 国产日韩一区二区三区精品不卡| 女人被躁到高潮嗷嗷叫费观| 老司机影院毛片| 性少妇av在线| 一本综合久久免费| 男女无遮挡免费网站观看| 满18在线观看网站| 高清在线国产一区| 久久久精品区二区三区| 国产在线免费精品| 狂野欧美激情性xxxx| 欧美日韩国产mv在线观看视频| 嫩草影视91久久| 女人久久www免费人成看片| 精品熟女少妇八av免费久了| 国产有黄有色有爽视频| 别揉我奶头~嗯~啊~动态视频| 午夜免费鲁丝| 日韩欧美国产一区二区入口| 欧美在线一区亚洲| 国产一区二区 视频在线| 久久久精品区二区三区| 国产免费现黄频在线看| 亚洲第一欧美日韩一区二区三区 | 成人亚洲精品一区在线观看| 精品国产一区二区久久| 欧美性长视频在线观看| 欧美午夜高清在线| 国产av又大| 怎么达到女性高潮| 日本五十路高清| 黄色视频,在线免费观看| e午夜精品久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 久久 成人 亚洲| 18禁观看日本| 日韩欧美免费精品| 久久久久视频综合| 曰老女人黄片| 亚洲成av片中文字幕在线观看| 69精品国产乱码久久久| 女人爽到高潮嗷嗷叫在线视频| 免费黄频网站在线观看国产| 1024视频免费在线观看| 国产av国产精品国产| 国产深夜福利视频在线观看| 国产成人精品无人区| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 欧美老熟妇乱子伦牲交| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 久久中文看片网| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰成人久久| 亚洲成av片中文字幕在线观看| 在线观看免费午夜福利视频| 久久精品亚洲熟妇少妇任你| 日韩欧美一区视频在线观看| 免费观看a级毛片全部| 啦啦啦在线免费观看视频4| www.自偷自拍.com| 欧美精品人与动牲交sv欧美| 亚洲色图综合在线观看| 欧美精品高潮呻吟av久久| 大型av网站在线播放| 免费av中文字幕在线| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 免费不卡黄色视频| 久久国产精品影院| 亚洲av电影在线进入| 一本—道久久a久久精品蜜桃钙片| 在线 av 中文字幕| 十八禁网站网址无遮挡| 男女下面插进去视频免费观看| 在线观看免费日韩欧美大片| 久久久国产成人免费| 国产精品久久电影中文字幕 | 老司机深夜福利视频在线观看| 日韩精品免费视频一区二区三区| 最黄视频免费看| 99久久99久久久精品蜜桃| 啦啦啦免费观看视频1| a级毛片在线看网站| 成人18禁高潮啪啪吃奶动态图| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 制服人妻中文乱码| 中文字幕制服av| 叶爱在线成人免费视频播放| 黄色丝袜av网址大全| 少妇粗大呻吟视频| 纵有疾风起免费观看全集完整版| 国精品久久久久久国模美| 国产男靠女视频免费网站| 国产有黄有色有爽视频| 色视频在线一区二区三区| 精品亚洲乱码少妇综合久久| 久久久久国内视频| 在线观看舔阴道视频| 午夜福利欧美成人| 国产精品偷伦视频观看了| 中文字幕高清在线视频| 人妻 亚洲 视频| 亚洲色图 男人天堂 中文字幕| 成人精品一区二区免费| 国产精品国产av在线观看| 国产熟女午夜一区二区三区| 国产精品熟女久久久久浪| 国产一卡二卡三卡精品| 国产欧美日韩综合在线一区二区| 99国产精品一区二区三区| 久久久欧美国产精品| 69精品国产乱码久久久| 午夜激情av网站| 精品人妻熟女毛片av久久网站| 精品国产乱码久久久久久小说| av电影中文网址| 日韩欧美一区视频在线观看| 亚洲伊人久久精品综合| 亚洲三区欧美一区| 中文字幕人妻丝袜制服| 看免费av毛片| 啦啦啦免费观看视频1| 在线观看免费日韩欧美大片| 亚洲自偷自拍图片 自拍| 欧美午夜高清在线| 一本—道久久a久久精品蜜桃钙片| 黑人巨大精品欧美一区二区mp4| 国产精品.久久久| 精品久久蜜臀av无| 午夜视频精品福利| 欧美精品一区二区大全| 亚洲中文日韩欧美视频| 国产欧美日韩一区二区三| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 18禁美女被吸乳视频| 久久影院123| 精品亚洲乱码少妇综合久久| 欧美成狂野欧美在线观看| 精品久久久精品久久久| 久久国产精品影院| 丝袜美腿诱惑在线| 精品国产乱子伦一区二区三区| 国产日韩欧美亚洲二区| 久久精品亚洲av国产电影网| 一边摸一边抽搐一进一出视频| 国产精品二区激情视频| 狂野欧美激情性xxxx| 亚洲精品在线美女| 天天操日日干夜夜撸| 高潮久久久久久久久久久不卡| videos熟女内射| 高清毛片免费观看视频网站 | 国产av精品麻豆| 欧美国产精品一级二级三级| 丝瓜视频免费看黄片| 肉色欧美久久久久久久蜜桃| 亚洲 欧美一区二区三区| 欧美在线黄色| 亚洲成a人片在线一区二区| 国产精品98久久久久久宅男小说| 中文字幕另类日韩欧美亚洲嫩草| 精品国内亚洲2022精品成人 | 一二三四社区在线视频社区8| 十分钟在线观看高清视频www| 天堂俺去俺来也www色官网| 性高湖久久久久久久久免费观看| 精品午夜福利视频在线观看一区 | 日韩大码丰满熟妇| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 9色porny在线观看| 一区福利在线观看| 一本色道久久久久久精品综合| 久久国产精品影院| 国产福利在线免费观看视频| 午夜91福利影院| 国产伦理片在线播放av一区| www.精华液| 亚洲 国产 在线| 中国美女看黄片| 99久久99久久久精品蜜桃| 国产精品免费一区二区三区在线 | 国产在线精品亚洲第一网站| 精品视频人人做人人爽| 亚洲精品乱久久久久久| av线在线观看网站| a在线观看视频网站| 欧美日韩国产mv在线观看视频| 日韩欧美三级三区| av一本久久久久| 午夜免费成人在线视频| 国产av又大| 亚洲色图av天堂| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩av久久| 五月开心婷婷网| 国产高清videossex| 一个人免费看片子| 亚洲国产av新网站| 久久久久久久大尺度免费视频| 人成视频在线观看免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 在线亚洲精品国产二区图片欧美| 欧美日韩成人在线一区二区| 国产精品免费视频内射| 国产成人精品久久二区二区91| 窝窝影院91人妻| 两个人免费观看高清视频| 老司机午夜十八禁免费视频| 午夜视频精品福利| 两性夫妻黄色片| 色老头精品视频在线观看| videosex国产| 丁香六月欧美| 老汉色av国产亚洲站长工具| 9色porny在线观看| 国产精品免费一区二区三区在线 | 色视频在线一区二区三区| 在线观看免费视频网站a站| 色婷婷av一区二区三区视频| 三上悠亚av全集在线观看| 麻豆av在线久日| 欧美性长视频在线观看| 少妇裸体淫交视频免费看高清 | 麻豆国产av国片精品| 黄色视频在线播放观看不卡| 99国产精品一区二区蜜桃av | 国产在线一区二区三区精| 青草久久国产| 国产视频一区二区在线看| 性色av乱码一区二区三区2| 国精品久久久久久国模美| 18禁国产床啪视频网站| 国产精品欧美亚洲77777| 天天躁狠狠躁夜夜躁狠狠躁| 免费不卡黄色视频| 午夜免费成人在线视频| 精品久久久久久电影网| 自线自在国产av| 国产黄频视频在线观看| 午夜两性在线视频| 久久精品成人免费网站| 黄色视频在线播放观看不卡| 狠狠狠狠99中文字幕| 在线观看免费高清a一片| 高清视频免费观看一区二区| 正在播放国产对白刺激| 国产免费av片在线观看野外av| 亚洲精品乱久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产99精品国产亚洲性色 | 欧美激情极品国产一区二区三区| 青青草视频在线视频观看| 日韩欧美一区二区三区在线观看 | 怎么达到女性高潮| 精品人妻熟女毛片av久久网站| 中文字幕最新亚洲高清| 久久天堂一区二区三区四区| 久久久久精品国产欧美久久久| 精品国产一区二区三区四区第35| 成年女人毛片免费观看观看9 | 两个人免费观看高清视频| 中文字幕色久视频| 久久久国产欧美日韩av| 亚洲免费av在线视频| 狠狠精品人妻久久久久久综合| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 国产精品 国内视频| 在线 av 中文字幕| 精品福利永久在线观看| 99国产精品一区二区三区| 国产精品av久久久久免费| 一级毛片精品| 亚洲中文av在线| 高潮久久久久久久久久久不卡| 18禁国产床啪视频网站| 9色porny在线观看| 亚洲成av片中文字幕在线观看| av天堂久久9| 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 精品亚洲成a人片在线观看| 亚洲人成伊人成综合网2020| 亚洲精品一区av在线观看| 三级毛片av免费| 午夜福利高清视频| 在线免费观看不下载黄p国产 | 特大巨黑吊av在线直播| 午夜福利欧美成人| 午夜成年电影在线免费观看| 男女做爰动态图高潮gif福利片| 亚洲人与动物交配视频| 白带黄色成豆腐渣| 久久中文看片网| 99久久国产精品久久久| 婷婷亚洲欧美| 国产精品九九99| 法律面前人人平等表现在哪些方面| 亚洲电影在线观看av| 中文字幕熟女人妻在线| 亚洲avbb在线观看| 日韩中文字幕欧美一区二区| 一本久久中文字幕| 人妻久久中文字幕网| 男女午夜视频在线观看| 精品一区二区三区视频在线 | 999久久久精品免费观看国产| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频| 国产欧美日韩一区二区三| 亚洲一区高清亚洲精品| 1000部很黄的大片| 99国产精品一区二区蜜桃av| 亚洲国产欧美网| 黄片小视频在线播放| 色视频www国产| 12—13女人毛片做爰片一| 麻豆av在线久日| 亚洲国产日韩欧美精品在线观看 | 亚洲精品色激情综合| 99热6这里只有精品| 日韩精品中文字幕看吧| 亚洲18禁久久av| 亚洲成a人片在线一区二区| av天堂中文字幕网| 久久久久久国产a免费观看| 欧美中文综合在线视频| 2021天堂中文幕一二区在线观| 青草久久国产| 老司机在亚洲福利影院| 国产成人福利小说| 在线看三级毛片| av天堂中文字幕网| 舔av片在线| 午夜精品一区二区三区免费看| 国产免费av片在线观看野外av| 欧美黄色淫秽网站| 一区二区三区高清视频在线| 中国美女看黄片| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 在线播放国产精品三级| 午夜福利欧美成人| 欧美3d第一页| 女同久久另类99精品国产91| 国产精品av久久久久免费| 精品一区二区三区av网在线观看| 久久久久亚洲av毛片大全| 欧美在线一区亚洲| 一本精品99久久精品77| 精品久久久久久,| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影| 老汉色av国产亚洲站长工具| 人妻久久中文字幕网| 五月伊人婷婷丁香| 狂野欧美激情性xxxx| www.自偷自拍.com| 色精品久久人妻99蜜桃| 日韩欧美在线二视频| 999精品在线视频| 国产黄色小视频在线观看| 怎么达到女性高潮| 91av网一区二区| 高清毛片免费观看视频网站| 波多野结衣巨乳人妻| 99热只有精品国产| 老司机午夜福利在线观看视频| 黑人巨大精品欧美一区二区mp4| 欧美性猛交╳xxx乱大交人| 午夜精品一区二区三区免费看| 男女下面进入的视频免费午夜| bbb黄色大片| 久久精品91蜜桃| 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 床上黄色一级片| 中文在线观看免费www的网站| 18禁黄网站禁片免费观看直播| 国产美女午夜福利| 亚洲人成网站在线播放欧美日韩| 岛国在线免费视频观看| 黑人操中国人逼视频| 看片在线看免费视频| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 精品国产美女av久久久久小说| 中文字幕最新亚洲高清| 99久久精品热视频| svipshipincom国产片| 悠悠久久av| 黄色女人牲交| 伦理电影免费视频| 男人舔女人下体高潮全视频| 老司机午夜十八禁免费视频| 日韩欧美 国产精品| 青草久久国产| h日本视频在线播放| 国产精品 国内视频| 国产毛片a区久久久久| 免费看美女性在线毛片视频| 少妇的逼水好多| 国产黄色小视频在线观看| 黄色日韩在线| 亚洲人成电影免费在线| 亚洲美女黄片视频| 亚洲国产精品久久男人天堂| 亚洲熟妇熟女久久| 免费在线观看视频国产中文字幕亚洲| 国产精品久久视频播放| 国内少妇人妻偷人精品xxx网站 | 国产精品久久久久久亚洲av鲁大| 精品99又大又爽又粗少妇毛片 | 国产午夜精品论理片| 亚洲av熟女| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 91av网一区二区| 中文字幕最新亚洲高清| 久久久久久大精品| 亚洲国产精品合色在线| 午夜精品在线福利| 亚洲自拍偷在线| 伦理电影免费视频| 午夜福利免费观看在线| 网址你懂的国产日韩在线| tocl精华| 亚洲美女黄片视频| 久久午夜综合久久蜜桃| 一个人免费在线观看的高清视频| 老司机在亚洲福利影院| 亚洲人成电影免费在线| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区av网在线观看| 免费看美女性在线毛片视频| 久久香蕉精品热| 午夜激情欧美在线| 精品国产三级普通话版| 国产av麻豆久久久久久久| 日本a在线网址| 动漫黄色视频在线观看| 99久久精品国产亚洲精品| 午夜a级毛片| 精品国内亚洲2022精品成人| 亚洲欧美一区二区三区黑人| 成年女人看的毛片在线观看| 亚洲一区高清亚洲精品| 日韩欧美三级三区| 国产伦一二天堂av在线观看| 男插女下体视频免费在线播放| 日韩欧美国产一区二区入口| svipshipincom国产片| 国产精品九九99| 色老头精品视频在线观看| 欧美色视频一区免费| 色在线成人网| 精品久久久久久久久久免费视频| 免费观看人在逋| 国产精品亚洲一级av第二区| 国内精品久久久久久久电影| 他把我摸到了高潮在线观看| 亚洲成av人片在线播放无| 久久天躁狠狠躁夜夜2o2o| 成人国产一区最新在线观看| 成人18禁在线播放| 亚洲av电影在线进入| av福利片在线观看| 精品无人区乱码1区二区| 九九久久精品国产亚洲av麻豆 | 十八禁网站免费在线| 99国产精品一区二区三区| 香蕉国产在线看| 91av网一区二区| 国内精品久久久久精免费| 搡老妇女老女人老熟妇| 麻豆久久精品国产亚洲av| 老司机午夜福利在线观看视频| 亚洲18禁久久av| 日本熟妇午夜| 欧美日韩一级在线毛片| 久久精品aⅴ一区二区三区四区| 亚洲av中文字字幕乱码综合| 亚洲精华国产精华精| www.自偷自拍.com| 国产人伦9x9x在线观看| 麻豆国产av国片精品| 国产精品久久久av美女十八| 啦啦啦观看免费观看视频高清| 欧美日韩乱码在线| av在线蜜桃| 色av中文字幕| 久久精品综合一区二区三区| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品19| 99久久精品热视频| 欧美日本视频| 俺也久久电影网| 亚洲精品一区av在线观看| 久久热在线av| 黄频高清免费视频| 一区二区三区高清视频在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av日韩精品久久久久久密| 在线观看66精品国产| 精品一区二区三区四区五区乱码| 免费电影在线观看免费观看| 老司机深夜福利视频在线观看| 1024手机看黄色片| 精品国产三级普通话版| 亚洲午夜理论影院| 高清毛片免费观看视频网站| 亚洲国产精品sss在线观看| 亚洲在线自拍视频| 欧美在线一区亚洲| 国产精品久久久久久亚洲av鲁大| 国产 一区 欧美 日韩| 国产伦人伦偷精品视频| 身体一侧抽搐| 国产成人啪精品午夜网站| 中文字幕熟女人妻在线| 欧美三级亚洲精品| 亚洲av电影不卡..在线观看| 欧美一区二区国产精品久久精品| 女同久久另类99精品国产91| 国产单亲对白刺激| 久久精品影院6| 婷婷精品国产亚洲av| 99热6这里只有精品| 在线免费观看的www视频| 国内精品一区二区在线观看| 久99久视频精品免费| 一进一出好大好爽视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲人成电影免费在线| 亚洲激情在线av| 特级一级黄色大片| 日韩有码中文字幕| 1024香蕉在线观看| 免费在线观看视频国产中文字幕亚洲| 在线观看免费午夜福利视频| 91麻豆精品激情在线观看国产| 两性午夜刺激爽爽歪歪视频在线观看| 可以在线观看的亚洲视频| 国产91精品成人一区二区三区| 亚洲最大成人中文| 女警被强在线播放| 97超视频在线观看视频| 欧美不卡视频在线免费观看| 欧美色欧美亚洲另类二区| 国产欧美日韩精品亚洲av| 亚洲专区国产一区二区| 少妇的丰满在线观看| 哪里可以看免费的av片| 婷婷精品国产亚洲av| 成人鲁丝片一二三区免费| 亚洲精品粉嫩美女一区| 久久香蕉精品热| 亚洲av电影不卡..在线观看| 亚洲性夜色夜夜综合| 麻豆久久精品国产亚洲av| 在线播放国产精品三级|