• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RbCl和CsCl水溶液結構的X射線散射及經驗勢結構精修模擬

    2018-05-25 00:58:07周永全曾我良枝山口敏男房艷房春暉
    物理化學學報 2018年5期
    關鍵詞:福岡春暉鹽湖

    周永全,曾我良枝,山口敏男,房艷,房春暉,*

    1中國科學院青海鹽湖研究所,青海 西寧 810008

    2福岡大學理學院化學系,福岡 814-0180,日本

    1 In troduction

    Rubidium and cesium are strategic rare-dispersed element resources in brine. Solvent extraction and adsorption are considered as the most promising technologies for rubidium and cesium separation from salt lake brine1,2. Solvent extraction and adsorption are also designated as the potential ways for radioactive isotopes137Cs elimination from the nuclear waste water1,3. The local hydration structure of Rb+and Cs+is essential for understanding the extraction mechanism of both ions. For example, there are abundant studies on the complexation of alkali metal ions with crown ethers. Although the inchoate theories such as “best-fit theory”4and “maximum contact point theory”5were often used for elaborating the extraction selectivity of crown ethers,researchers6–9have recently stated that the extraction selectivity series is not explained until the ion hydration and the solvent effect are taken into consideration at the molecular level.

    M icroscopic properties such as the ionic hydration and ion pairs of aqueous solutions have attracted researchers’ attention over decades10–13. Numerous X-ray and neutron scattering studies on the microscopic properties of alkali ion hydration and association have been performed, and a comprehensive report summarised the results on the structure and dynamics of hydrated ions until 199314. Cl?is widely studied and characterized by a relatively stable hydration shell14,15. The hydration structure of Li+and Na+w ith small ionic radii in aqueous solutions is well studied and defined as a rigid hydration shell14. On the contrary, the larger size Rb+and Cs+may have weaker tendencies of hydration and more variegated than the smaller ones. Additionally, the distance of the first-neighbor O(W)-O(W) interactions for solvent water is close to the hydration distances of Rb+and Cs+, which makes it difficult to extract the structural information about the hydration of these ions, especially for Rb+. Furthermore, Rb+and Cs+strongly absorb X-rays, and Rb+emits serious fluorescence when a molybdenum anode target is used.Therefore, structural studies on aqueous solutions of rubidium and cesium salts are much less and controversial. Smirnov et al.16summarised the structures of the nearest neighbors of Rb+and Cs+in aqueous solutions of their salts before 2007. Here,some latest results17–25are collected in Table 1.

    According to Table 1, the Rb+–O (H2O) distance in aqueous rubidium salt solutions ranges w ithin 0.280–0.315 nm. The coordination number for Rb+varies in a range of 6.0–8.5. The Cs+–O distance w ithin the hydrated Cs+is in the range of 0.295–0.325 nm w ith the coordination number from 3 to 9.When considering the second hydration shell and the ion association in aqueous solutions of rubidium and cesium salts,there is few detailed information. Although neutron and X-ray scattering and X-ray absorption methods are well known for providing us direct structure information on ion hydration and association26–29, the structural information obtained is limited to one-dimensional, and thus no detailed structure of ion hydration and association is obtained. Developed by Soper et al.30–32, Empirical Potential Structure Refinement (EPSR) has become a versatile methodology to analyze the onedimensional total X-ray and neutron scattering data of liquid and amorphous materials. EPSR has been proved to be very successful in extracting the individual site-site pair correlation functions, coordination number distribution, angle distribution,and spatial density function (SDF, 3D structure), etc. for various liquids and solutions under various conditions33–36.

    In the present work, X-ray diffraction measurements are made on aqueous 1.0 mol·dm?3RbCl and CsCl solutions.EPSR modelling based on the X-ray structure factors obtained is used to estimate all site-site pair correlation functions, the coordination number distributions, and the spatial density functions. The structures about hydrated Cl?, Rb+, Cs+, ion association, as well as solvent water in the solutions, are discussed.

    Table 1 Structural parameters of Rb+ and Cs+ hydration under ambient condition obtained by experimental and theoretical methods.

    2 Experim en tal and theo retical m ethods

    2.1 Sam p les p reparation and analysis

    Commercially available RbCl and CsCl (AR, Sigma Chemicals) were recrystallized from distilled water. Sample solutions were prepared by mass w ith ultrapure water to a required concentration. The density of both solutions was determined w ith a vibrating densitometer DMA48 (Anton Paar)which had been calibrated w ith dried air and distilled water at(298 ± 0.5) K, w ith the reproducibility of 0.01%. The composition and properties of the sample solutions are listed in Table 2.

    Table 2 Com position and properties of the sam p le solutions.

    2.2 X-ray d iffrac tion m easu rem en ts

    X-ray scattering patterns were measured in a reflection geometry for free surface of sample solutions at ambient condition (T = (298 ± 2) K) on an X-ray diffractometer(Empyrean, PANalytical) w ith a GaliPix 3D detector. The X-rays were generated by an Ag anode tube (the wavelength, λ =0.056087 nm for Ag Kα) operated at 60 kV and 30 mA.Rhodium filter was used to strip the Kβ radiation. The scattering angle range spanned 2° ≤ 2θ ≤ 150°, corresponding to a range of the scattering vector Q (Q = 4πsinθ/λ) of 4.292 nm–1≤ Q ≤216.4 nm–1. Divergent and scattering slits of 1/16° and 1/4° for the low angle range of 2° to 50° and 1/2° and 1° for a high angle range of 40° to 150° were employed, respectively. The accumulative counts for each angle were greater than 5 × 104to ensure the statistical counting errors of less than 1%.

    2.3 X-ray data treatm en ts

    A fter absorption correction of the samples, the corrected intensity (Icor) was normalized to an electron unit by comparing the asymptote of the experimental data with the calculated coherent intensity in a large scattering vector range (Q > 150 nm?1). The normalization factor was re-checked by Krogh-Moe and Norman integration methods37,38. The values from both methods agreed w ith each other w ithin 2%. The structure function i(Q) of the solutions was calculated by subtracting the independent scatterings of all atoms in the solution from the normalised intensity as

    Here, K is the normalization factor, I cor(Q) the experimental intensity corrected for polarization, ni the number of the i-th atom in the stoichiometric volume (V) containing one water molecule, fi(Q) expresses the atom ic scattering factor of atom i corrected for the real part of the anomalous dispersion, Δfi" is the imaginary part, taken from the reference39, Iiincoh(Q)denotes the incoherent scattering including the Breit-Dirac recoil factor correction for atom i, which was cited from Hubbell’s papers40. The Q-weighted structure function was Fourier-transformed to the radial distribution function (RDF).

    The ripples observed at distances less than 0.1 nm were removed by calculating the theoretical peak of the intramolecular interactions w ithin a water molecule and performing Fourier inverse transformation in a usual manner41.Then, the coherent scattering intensity (Icoh(Q)) can be gotten as Eq.(2)

    All the corrections and treatments were performed w ith the program KURVLR42. More details about the X-ray data analysis can be found elsewhere28,43.

    2.4 Em p irical po ten tial struc tu re re finem en t m odelling

    EPSR utilises a Monte Carlo style methodology to minim ise the diあerence between experimental total structure factors and those generated from the simulation of a sample solution. The experimental total normalised structure factor used in EPSR is defined as Eq.(3)

    where Fsim(Q) is the total structure factor, ci and cj are the atomic fractions of atom types i and j, fi(Q) and fj(Q) are the Q dependent atomic scattering factors of atom types i and j, δij is the Kronecker function to avoid double counting pairs of atoms of the same type, Aij(Q) is the Faber-Ziman partial structure factor, gij(r) is the site-site pair correlation function for all of the atoms present in the sample.

    The total radial distribution functions (G(r)) is calculated as Eq.(6).

    Initial structures for an EPSR simulation are generated by placing the appropriate number of ions and molecules into a box to give the required density. The potential energy of the simulation box is calculated as Eqs.(7) and (8),

    where U intra is described by using a series of harmonic potentials, εij and σij are the Lennard-Jones parameters for the potential well depth and eあective atom size, respectively, ε0is the vacuum permittivity, rijis the interatom ic spacing, qiis the atomic charge, U EP is the empirical potential which is generated in EPSR30–32.

    The EPSR simulation boxes were set up by using a cubic box containing 1000 water molecules for pure water, 1000 water molecules, 18 Cl?and 18 Rb+or 18 Cs+for the 1.0 mol?dm?3RbCl and CsCl aqueous solutions, corresponding to the experimental salt concentration, respectively. The potential parameters44,45used in the EPSR modelling are listed in Table 3.

    Then, Monte Carlo (MC) simulations in EPSR were done in the traditional way. The diあerence between EPSR and the conventional MC is that the potential energy function used in EPSR (Eq.(7)) has an additional perturbation term (U EP)derived purely from the fit of the simulation to the experimental scattering data. This empirical potential energy term serves to drive the simulated structure factor as close as possible to the experimental scattering data w ithout violating the constraints imposed on the atomic overlap, van der Waals forces, and hydrogen bonding30–32. Fig.1 illustrates the calculation flow of EPSR.

    Table 3 Reference potential parameters used in EPSR modelling.

    Fig.1 Scheme for the calculation flow of EPSR.

    Fig.2 Experim entally determ ined (points) and EPSR simu lated (solid lines) F(Q) and G(r) for the 1.0 mol·dm–3 aqueous RbCl and CsCl solutions.

    3 Resu lts and d iscussion

    Experimentally determined and EPSR simulated F(Q) and G(r) for the sample solutions are shown in Fig.2. There are good agreements between the experimental data and the EPSR fi ts in F(Q) above ~10 nm?1and above ~0.2 nm in G(r), which indicates that reasonable structures were elucidated.

    3.1 Hyd ration of C l?, Rb+ and Cs+

    The hydration of Cl?is characterized from gCl-O(W)(r) of the aqueous RbCl and CsCl solutions (Fig.3a). The Cl-O(W) pair correlation functions are very analogous to each other, with the same hydration distance of 0.321 nm, and with a tiny difference in the peak intensity. The coordination number CN of j-th ion is calculated by Eq.(9).

    Here, ρj is the number density of atom j, r m in and r max denote the minimum and maximum distance, respectively, to define the hydration shell of the ion.

    The hydration numbers of Cl-are 5.9 ± 1.1 and 6.0 ± 1.1 in the RbCl and CsCl, respectively (Fig.3b and Table 3). This tiny difference in the intensity of the first peak might indicate a relatively stronger ion association in the aqueous RbCl solution than in the aqueous CsCl solution as discussed in subsequent Section 3.3.

    Fig.3 The pair correlation functions (a) and the coordination num ber distributions (b) of Cl-O(W) in the 1.0 m ol·dm?3 aqueous RbCl and CsCl solutions from EPSR m odelling.

    Fig.4 The pair correlation functions (a) and the coordination number distributions (b) of Rb–O(W) and Cs-O(W) in 1.0 mol·dm–3 aqueous RbCl and CsCl solutions from EPSR modelling.

    Fig.5 Hyd ration structures of Cl? (a), Rb+ (b) and Cs+ (c) extracted from a random snapshot of EPSR m odeling.

    The hydration shells for Rb+and Cs+are seen as the first peaks at 0.297 and 0.312 nm in gRb-O(W)(r) and gCs-O(W)(r) due to Rb+–O(W) and Cs+–O(W) distances, respectively (Fig.4a).Here, we should note that their coordination numbers are sensitive to the cutoff distance (r m in and r max) in Eq.(9). In this work, the integration range was chosen up to the first minimum of g(r) as 0.261–0.378 nm for Rb+and 0.285–0.413 nm for Cs+.The coordination numbers thus obtained are given in Table 3.The Rb+is surrounded by 7.3 ± 1.4 water molecules, and 8.4 ±1.6 water molecules hydrate Cs+. Schematic pictures of the hydration structures of Cl?, Rb+and Cs+were extracted from the snapshots of EPSR modelling boxes and are shown in Fig.5.

    Both Rb+and Cs+are the typical large ionic-radius monovalent ions w ith a low surface charge density and are classified as weakly hydrated ions in contrast to Li+and Na+.Such an evidence is seen in the second coordination sphere. As is seen in g Cs-O(W)(r) in Fig.4a, Cs+does not form the second hydration sphere. Available data on the second hydration sphere of Rb+are ambiguous and controversial in the literature.Angelo et al.46stated that Rb+does not form the second hydration sphere, whereas Sm irnov’s study47showed the formation of the stable second coordination sphere. In the present work, the EPSR modelling results show that Rb+shows stronger hydration ability than Cs+since the second hydration sphere is observed in gRb-O(W)(r) in Fig.4a. However, its second hydration sphere diffuses from 0.378 to 0.591 nm, and the coordination number corresponds to 15 to 25 according to Fig.4b. The average coordination number of the second shell of Rb+is 18.7 ± 2.4 w ith large uncertainties (Table 4), which means a relaxed second hydration sphere.

    3.2 Bu lk w ater

    The pair correlation functions of O(W)-O(W) in aqueous 1.0 mol·dm?3RbCl and CsCl solutions and pure water are shown in Fig.6a. The first-neighbor O(W)-O(W) peak in pure water is observed around 0.279 nm in the present work,which is well consistent w ith the literature33,48. According to the g O(W)-O(W)(r) of the RbCl and CsCl solutions, the first O(W)-O(W, I) peak sharpens, and the peak position shifts to 0.273 nm, which indicates the tetrahedral structure intensifies in the bulk water. This behavior is sim ilar to that in pure water under pressure, which has been observed by many other researchers33. The averaged coordination number of O(W)-O(W, I) decreases from 4.9 ± 1.1 in pure water to 3.8 ± 0.9 in the RbCl and CsCl solutions (Table 4).In addition, the second peak in the gO(W)-O(W)(r) shifts to the shorter distance (Fig.6a).

    The spatial density functions were calculated, which shows the location of molecules or portions of molecules relative to one another49. By averaging over the orientation of the neighbouring molecules which is derived from a spherical harmonic expansion of the pair correlation function from the modelling box, a three-dimensional view of the liquid structure is provided. The SDFs of the neighboring water molecule around a central water molecule are shown in Fig.7. The range for each shell was fixed to the local m inimum of gO(W)-O(W)(r) of pure water to view a change in the SDFs in the different solutions at the same length scales.

    Table 4 The positions and average coordination num ber of the atom pairs in the samp le solutions.

    Fig.6 The pair correlation functions (a) and the coordination number distributions (b) of O(W)-O(W) in the 1.0 mol·dm?3 RbCl and CsCl solutions and pure water from EPSR modelling.

    Fig.7 Spatial density distribution functions of the neighboring water m olecules around a central water m olecule. The pure water(top),1.0 m ol·dm?3 aqueous RbCl solution(m idd le)and 1.0 m ol·dm?3 aqueous CsCl solutions (bottom).

    The dark blue lobes represent the fi rst sphere at a contour level of 25% of the water molecules w ithin the distance lim its of 0.10–0.336 nm, and the greyish blue and sem itransparent ones do the second sphere (0.339–0.567 nm). The red and white balls in the centre represent O and H atoms of H2O, respectively. Top views are for pure water, the m iddle one for the 1.0 mol?dm?3RbCl aqueous solution, and the bottom views for the 1.0 mol?dm?3CsCl aqueous solution.

    As is seen in Fig.7, the fi rst shell keeps the tetrahedral coordination w ith the slight decrease in the diffusion range for the RbCl and CsCl solutions, which indicates the tetrahedral structure of the first sphere intensified in the electrolyte solutions. On the other hand, the greyish blue and sem itransparent lobes (the second sphere) diffuse in a larger range zone compared w ith pure water. This indicates the tetrahedral ordering of the second shell becomes more disordered for the electrolyte solutions. It is worth noting that all the Cl?, Rb+and Cs+are classified as the typical“structure breaking” ions in aqueous solutions50. On the microscopic level, we can draw out the conclusion that this so-called “breaking” mainly affects the second sphere around the central water molecule.

    Fig.8 The pair correction functions (a) and the coordination number distributions (b) of Rb-Cl and Cs-Cl in1.0 m ol·dm?3 aqueous RbCl and CsCl solutions from EPSR m odelling.

    Fig.9 Local structure of the contact ion pairs in 1.0 m ol·dm?3 aqueous RbCl (a) and CsCl (b) solutions extracted from snapshot of EPSR modelling.

    3.3 Ion assoc iation

    When considering the ionic association, we should note that the preferential formation of ion pairs w ith counter ions in aqueous RbCl and CsCl solutions is typical16,51. Ion association information about Rb+/Cs+and Cl?ion pairs can be seen from the ion-Cl pair correlation functions g ion-Cl(r)shown in Fig.8a. In gion-Cl(r), we can find a peak around 0.324 and 0.336 nm in the aqueous RbCl and CsCl solutions,respectively, which can be attributed to the Rb+–Cl?and Cs+–Cl?characteristic distances of direct contact ion pairs in the solution. Fig.8b shows the coordination number distributions of the Rb+-Cl?and Cs+-Cl?contact ion pairs which range zero to less than 2 w ith the average coordination number of 0.4 ± 0.4 and 0.3 ± 0.4 in the 1.0 mol?dm?3RbCl and CsCl solutions, respectively. The large uncertainties reflect relatively loosened contact Rb+-Cl?and Cs+-Cl?and ion pairs in the 1.0 mol?dm?3solutions. In fact, more than 60% of Cs+and Rb+are present as the aqua ions.

    The formation of cation-anion contact ion pairs should be concentration dependent. Extended studies on aqueous RbCl and CsCl solutions of different salt concentrations are in progress.

    There is a very broad peak from 0.45 to 0.65 nm in g Cs-Cl(r), which indicates that the solvent separated ion pairs may coexist in the CsCl solution. On the other hand, this broad peak is very ambiguous in gRb-Cl(r). Comparing w ith Cs+, Rb+seems to prefer toform direct contact ion pairs and shows a stronger ion association ability. Fig.9 shows the schematic views for the contact ion pairs in 1.0 mol?dm?3aqueous RbCl and CsCl solutions extracted from a random snapshots of EPSR modelling.

    4 Conc lusions

    The structure of 1.0 mol?dm?3aqueous RbCl and CsCl solutions under the ambient condition is studied by X-ray diffraction measurements. The experimental structure factors are subjected to empirical potential structure refinement modelling to reveal the details of ion hydration and association in the solutions.

    (1) In aqueous RbCl and CsCl solutions, the Cl?–H2O distance is almost the same as 0.321 nm w ith very similar coordination numbers of 5.9 ± 1.1 and 6.0 ± 1.1,respectively.

    (2) Rb+is surrounded on the average by 7.3 ± 1.4 water molecules w ith the Rb+–H2O distance of 0.297 nm. A relatively obvious second hydration sphere can be assigned w ith the Rb+–H2O(II) distance of 0.489 nm and the coordination number of 18.7 ± 2.4.

    (3) Average 8.4 ± 1.6 water molecules hydrate w ith Cs+w ith the Cs+–H2O distance of 0.312 nm. Cs+does not form the second hydration sphere in the present solution. Cs+show s relatively weaker hydration ability than Rb+.

    (4) Dissolution of RbCl and CsCl into water intensifies the tetrahedral structure of the bulk water, which is in a sim ilar fashion as pure water under pressure. Cl?, Rb+and Cs+prevent the second neighbour water molecules around the central one from form ing a tetrahedral sphere.

    (5) Direct contact ion pairs are partially formed in both aqueous RbCl and CsCl solutions, w ith the Rb–Cl and Cs–Cl distances of 0.324 and 0.336 nm, respectively. Rb+shows stronger ion association abilities than Cs+.

    References

    (1) Xu, C.; Wang, J. C.; Chen, J. Solvent Extr. Ion Exc. 2012, 30, 623.doi: 10.1080/07366299.2012.700579

    (2) Lei, H.; Li, S.; Zhai, Q.; Zhang, H.; Jiang, Y.; Hu, M. Acta Phys. -Chim. Sin. 2012, 28, 1599. [雷紅, 李淑妮, 翟全國,張暉英, 蔣育澄, 胡滿成. 物理化學學報, 2012, 28, 1599.]doi: 10.3866/PKU.WHXB201204281

    (3) Zhang, H.; Wang, S.; Wang, R.; Lin, C.; Zhang, X.; Wang, X.Acta Phys. -Chim. Sin. 2000, 16, 952. [張惠源, 王淑蘭, 王榕樹,林燦生, 張先業(yè), 王孝榮. 物理化學學報, 2000, 16, 952.]doi: 10.3866/PKU.WHXB20001016

    (4) Izatt, R. M.; Rytting, J. H.; Nelson, D. P.; Haymore, B. L. Science 1969, 164, 443. doi: 10.1126/science.164.3878.443

    (5) Maleknia, S.; Brodbelt, J. J. Am. Chem. Soc. 1993, 115, 2837.doi: 10.1021/ja00060a034

    (6) Glendening, E. D.; Feller, D.; Thompson, M. A. J. Am. Chem.Soc. 1994, 116, 10657. doi: 10.1021/ja00102a035

    (7) Inokuchi, Y.; Ebata, T.; Rizzo, T. R.; Boyarkin, O. V. J. Am. Chem.Soc. 2014, 136, 1815. doi: 10.1021/ja4086066

    (8) Rodriguez, J. D.; Vaden, T. D.; Lisy, J. M. J. Am. Chem. Soc.2009, 131, 17277. doi: 10.1021/ja906185t

    (9) Inokuchi, Y.; Boyarkin, O. V.; Kusaka, R.; Haino, T.; Ebata, T.;Rizzo, T. R. J. Phys. Chem. A 2012, 116, 4057.doi: 10.1021/jp3011519

    (10) Richens, D. T. The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements; Wiley: Chichester, UK, 1997; pp. 24–68.

    (11) Fawcett, W. R. Liquids, Solutions, and Interfaces from Classical Macroscopic Descriptions to Modern Microscopic Details;Oxford Univesity Press: New York, USA, 2004; pp. 204–254.

    (12) Hao, L.; Zhao, Y.; Zhao, J.; Jiang, X.; Yang, Z.; Zhao, D. Acta Phys. -Chim. Sin. 2016, 32, 2921. [赫蘭蘭, 郭宇, 趙健, 姜新蕊,楊忠志, 趙東霞. 物理化學學報, 2016, 32, 2921.]doi: 10.3866/PKU.WHXB201609193]

    (13) Galib, M.; Baer, M. D.; Skinner, L. B.; Mundy, C. J.; Huthwelker,T.; Schenter, G. K.; Benmore, C. J.; Govind, N.; Fulton, J. L.J. Chem. Phys. 2017, 146, 084504. doi: 10.1063/1.4975608

    (14) Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157.doi: 10.1021/cr00019a014

    (15) Cummings, S.; Enderby, J. E.; Neilson, G. W.; Newsome, J. R.;Howe, R. A.; Howells, W. S.; Soper, A. K. Nature 1980, 287, 714.doi: 10.1038/287714a0

    (16) Sm irnov, P. R.; Trostin, V. N. Russ. J. Gen. Chem. 2007, 77, 2101.doi: 10.1134/S1070363207120043

    (17) Du, H.; Rasaiah, J. C.; M iller, J. D. J. Phys. Chem. B 2007, 111,209. doi: 10.1021/jp064659o

    (18) M ile, V.; Gereben, O.; Kohara, S.; Pusztai, L. J. Phys. Chem. B 2012, 116, 9758. doi: 10.1021/jp301595m

    (19) Ramos, S.; Barnes, A. C.; Neilson, G. W.; Capitan, M. J. Chem.Phys. 2000, 258, 171. doi: 10.1016/S0301-0104(00)00132-4

    (20) Ildikó, H.; László, P. J. Phys.: Condens. Matter 2007, 19, 335208.doi: 10.1088/0953-8984/19/33/335208

    (21) M ile, V.; Pusztai, L.; Dom inguez, H.; Pizio, O. J. Phys. Chem. B 2009, 113, 10760. doi:10.1021/jp900092g

    (22) Buda, A.; A li, S. M. J. Mol. Liq. 2013, 179, 34.doi: doi/abs/10.1021/ic030310t

    (23) Ikeda, T.; Boero, M. J. Chem. Phys. 2012, 137, 041101.doi: 10.1063/1.4742151

    (24) M?hler, J.; Persson, I. Inorg. Chem. 2011, 51, 425.doi: 10.1021/ic2018693

    (25) Ling, L.; Fang, C.; Fang, Y. Salt Lake Res. 2006, 15, 45. [林聯(lián)君,房春暉, 房艷, 秦緒鋒. 鹽湖研究, 2006, 15, 45.]

    (26) Ansell, S.; Barnes, A. C.; Mason, P. E.; Neilson, G. W.; Ramos, S.Biophys. Chem. 2006, 124, 171. doi: 10.1016/j.bpc.2006.04.018

    (27) Neilson, G. W.; Mason, P. E.; Ramos, S.; Sullivan, D. Philos.Trans. R. Soc. London, Ser. A 2001, 359, 1575.doi: 10.1098/rsta.2001.0866

    (28) Zhou, Y.; Fang, C.; Fang Y.; Zhu, F.; Tao, S.; Xu, S. Russ. J. Phys.Chem. A 2012, 86, 1236. doi: 10.1134/S0036024412060349

    (29) Thorpe, S. J. L.; Thorpe, M. F. Local Structure from Diffraction;K luwer Academ ic Publishers: New York, USA, 2002; pp. 59–85.

    (30) Soper, A. K. Chem. Phys. 1996, 202, 295.doi: 10.1016/0301-0104(95)00357-6

    (31) Soper, A. K. Phys. Rev. B 2005, 72, 104204.doi: 10.1103/PhysRevB.72.104204

    (32) Soper, A. K. Mol. Simul. 2012, 38, 1171.doi: 10.1080/08927022.2012.732222

    (33) Yamaguchi, T.; Fujimura, K.; Uchi, K.; Yoshida, K.; Katayama, Y.J. Mol. Liq. 2012, 176, 44. doi: 10.1016/j.molliq.2012.08.021.

    (34) Shalaev, E.; Soper, A. K. J. Phys. Chem. B 2016, 120, 7289.doi: 10.1021/acs.jpcb.6b06157

    (35) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K.J. Phys. Chem. B 2007, 111, 13570. doi: 10.1021/jp075913v

    (36) Bow ron, D. T.; Moreno, S. D. Coord. Chem. Rev. 2014, 277, 2.doi: 10.1021/jp202961t

    (37) Krogh-Moe, J. Acta Crystallogr. 1956, 9, 951.doi: 10.1107/S0365110X56002655

    (38) Norman, N. Acta Crystallogr. 1957, 10, 370.doi: 10.1107/S0365110X57001085

    (39) Prince, E. International Tables for Crystallography; Kluwer Academ ic Publishers: London, UK, 2004; pp. 230–235, 255,555–556, 658.

    (40) Hubbell, J. H.; Veigele, W. J.; Briggs, E. A.; Brown, R. T.;Cromer, D. T.; Howerton, R. J. J. Phys. Chem. Ref. Data 1975, 4(3), 471. doi: 10.1063/1.555523

    (41) Kaplow, R.; Strong, S. L.; Averbach, B. L. Phys. Rev. 1965, 138,A1336. doi: 10.1103/PhysRev.138.A1336

    (42) Johansson, G.; Sandstr?m M. Chemica Scripta 1973, 4, 195.doi: 10.1107/S0021889875009594

    (43) Zhou, Y.; Fang, C.; Fang, Y. Acta Phys. -Chim. Sin. 2010, 26,2323. [周永全, 房春暉, 房艷. 物理化學學報, 2010, 26, 2323.]doi: 10.3866/PKU.WHXB20100903

    (44) Yamaguchi, T.; Lee, K.; Yamauchi, M.; Fukuyama, N.; Yoshida,K. Bunseki Kagaku 2015, 64, 295.doi: 10.2116/bunsekikagaku.64.295

    (45) Jensen, K. P.; Jorgensen, W. L. J. Chem. Theory Comput. 2006, 2,1499. doi: 10.1021/ct600252r

    (46) D’Angelo, P.; Persson, I. Inorg. Chem. 2004, 43, 3543.doi: 10.1021/ic030310t

    (47) Sm irnov, P. R.; Grechin, O. V. Russ. J. Coord. Chem. 2013, 39,685. doi: 10.1134/S1070328413090078

    (48) Soper, A. K. Chem. Phys. 2000, 258, 121.doi: 10.1016/S0301-0104(00)00179-8

    (49) Soper, A. K. J. Chem. Phys. 1994, 101, 6888.doi: 10.1063/1.468318

    (50) Marcus, Y. Chem. Rev. 2009, 109, 1346. doi: 10.1021/cr8003828.

    (51) Chen, T.; Hefter, G.; Buchner, R. J. Phys. Chem. A 2003, 107,4025. doi: 10.1021/jp026429p

    猜你喜歡
    福岡春暉鹽湖
    鹽湖為什么色彩斑斕
    水木榮春暉
    中老年保健(2022年2期)2022-08-24 03:20:24
    天空之境——新疆柴窩堡鹽湖
    地理教學(2022年10期)2022-05-23 09:45:06
    春暉
    鴨綠江(2021年17期)2021-11-11 13:03:41
    山西運城:冬日鹽湖色彩斑斕
    科學導報(2020年80期)2020-12-21 11:54:32
    建設生態(tài)宜居美麗湖城背景下的衡水市區(qū)街路美化路徑研究
    誰言寸草心,報得三春暉——唱給父母的贊歌
    如冰如雪,貌美鹽湖
    吳春暉藏石欣賞
    寶藏(2017年11期)2018-01-03 06:45:52
    福岡貓咖啡
    亚洲国产精品一区二区三区在线| 99九九线精品视频在线观看视频| 秋霞伦理黄片| 老司机影院成人| 精品一区在线观看国产| 日产精品乱码卡一卡2卡三| 97超碰精品成人国产| 狂野欧美白嫩少妇大欣赏| 搡老乐熟女国产| 色94色欧美一区二区| 蜜桃在线观看..| 六月丁香七月| 少妇被粗大猛烈的视频| 久久久久久久久久久免费av| 久久这里有精品视频免费| 日韩亚洲欧美综合| 亚洲欧洲精品一区二区精品久久久 | 青青草视频在线视频观看| 久久久久久久久大av| 亚洲精品456在线播放app| 久久久久人妻精品一区果冻| 日韩av不卡免费在线播放| 99精国产麻豆久久婷婷| 蜜桃久久精品国产亚洲av| 精品人妻熟女av久视频| 久久ye,这里只有精品| 日韩伦理黄色片| 肉色欧美久久久久久久蜜桃| 特大巨黑吊av在线直播| 一区二区三区免费毛片| 成人影院久久| av播播在线观看一区| 大话2 男鬼变身卡| 麻豆成人av视频| a级片在线免费高清观看视频| 特大巨黑吊av在线直播| videossex国产| 丰满乱子伦码专区| 婷婷色综合大香蕉| 成人亚洲精品一区在线观看| 少妇精品久久久久久久| 51国产日韩欧美| 日日摸夜夜添夜夜爱| xxx大片免费视频| 婷婷色麻豆天堂久久| 国产成人精品福利久久| 精品一区二区三卡| 少妇熟女欧美另类| 好男人视频免费观看在线| 亚州av有码| 自拍偷自拍亚洲精品老妇| 国产av码专区亚洲av| 欧美变态另类bdsm刘玥| 亚洲国产欧美日韩在线播放 | 国产高清三级在线| 六月丁香七月| 天堂8中文在线网| 国产成人免费观看mmmm| 午夜日本视频在线| 成年人免费黄色播放视频 | 国产色婷婷99| 日韩 亚洲 欧美在线| 一区二区三区四区激情视频| 日本色播在线视频| 日韩人妻高清精品专区| 男的添女的下面高潮视频| 两个人免费观看高清视频 | 久久精品国产亚洲av涩爱| 日韩电影二区| 精品一区二区三区视频在线| 日韩制服骚丝袜av| 亚洲经典国产精华液单| 蜜桃久久精品国产亚洲av| 能在线免费看毛片的网站| 高清不卡的av网站| 国产成人精品婷婷| 亚洲怡红院男人天堂| 夫妻性生交免费视频一级片| 国产精品久久久久久精品电影小说| 国产亚洲欧美精品永久| 精华霜和精华液先用哪个| 日本与韩国留学比较| av福利片在线观看| 伊人久久精品亚洲午夜| 在线观看一区二区三区激情| 国产精品麻豆人妻色哟哟久久| 亚洲av在线观看美女高潮| 国产一级毛片在线| 少妇猛男粗大的猛烈进出视频| 久久久精品94久久精品| 久久久久久久久大av| 亚洲欧美精品专区久久| 边亲边吃奶的免费视频| 日本免费在线观看一区| 人人妻人人澡人人爽人人夜夜| 男女无遮挡免费网站观看| 男人添女人高潮全过程视频| 日日啪夜夜爽| 午夜精品国产一区二区电影| 亚洲国产成人一精品久久久| 精品人妻一区二区三区麻豆| 日日啪夜夜爽| 国产精品伦人一区二区| 18+在线观看网站| 三级经典国产精品| 国产黄色免费在线视频| 国产精品国产三级国产av玫瑰| 日韩强制内射视频| 久久午夜福利片| a级毛色黄片| 国产色爽女视频免费观看| 在线播放无遮挡| 日本黄大片高清| 日韩不卡一区二区三区视频在线| 一级毛片电影观看| av国产久精品久网站免费入址| 在线免费观看不下载黄p国产| av线在线观看网站| 亚洲精品一二三| 美女脱内裤让男人舔精品视频| 国产精品偷伦视频观看了| 亚洲国产欧美在线一区| 日日爽夜夜爽网站| 日韩 亚洲 欧美在线| 久久精品国产鲁丝片午夜精品| 日韩成人伦理影院| 我的老师免费观看完整版| 国产精品无大码| 亚洲国产欧美在线一区| 国产精品久久久久久av不卡| 天堂俺去俺来也www色官网| 日韩电影二区| 国产白丝娇喘喷水9色精品| 街头女战士在线观看网站| 777米奇影视久久| 毛片一级片免费看久久久久| 亚洲人与动物交配视频| 乱人伦中国视频| 午夜免费观看性视频| 亚洲国产精品999| 欧美日韩一区二区视频在线观看视频在线| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 欧美日韩国产mv在线观看视频| 在线观看www视频免费| 成人午夜精彩视频在线观看| 久久久久久久久久久免费av| 午夜av观看不卡| 成人特级av手机在线观看| 免费大片18禁| 成年人午夜在线观看视频| 免费黄网站久久成人精品| 中国美白少妇内射xxxbb| 日韩av不卡免费在线播放| 国产一区亚洲一区在线观看| 成人无遮挡网站| 嘟嘟电影网在线观看| 欧美高清成人免费视频www| 国产成人精品久久久久久| 99热国产这里只有精品6| 视频中文字幕在线观看| 韩国av在线不卡| 99久久精品一区二区三区| 亚洲av日韩在线播放| 欧美日韩精品成人综合77777| 亚洲国产精品一区三区| 亚洲精品日本国产第一区| 丝袜在线中文字幕| 国产成人一区二区在线| 日韩av在线免费看完整版不卡| 国产成人免费观看mmmm| 久久 成人 亚洲| 国产精品一区www在线观看| 日本欧美视频一区| 精品国产露脸久久av麻豆| 精品国产一区二区久久| 精品少妇久久久久久888优播| 啦啦啦啦在线视频资源| 成人午夜精彩视频在线观看| 国产免费一级a男人的天堂| 七月丁香在线播放| 色视频在线一区二区三区| 韩国av在线不卡| 久久毛片免费看一区二区三区| 成人毛片a级毛片在线播放| 各种免费的搞黄视频| 亚洲成人手机| 18禁动态无遮挡网站| 日韩,欧美,国产一区二区三区| 免费人妻精品一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 热99国产精品久久久久久7| 国产深夜福利视频在线观看| 五月开心婷婷网| 最新中文字幕久久久久| 丰满迷人的少妇在线观看| 99久久精品国产国产毛片| 亚洲精品456在线播放app| 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| 免费av中文字幕在线| 狂野欧美激情性bbbbbb| 亚洲三级黄色毛片| www.av在线官网国产| 日韩精品有码人妻一区| 久久6这里有精品| 99热全是精品| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 一级毛片电影观看| 最近2019中文字幕mv第一页| 久久久精品免费免费高清| 最近中文字幕2019免费版| 亚洲国产精品专区欧美| 免费观看无遮挡的男女| 精品卡一卡二卡四卡免费| 男人狂女人下面高潮的视频| 国产又色又爽无遮挡免| av.在线天堂| 草草在线视频免费看| 最近中文字幕高清免费大全6| 在线免费观看不下载黄p国产| 亚洲人成网站在线观看播放| 一级,二级,三级黄色视频| 亚洲精品色激情综合| 中文字幕人妻熟人妻熟丝袜美| 黄色日韩在线| 少妇被粗大猛烈的视频| 国产黄片视频在线免费观看| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 国产极品粉嫩免费观看在线 | 日韩不卡一区二区三区视频在线| 美女福利国产在线| 自线自在国产av| 亚洲成人av在线免费| 久久久久久伊人网av| 亚洲综合精品二区| 一级爰片在线观看| 纵有疾风起免费观看全集完整版| 大片电影免费在线观看免费| 亚洲四区av| 亚洲av在线观看美女高潮| 亚洲经典国产精华液单| 亚洲av男天堂| 国产免费一区二区三区四区乱码| 狠狠精品人妻久久久久久综合| 女性生殖器流出的白浆| 精品一区二区免费观看| 一本久久精品| 亚洲国产毛片av蜜桃av| 两个人的视频大全免费| 夫妻午夜视频| 51国产日韩欧美| 日韩成人伦理影院| av免费观看日本| 黄色毛片三级朝国网站 | 人人妻人人澡人人看| 美女内射精品一级片tv| 精品人妻熟女av久视频| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 青青草视频在线视频观看| 晚上一个人看的免费电影| 九草在线视频观看| 亚洲伊人久久精品综合| 亚洲欧美清纯卡通| 欧美精品高潮呻吟av久久| 制服丝袜香蕉在线| 黑人高潮一二区| 国产美女午夜福利| 国产毛片在线视频| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| a级毛色黄片| 久久av网站| 又大又黄又爽视频免费| 精品国产国语对白av| 国产色爽女视频免费观看| 高清黄色对白视频在线免费看 | 日本欧美视频一区| 大陆偷拍与自拍| 777米奇影视久久| 久久久久国产精品人妻一区二区| 亚洲人成网站在线观看播放| 日产精品乱码卡一卡2卡三| 午夜免费鲁丝| 国产91av在线免费观看| 亚洲成人av在线免费| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 在线精品无人区一区二区三| 国内揄拍国产精品人妻在线| 日韩免费高清中文字幕av| 欧美97在线视频| 日日啪夜夜撸| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 国产中年淑女户外野战色| 亚洲,欧美,日韩| 草草在线视频免费看| 一本久久精品| 赤兔流量卡办理| 亚洲精品日韩av片在线观看| 一区二区三区免费毛片| 久久狼人影院| 国产亚洲5aaaaa淫片| 91精品伊人久久大香线蕉| videos熟女内射| 成人毛片60女人毛片免费| 国产高清国产精品国产三级| 国产亚洲一区二区精品| .国产精品久久| 大片电影免费在线观看免费| 国产日韩欧美视频二区| 午夜福利,免费看| 久久精品久久久久久噜噜老黄| 99九九在线精品视频 | 99久久中文字幕三级久久日本| 亚洲四区av| 中文字幕久久专区| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看 | 精品国产乱码久久久久久小说| 亚洲综合精品二区| 成人午夜精彩视频在线观看| av免费观看日本| 午夜福利影视在线免费观看| 国产精品国产av在线观看| 91午夜精品亚洲一区二区三区| 国产国拍精品亚洲av在线观看| 三级国产精品片| 国产成人午夜福利电影在线观看| 最新中文字幕久久久久| 久久久久网色| 久久鲁丝午夜福利片| 各种免费的搞黄视频| 亚洲精品第二区| 亚洲无线观看免费| 美女国产视频在线观看| 午夜激情福利司机影院| 国产伦在线观看视频一区| 丰满人妻一区二区三区视频av| 在线免费观看不下载黄p国产| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 香蕉精品网在线| 国产av码专区亚洲av| 国产亚洲最大av| 老熟女久久久| 久久久亚洲精品成人影院| 啦啦啦视频在线资源免费观看| 亚洲av成人精品一区久久| 哪个播放器可以免费观看大片| 色婷婷久久久亚洲欧美| 麻豆成人av视频| 日本色播在线视频| 哪个播放器可以免费观看大片| 午夜久久久在线观看| 特大巨黑吊av在线直播| 纵有疾风起免费观看全集完整版| 少妇裸体淫交视频免费看高清| 久久久国产欧美日韩av| 久久久午夜欧美精品| 美女内射精品一级片tv| 国产精品国产av在线观看| 色5月婷婷丁香| 国产精品国产三级国产av玫瑰| 少妇熟女欧美另类| av福利片在线观看| 欧美日韩视频高清一区二区三区二| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版| 一二三四中文在线观看免费高清| 日韩电影二区| 日韩中字成人| 亚洲综合精品二区| 伊人久久精品亚洲午夜| 亚洲自偷自拍三级| 欧美3d第一页| 肉色欧美久久久久久久蜜桃| 青春草亚洲视频在线观看| 亚洲人成网站在线播| 午夜福利网站1000一区二区三区| 观看美女的网站| 欧美精品高潮呻吟av久久| 亚洲av国产av综合av卡| 99九九在线精品视频 | 国国产精品蜜臀av免费| 女的被弄到高潮叫床怎么办| 91午夜精品亚洲一区二区三区| 一区二区三区免费毛片| 99热这里只有是精品50| 日本av免费视频播放| 一本久久精品| 国产伦在线观看视频一区| 美女国产视频在线观看| 热re99久久精品国产66热6| 国产av码专区亚洲av| 国产亚洲最大av| 又爽又黄a免费视频| 久久久午夜欧美精品| av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 视频区图区小说| 国产精品国产三级国产专区5o| 亚洲电影在线观看av| 人人妻人人添人人爽欧美一区卜| 老女人水多毛片| 免费高清在线观看视频在线观看| 18禁在线无遮挡免费观看视频| 亚洲人成网站在线观看播放| 极品人妻少妇av视频| 国产乱来视频区| av天堂中文字幕网| 中国国产av一级| 黄色欧美视频在线观看| 少妇被粗大猛烈的视频| 国产黄色视频一区二区在线观看| av有码第一页| 国国产精品蜜臀av免费| 新久久久久国产一级毛片| freevideosex欧美| 日韩免费高清中文字幕av| 精品人妻熟女毛片av久久网站| 成人国产av品久久久| 日本欧美视频一区| 欧美日韩在线观看h| 老司机影院成人| 性高湖久久久久久久久免费观看| 亚洲内射少妇av| 亚洲精品一区蜜桃| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 久久女婷五月综合色啪小说| 美女国产视频在线观看| 超碰97精品在线观看| 欧美xxⅹ黑人| 国产免费视频播放在线视频| 少妇的逼水好多| 大码成人一级视频| 自线自在国产av| 自拍偷自拍亚洲精品老妇| 日韩亚洲欧美综合| 女人久久www免费人成看片| 91久久精品国产一区二区三区| 国产免费又黄又爽又色| 十分钟在线观看高清视频www | 欧美激情国产日韩精品一区| 老司机亚洲免费影院| av黄色大香蕉| 日韩伦理黄色片| 三级国产精品片| 纵有疾风起免费观看全集完整版| 一级毛片我不卡| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 精品亚洲成国产av| 69精品国产乱码久久久| 亚洲人与动物交配视频| 夜夜看夜夜爽夜夜摸| 六月丁香七月| www.av在线官网国产| 欧美日韩视频高清一区二区三区二| 两个人免费观看高清视频 | tube8黄色片| 亚洲伊人久久精品综合| 中文字幕制服av| 欧美精品一区二区免费开放| 久久精品夜色国产| 久久99一区二区三区| 日韩免费高清中文字幕av| 国产精品一区二区在线观看99| 高清不卡的av网站| 欧美人与善性xxx| 97在线视频观看| 日韩电影二区| 国产欧美另类精品又又久久亚洲欧美| 国产欧美日韩一区二区三区在线 | 婷婷色综合大香蕉| 色视频www国产| 日日啪夜夜撸| 少妇 在线观看| 亚洲av日韩在线播放| 婷婷色综合www| 国产av精品麻豆| 美女内射精品一级片tv| 在线精品无人区一区二区三| 国产精品欧美亚洲77777| 亚洲三级黄色毛片| 黑人高潮一二区| videos熟女内射| 九九久久精品国产亚洲av麻豆| 中文字幕制服av| 欧美日韩视频精品一区| 亚洲av日韩在线播放| 美女cb高潮喷水在线观看| av天堂中文字幕网| 日本av手机在线免费观看| 国产精品国产av在线观看| 少妇的逼好多水| 久久国产精品男人的天堂亚洲 | a级一级毛片免费在线观看| 亚洲精品色激情综合| 一个人免费看片子| 亚洲国产精品专区欧美| 18禁动态无遮挡网站| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品成人久久小说| 日本免费在线观看一区| 亚洲欧美清纯卡通| 中文字幕人妻丝袜制服| 精品久久久精品久久久| 最近中文字幕2019免费版| 亚洲高清免费不卡视频| 三级经典国产精品| 国产免费视频播放在线视频| 岛国毛片在线播放| 91精品国产国语对白视频| 不卡视频在线观看欧美| 亚洲精品久久午夜乱码| 久久精品国产亚洲av涩爱| 少妇裸体淫交视频免费看高清| 午夜福利,免费看| 免费大片18禁| 国产探花极品一区二区| 欧美日韩视频高清一区二区三区二| 亚洲,欧美,日韩| 欧美日韩视频高清一区二区三区二| 亚洲无线观看免费| 一级毛片久久久久久久久女| 欧美+日韩+精品| 亚洲精品久久午夜乱码| 看免费成人av毛片| 日日爽夜夜爽网站| 日韩熟女老妇一区二区性免费视频| 美女福利国产在线| 国产精品一区二区在线观看99| 毛片一级片免费看久久久久| 久久久久国产网址| 一二三四中文在线观看免费高清| 少妇高潮的动态图| 男男h啪啪无遮挡| 精品酒店卫生间| 国产成人免费无遮挡视频| 大香蕉久久网| 美女内射精品一级片tv| 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 永久网站在线| 亚洲欧美中文字幕日韩二区| 伊人亚洲综合成人网| 少妇人妻精品综合一区二区| 亚洲精品乱码久久久久久按摩| 少妇熟女欧美另类| 亚洲精品久久久久久婷婷小说| 亚洲人与动物交配视频| 汤姆久久久久久久影院中文字幕| 日本黄色片子视频| 哪个播放器可以免费观看大片| 晚上一个人看的免费电影| 少妇人妻 视频| 丁香六月天网| 亚洲一级一片aⅴ在线观看| 免费黄频网站在线观看国产| 99热网站在线观看| 观看免费一级毛片| 我的女老师完整版在线观看| 欧美精品高潮呻吟av久久| 久久久国产一区二区| 午夜视频国产福利| 成人影院久久| 国产成人一区二区在线| 免费大片18禁| 国产一区二区三区综合在线观看 | 国产成人精品久久久久久| 曰老女人黄片| 美女大奶头黄色视频| 日韩一区二区三区影片| 精华霜和精华液先用哪个| 精品99又大又爽又粗少妇毛片| 色婷婷av一区二区三区视频| 久久久久久久亚洲中文字幕| 国产亚洲午夜精品一区二区久久| 国产精品人妻久久久久久| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 久久青草综合色| 国产高清不卡午夜福利| 日韩亚洲欧美综合| 午夜日本视频在线| 美女视频免费永久观看网站| 国产极品粉嫩免费观看在线 | 久久99热这里只频精品6学生| 国产毛片在线视频| 亚洲,一卡二卡三卡| 黑丝袜美女国产一区| 亚洲精品日本国产第一区| 亚洲一区二区三区欧美精品| 婷婷色av中文字幕| 99久久精品热视频| 免费少妇av软件| 亚洲精品国产成人久久av| 亚洲在久久综合| 少妇猛男粗大的猛烈进出视频| 在线天堂最新版资源| 下体分泌物呈黄色| 久久久久久久久久久久大奶| 丰满饥渴人妻一区二区三| 日韩中字成人| 又爽又黄a免费视频| 九色成人免费人妻av| a级片在线免费高清观看视频|