• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fukui函數(shù)和局域軟度應(yīng)用于親電加成反應(yīng)的區(qū)位選擇性的研究

    2018-05-25 00:57:20朱尊偉楊巧鳳徐珍珍趙東霞樊紅軍楊忠志
    物理化學(xué)學(xué)報(bào) 2018年5期
    關(guān)鍵詞:化工學(xué)院遼寧化學(xué)

    朱尊偉,楊巧鳳,徐珍珍,,*,趙東霞,*,樊紅軍,楊忠志

    1遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧 大連 116029

    2中國(guó)科學(xué)院大連化學(xué)物理研究所,遼寧 大連 116029

    1 In troduction

    Electrophilic addition of an electrophile to alkenes is one of the most w idely studied electrophilic reactions1–9, as shown in Fig.1. The analysis of this sort of reactions has attracted great concern of both experimental and theoretical studies.Regioselectivity for the electrophilic addition has been shown tofollow the empirical Markovnikov’s rules10, the addition of an acidic proton to a double bond of an alkene yields a product where the proton is bound to the carbon atom bearing the largest number of hydrogen atoms when the substituent of alkene is electron-donating group. And when the substituent is electron-accepting group, the proton of acid favors to attack the carbon atom bearing the smallest number of hydrogen atoms,which calls the anti-Markovnikov’s rule. Many theoretical1–4,8and experimental5–7,9studies have focused on the regioselectivity of electrophilic addition to alkene all the while,such as, frontier molecular orbital (FMO) theory is sometimes used for explaining the regioselectivity of reaction8. Suresh and his coworkers have employed the molecular electrostatic potential to confirm the regioselectivity of Markovnikov reaction2. Recently, Yang, Ding and Zhao1have performed to use the frontier electron density of initial-state carbon atoms in molecular face theory (MFT) to estimate its regioselectivity: if the frontier electron density encoded on the Markovnikov carbon atom is larger than that of anti-Markovnikov, the reaction may be predicted to proceed on the Markovnikov route, and otherw ise it may prefer the anti-Markovnikov route.

    The local hard-soft and acids-bases (HSAB) principle is an efficient method in conceptual density functional theory(CDFT) to predict the regio- and stereoselectivities of reactions, especially the corresponding softness matching in a local approach11–17for two or four or much more reactive points between two reactants. Li-Evans18proposed that for a hard reaction the site of m inimal Fukui function (FF) is preferred and for a soft reaction the site of maximal Fukui function is preferred. Gazquez and Mendez19stated that the reaction between two chemical species w ill not necessarily occur through their softest atoms, but through those sites whose local softness are close to each other. In this respect, Geerlings,Proft and Langenacker20suggested that local softness should be used as an intermolecular reactivity descriptor, whereas the FF is as an intramolecular one. Thus, the comparisons of the FF or condensed FF values for different systems are meaningless because they represent only the relative reactivity among different sites w ithin a molecule. Therefore, in order to rationalize the intermolecular reactivity, we have proposed a series of generalized reactivity descriptors21, including generalized Fukui function (GFF) and generalized local softness (GLS)22.

    Recently,based on the generalized reactivity descriptors we have been successful to predict and to explain the regio-/stereoselectivities of Diels-Alder reactions22and the enzymatic catalyzed reactions of biological system21and to correlate their intermolecular reactivities of all reactions in terms of the atom-bond electronegativity equalization method(ABEEMσπ) model w ith the local HSAB principle at its generalized version. And we have obtained the results in good agreement w ith the experimentally observed outcomes.

    In this paper, we w ill use the usual reactivity descriptors and the generalized one combined w ith the local HSAB principle to investigate the regioselectivities of the electrophilic additions of alkene including the hydrogen chloride and benzeneselenyl w ith unsymmetrical alkene and to rationalize their order of reaction rate constants by the ab initio method at the level of MP2/6-311++G(d,p) w ith the finite difference approximation(FDA) method and the ABEEMσπ model. It should be noted that the FDA method involves the three systems of N, N + 1,and N ? 1 electrons, but ABEEMσπ model only involves one system of N electron.

    Fig.1 The regioselectivities of electrophilic additions of hyd rogen ch loride to the substituted ethenes (R3 = H) and benzeneselenenyl brom ide to substituted styrenes (R1 = R2 = H), including M arkovnikov and anti-M arkovnikov p roducts.

    2 Theo ry backg round

    2.1 The reac tivity descrip to rs

    Fukui function (FF) is one of the important reactivity descriptors in predicting the intramolecular reactivity in CDFT23,24. Parr and Yang defined the FF ()f r→ and local softness ()s r→25,26as:

    whereis the electron density at, N is the number of electrons for a molecular system, μ is the chem ical potential,the negative of the electronegativity,is the external potential generated by the nuclei, S is the global softness.

    2.2 The finite d ifference app roxim ation (FDA)

    In the FDA method, according to the Eq.(1), the condensed FF of nucleophilic attack for systems w ith electron gain can be w ritten as

    and the condensed FF of electrophilic attack for systems w ith electron donation can be expressed as

    where qk(N + 1), qk(N), and qk(N ? 1) stand for the partial charges on atom k in a molecule w ith N + 1, N, and N ? 1 electrons at the same geometry stru→cture, respectively27.

    A local softness descriptor s( r) is related to the FF via Eq.(2), so the condensed local softness is related to the condensed FF26through

    where,andimply how global softness is redistributed among various atoms of the molecule by the condensed Fukui function. The global softness, S, can be given as24S = 1/I ? A where I and A are the ionization potential and electron affinity,respectively. The first ionization potential I can be obtained by I = EN?1? ENand the electron affinity A by A = EN+1? ENw ith EN?1, EN, and EN+1denoting the total energies of the systems w ith N ? 1, N, and N + 1 electrons, respectively. The quantities involved can be calculated by an ab initio method at high level of theory.

    2.3 ABEEMσπ m odel

    Based on the DFT and electronegativity equalization method(EEM)28–34, Yang and his coworkers have developed ABEEMσπ model35–45, which explicitly partitions a molecule into atom, chemical bond, and lone pair (lp) regions. In this model, the single bond consists of one σ region, where the center of the charge for σ bond is located on the position of the ratio of the covalent atomic radii of two bonded atom; the double bond consists of one σ region and four π regions, where center of the σ bond charge is sim ilar w ith the σ region of single bond and the π bond partial charges are placed above and below the double-bonded atoms at the covalent radii of the this double-bonded atoms perpendicular to the plane formed by the σ bond; and the center of charge and its orientation for the lp region is determ ined in terms of the chem ical surrounding.

    In terms of the definition of electronegativity based on DFT,the effective electronegativity of a region a, χa, can be expressed as:

    whereandare valence-state electronegativity and hardness of the region a, respectively. a and b denote two regions, including the atom or single bond σ or double bond σ and π or lone pairs regions. qa and qb are the partial charges of regions a and b, Ra,b denotes the distance between regions a and b, and k, 0.57, is an overall correction coefficient in this formalism22,35–47. The electronegativity equalization principle demands that the effective electronegativity of every region is equal to the overall electronegativity of the molecule, χmol:

    For an arbitrary molecule partitioned into m regions, solving the Eq.(8) w ith the constraint Eq.(9) on its net charge, qmol, if the parametersandare known, we can obtain the charge of every region.

    On the basis of the definition of the FF, we can express the FF of region a in our ABEEMσπ model as:

    Hardness expressions for all the regions in a molecule like Eq.(11), altogether w ith the normalization condition of the FF, ∫f( r) dr = 1, can be also solved to directly and quickly give the molecular hardness, 2ηmol, and in particular, the condensed FF faof each region in the molecule if all parameters 2η*in Eq.(11) have been calibrated.

    2.4 The generalized reac tivity desc rip to rs

    The generalized Fukui function (GFF) fG(r) and the generalized local softness (GLS) sGhave been proposed and their definitions22are expressed as Eqs.(12) and (13):

    where, the f(and s→) are local Fukui function (FF) and local softness, the usual reactivity descriptors, NMis the number of atoms for a molecular system, and S is the global softness. Obviously, according →to Eq.(12), the GFF fG(r→) is normalized to NMbecause f( r) is normalized to 1 for a molecule. And sG( r→) is normalized to NMS rather than S,which means that the global softness is the average of the generalized local softness sG( r→). Based on the definition of fG( r→), the reactivity descriptor→ of the site is not only dependant on its charge and f( r), but also related to the number of the atoms in the molecule, NM, where the detailed ratiocination has been represented in Ref. 22.

    3 Com pu tational details

    We investigated the electrophilic additions of hydrogen chloride to asymmetric alkenes and benzeneselenenyl bromide to substituted styrenes, as shown in Fig.1. The geometries of all reactants were optimized and obtained by the B3LYP/6-311+G(d,p) level of theory in Gaussian-0348. All optimized reactants were stationary points of potential energy surface after checking the frequencies at the same level of theory.

    3.1 Calib ration of param eters χ* and 2η* fo r ABEEMσπ Model

    According to Eq.(7) and Eq.(11), we have calibrated the parameters χ*and 2η*, through a regression and least-squares optimization procedure by dealing with some model molecules35.For all model molecules, ab initio Hartree-Fock MO calculations were performed w ith STO-3G basis sets in Gaussian 0348and then the partial charges of all the model molecules were obtained by the Mulliken population analysis.Then the charge distributions obtained for the model molecules were brought into Eqs.(7–9) in order to determine the parameters χ*and 2η*through a regression and least-squares optimization procedure22,35–38,46,47. The old types of parameters were obtained from our previous work37, and the new added types and parameters of χ*and 2η*are listed in Table 1.

    For the calibration, the reason why we use the minimum STO-3G basis set is not due to its time-consuming but more importantly due to its physical significance. Ab initio calculation w ith a higher level of basis set can give more accurate prediction of energy and geometry, but can not give more suitable partial charges than lower level of basis set for practical use. This phenomenon comes from the fact that a diffuse basis function located on an atom may to some extent cover the regions of the other adjacent atoms leading to a somewhat overestimating population of this atom in the Mulliken population analysis. Derouane and coworkers49showed that the formal charges calculated w ith the 6-21 basis set are higher than those computed w ith the STO-3G basis set,and thus suggested STO-3G charges may be more reliable.W ilson and Ichikawa50and Torrent-Sucarrat and their coworkers51pointed out that the charge transfer between atoms in a molecule is overestimated when the polarization basis sets are used. Huzinaka et al.52and Jakalian et al.53, as well as our group47, had experienced that the use of higher level of basis sets overestimates the overlapping between their respective basis functions belonging to two atoms in a molecule. For example, if the 6-31G* basis set is used, the polarity of a molecule calculated by the partial charges is overestimated by 10%–15% than if the STO-3G basis set is used53. Therefore, in the calibration process of the parameters, STO-3G basis set has been used in the ab initio calculations for all the model molecules to obtain the partial charges from Mulliken population analysis.

    Tab le 1 Parameters χ* and 2η* in ABEEMσπ M odel.

    3.2 Calcu lation of Fukui func tion and local softness

    Geerlings, Proft and Langenacker20suggested that local softness should be used as an intermolecular reactivity descriptor, whereas the FF is as an intramolecular one. Under the FDA method, via S = 1/(I ? A), the global softness were obtained, where the first ionization potential I and the electron affinity A were calculated by ab initio method at MP2/6-311++G(d,p) level of theory. In terms of Eqs.(3) and(4), the condensed FFs of center atoms were calculated using the natural population analysis (NPA) at the MP2/6-311++G(d,p) level of theory, then obtained their local softness via Eqs.(5) and (6).

    In the ABEEMσπ model, the FFs of center atoms were calculated by Eq.(11), then their GFFs were calculated by Eq.(12). Their global softness was obtained by Eq.(11) because of it being the inverse of the hardness, hence the local softness and the GLS were calculated by Eqs.(2) and (13), respectively.

    3.3 Exp ression of the local HSAB p rincip le under the finite d ifference app roach and ABEEMσπ m odel

    The local HSAB principle claimed19that the interaction between two molecules w ill occur not necessarily through their the softest atoms but rather through those atoms of two systems, and their Fukui functions of which are close. Based on this principle, the softness-matching criteria was proposed by Chandea, Nguyen, Geerlings and coworkers for understanding the regioselectivity of cycloaddition reactions11–13,15,16. The softness-matching criterion at a local-local approach in the case of multiple sites of interaction has been cast in the form of the m inim ization of a quadratic form to articulate. In our investigated reactions, because there are two reaction center atoms in electrophilic additions, we w ill use the absolute values of differences between the local softness of the reaction center atoms of two reactants to express.

    Hence, w ithin the FDA method, the expression of the local HSAB principle is w ritten as Eq.(14), where the i is the site of reactivity on molecule A, and the k is the site of reactivity on molecule B, as seen in Fig.1, and theis the condensed local softness of the i th atom in A, which represents that the electrophile H atom in HCl or [PhSe] group in PhSeBr acquires a electron sharing from the π-bond of substituted ethene and theis the condensed local softness of the k th atom in B, which represents that the reactant B w ill be attacked by H atom or[PhSe] group to donate an electron to be shared. And then,based on the proposed generalized reactivity descriptor, the local HSAB principle can be expressed as the Eq.(15). In this kind of the reaction, the superscript + denotes the reactivity descriptor of the electrophilic H atom, while the superscript –represents the reactivity index of double bond C atom in alkene.

    According to the local HSAB principle, the smaller the Δs or ΔsGis, the easier the reaction is. In this paper, we only consider the state of single reactant, when ΔsMA< ΔsAMor<Δ, the Markovnikov product should be the main; and when ΔsMA> ΔsAMorA>, the anti-Markovnikov product should be favored. And the generalized reactivity descriptor can be further used to rationalize the reaction rate constants,i.e., the greater theis, the greater the reactivity is, and the easier the reaction is.

    Tab le 2 The difference values, Δs MA, Δs AM, Δ and Δ, for HCl w ith alkene in term s of MP2/6-311++G(d,p) level under thefinite difference approximation, and our ABEEMσπ model.

    Tab le 2 The difference values, Δs MA, Δs AM, Δ and Δ, for HCl w ith alkene in term s of MP2/6-311++G(d,p) level under thefinite difference approximation, and our ABEEMσπ model.

    Finite difference approximation ABEEMσπ model Δs MA Δs AM Δs G AM Δs G MA 103Δs MA 103Δs G AM 10Δs G MA 10Δs G MA ethene 0.589 0.589 2.647 2.647 0.069 0.069 0.526 0.526 propene 0.533 0.581 6.017 5.579 2.099 9.250 0.739 1.760 1-butene 0.549 0.556 8.863 8.779 2.867 5.727 0.981 2.012 2-methylpropene 0.604 0.627 8.195 7.924 3.008 6.643 0.964 2.122

    Table 3 The values of condensed f(r), f G(r), s(r), and s G(r) for the H atom of electrophile HCl and the C MA and C AM of unsymmetrical alkenes at the level of MP2/6-311++G(d,p) and the ABEEMσπ model.

    4 Resu lts and d iscussion

    4.1 Regioselec tivity of the add ition of HCl to alkene

    For the addition of HCl to unsymmetrical olefin CH2=CR1R2, when the substituent is electron-donating group, such as alkyl, the reactions comply w ith the Markovnikov’s rules to occur. When the substituent is electron-accepting group, such as ―CHO, ―COOH, the reactions comply w ith the anti-Markovnikov’s rules. As seen in Fig.1, these substituents belong to the alkyls, so the regioselectivities of these reactions abide by the Markovnikov’s rules to produce the Markovnikov’s products.

    According to Eqs.(14)–(17), the difference values, Δ sMA,Δ s , Δ sGand Δ sG, for the reactions of HCl w ith CH2=AM MA MA CR1R2were calculated by using the FDA method and the ABEEMσπ model, and listed in Table 2. Table 3 presents the detailed values of FF, GFF, local softness, and GLS of reactive center atoms obtained from these two methods.

    As shown in Table 2, follow ing the FDA method, the values of ΔsMA(0.589), ΔsAM(0.589) and(2.647),(2.647)for the reaction between HCl w ith ethene are equal to each other, respectively, which, of course, indicates that there is no regioselectivity in this reaction. When the olefin is propene, the value of ΔsMA(0.533) is smaller than the relevant(0.581).According to the local HSAB principle, the H atom of HCl favors to attack the Markovnikov’s carbon atom, so this result is in line w ith the experimental regioselectivity. However, the value of6.017) is greater than theM (5.579) by using the generalized local softness, then the regioselectivity of this reaction would be anticipated the anti-Markovnikov’s attacking. But, this result is not in agreement w ith the experimental result. By using the same way to deal w ith the rest two additions of HCl to 1-butene and 2-methylpropene, we also obtain Δs MA < Δs AM and>. Hence, according to the local HSAB principle, w ithin the FDA method, the predicted results obtained from the usual local softness are better than those from the generalized local softness (GLS).

    And then, how about are the results in terms of the ABEEMσπ model? It is clearly seen from Table 3 that the both values of ΔsMAand ΔsAMare 0.069 × 10?3, and both ΔsGMAandare 5.26 when the olefin is ethene, which indicates that the two double-bonded carbon atoms are identical. When R1is H and R2is ―CH3, Δ sMAis 2.099 × 10?3, Δ sAMis 9.250 ×10?3andis 73.9,is 17.60, i.e., Δ sMA< Δ sAMand<. Therefore, on basis of local HSABA AM principle, the Markovnikov’s product should constitute the main product of this reaction, and this result is in agreement w ith the Markovnikov’s rules. In the same way, when alkenes are 1-butene and 2-methylpropene, both Δ sMA< Δ sAMand<, so the results are consistent w ith the Markovnikov’s rules. Consequently, both Δs via usual local softness and Δ sGvia GLS from ABEEMσπ model can explain and forecast the regioselectivities of these reactions well, and the predicted results are better than those of the FDA method.

    It was reported that the rate constants for the addition of HI to ethene, propene, and 2-methylpropene were in the ratio 1:90:7005,6, which indicated that w ith raising the substituents,the reaction rates gradually became greater and greater.Furthermore, experimental activation energies of the additions of HCl to ethene (166.105 kJ·mol?1), to propene (144.348 kJ·mol?1), and to 2-methylpropene (119.244 kJ·mol?1) were reported2,9, which implied when the substituents gradually become larger and larger, the additions of HCl to CH2CR1R2are more and more easy to process. The generalized reactivity descriptors, GFF and GLS themselves, can rationalize the intermolecular reactivity, and especially forecast the order of reaction rate constants for a series of reactions. Hence, we applied the GLS, rather than Δ sGto correlate the order of the reaction rate constants for these investigated additions.

    The investigated electrophilic additions of HCl to alkenes,we have only considered the reactivity descriptors of reactants,which means that the values of GLS for the H atom of HCl are fixed and just the values of GLS for the CMAof alkenes are taken as variables, where the values of GLS for reaction centers by FDA method and ABEEMσπ model are listed in Table 3,i.e., we can disregard the GLS of H atom in HCl and only compare the GLS of CMAin alkenes of the main product. It is clear from our calculations that the values ofobtained from both FDA method and ABEEMσπ model (in Table 3) for alkenes increase w ith the substituents rising. Since the higher FF is, the higher reactivity is, i.e., the softest position of the molecule is, the easiest reactive site occurs. Hence, the addition for HCl to 2-methylpropene is the fastest reaction, the addition for HCl to ethene is the slowest one, and the addition of HCl to 1-butene is in the middle. These conclusions are just in agreement w ith experimental results and the results of usual local softness have not such regularity.

    In a word, both the usual reactivity descriptors and the generalized ones from ABEEMσπ model in combination w ith the local HSAB principle can successfully interpret and forecast the regioselectivities of the additions of HCl to alkenes, which results are in agreement w ith the Markovnikov rule, but the results of FDA method are not good. And then, the values offor the alkenes calculated by both the FDA method and the ABEEMσπ model can further correlate the reaction rate constants. When values ofgradually become big, the studied additions gradually become fast as substituents gradually increasing. But, the usual softness ofcan not do this result. Therefore, we have chosen the other series of electrophilic additions tofurther check the validity and practicability of generalized descriptors again, as seen in Fig.1.

    Table 4 The charges of CMA, CAM obtained from HF/STO-3G andABEEMσπ M odel.

    4.2 The regioselec tivity of add ition fo r benzeneseleny l b rom ide w ith alkene

    The additions of benzeneselenyl bromide to alkenes are usually considered to be the electrophilic addition reactions7.We have chosen four reactions between benzeneselenyl bromide and substituted styrene (X PhCH=CH2), where the substituents Ph X of alkenes are Ph, 3-ClPh, 4-ClPh and 4-CH3Ph, respectively. Here, [PhSe] group in electrophile is considered to be the H atom of HCl and it has the positive charge, which attacks one of the double-bonded carbon atoms of alkenes w ith enriched electron. The Br atomic charges obtained by HF/STO-3G level of theory and ABEEMσπ model are ?0.100 and ?0.140 a.u., respectively. Table 4 lists the charges of CMAand CAM, qMAand qAM, calculated by HF/STO-3G level of theory and ABEEMσπ model,respectively.

    These CMApossess much more negative charge and the CAMpossess a little charge compared w ith CMA, hence, the electrophile [PhSe] group w ill favor to attack the CMA. Here,we could consider the substituents X together w ith benzene(X―Ph―) as a whole to be the electron-donating groups, i.e.these four reactions should obey the Markovnikov’s rules according to the greater attraction between [PhSe] group and CMA, which are just in line w ith the experimental results7. We also can see that the qMAof 3-Cl and 4-Cl are less than that of the others, because the interaction between ―Cl, the electron-w ithdraw ing group, and benzene, the electron-donating group, represents the character of the electron-donating group in nonpolar solution, so leading to that result, if the reactions react in polar solution, the result may be the opposite7, however, the all calculations about these reactions were calculated at the gas state in vacuum. The charges of ABEEMσπ and ab initio method are in agreement by and large.

    Then, we make use of the usual local softness and the generalized one from FDA method and the ABEEMσπ model combination w ith local HSAB principle to estimate the regioselectivities of above four additions, the values of ΔsMA,Δ s , Δ sGand Δ sGfrom these two methods are listed in AM MA AM Table 5, and the ratio of Markovnikov’s product to anti-Markovnikov’s from the experiment7are also listed in Table 5.

    It can be seen from that Table 5 the fourandare all smaller than respective Δ sAMandunder the FDA method. And the values of Δ sMAandfrom ABEEMσπ model are also smaller than their respective Δ sAMand. Therefore, on basis of local HSAB principle, the Markovnikov’s products should constitute the main products of these four reactions by means of FDA method and ABEEMσπ model, which results are in line w ith the experimental regioselectivities.

    Table 5 The values of Δs MA, Δs AM, and for PhSeBr w ith substituted styrene (X-PhCH=CH 2) at the level of MP2/6-311++G(d,p) w ith the finite difference approach and ABEEMσπ model.

    Table 5 The values of Δs MA, Δs AM, and for PhSeBr w ith substituted styrene (X-PhCH=CH 2) at the level of MP2/6-311++G(d,p) w ith the finite difference approach and ABEEMσπ model.

    a Those reactions are reacting in benzene at 25 °C.

    X―PhCH=CH2finite difference approach ABEEMσπ Model aMA: AM Δs MA Δs AM Δs G MA Δs G AM 104Δs MA 104Δs AM 102Δs G MA 102Δs G AM H 0.841 1.457 8.915 18.780 1.666 1.680 4.683 4.711 78:22 3-Cl 0.854 1.413 9.133 18.066 1.636 1.649 4.600 4.629 59:41 4-Cl 0.857 1.442 9.183 18.534 1.644 1.658 4.625 4.652 76:24 4-CH3 0.853 1.517 7.128 19.754 1.579 1.593 6.689 6.721 86:14

    Fig.2 The line charts of the reaction rates (upper), the s G (m idd le) and s G? (lower) of CMA atom s in the four additions of benzeneselenyl brom ide to the substituted styrenes.

    We can obtain two sequences:4-CH3)<(H)<(3-Cl)<(4-Cl) via FDA method and(3-Cl)<(4-Cl)<(H)< ΔsG(4-CH)via ABEEMσπMA 3 model. According to the local HSAB principle, the smaller Δ sGis, the easier reaction is. Luk and his coworkers7gave second-order rate constants, k, its unit being dm3·mol?1·s?1of these reactions which are in order kH(2.58 ± 0.15) × 10?2, k3-Cl(1.57 ± 0.07) × 10?2, k4-Cl(2.20 ± 0.1) × 10?2, and k4-CH3(2.77 ±0.1) × 10?2, as shown in Fig.2 (upper). The order of the experimental reaction rates is k3-Cl< k4-Cl< kH< k4-CH3.Therefore, the intermolecular reactivity predicted by ABEEMσπ model is just in a reverse order compared w ith the experimental rate constants.

    Fig.2 (middle) displays the line chart of the sGobtained from the ABEEMσπ model. And Fig.2 (lower) represents the line charts of the sG?of the CMAatoms calculated by FDA method.It can be found from the Fig.2 that the order ofis4-Cl) <3-Cl) <H) <(4-CH3) (FDA method) and that ofis(3-Cl) <(4-Cl) <(H) <(4-CH3)(ABEEMσπ model). The sequence via ABEEMσπ model is just in accord w ith that of the experimental reaction rates, but that of FDA method is not for the ―Cl substituted additions.

    Therefore, the applications of the generalized reactivity descriptor combined w ith the local HSAB principle on this series of electrophilic additions demonstrate that both the values of Δs and ΔsGfrom ABEEMσπ model can forecast their regioselectivities and only the values of center atoms’generalized local softness of substituted ethenes calculated by ABEEMσπ model can rationalize the reaction rate constants rather than the difference of center atoms’ generalized local softness of the two reactants. However, the results of the finite difference approximation are not well related to the experimental results.

    5 Conc lusions

    For the addition reactions of HCl to the substituted ethenes and benzeneselenyl brom ide to the substituted styrenes,according to the local HSAB principle, the values of the softness differences,sΔ, in terms of ab initio method at the level of MP2/6-311++G(d,p) w ith the finite difference approximation (FDA) method and the ABEEMσπ model have been used to relate to their regioselectivities.

    As the performance of the generalized reactivity descriptor, it is shown that the CMAatoms of all reactions prefer to be attacked in terms of ABEEMσπ model, which is in agreement w ith the experimental results. But, the results of FDA method can not obtain such good indication. However, it is shown that there are two inverse orders, compared w ith the orders of experimental rate constants for these two series of electrophilic additions by using the ΔsGfrom FDA and ABEEMσπ model. In fact, only generalized local softness (GLS) of center atoms can be related to the orders of the experimental reaction rate constants by both the FDA method and the ABEEMσπ model except the results of the FDA method for 3-Cl substituted addition w ith a little flaw.

    Up to now, we have applied the generalized reactivity descriptors to study on several kinds of reactions, such as to predict the regio- and stereoselectivity of Diels-Alder reactions and to correlate their reaction rate constants, to rationalize the intermolecular reactivities and regioselectivities of enzymatic catalyzed nucleophilic reactions, etc. Moreover, we w ill continue to apply the generalized Fukui function and the generalized local softness to investigate other systems and tofurther check their rationality and validity.

    References

    (1) Yang, Z. -Z.; Ding, Y. -L.; Zhao, D. -X. ChemPhysChem 2008, 9,2379. doi: 10.1002/cphc.200800364

    (2) Suresh, C. H.; Koga, N.; Gadre, S. R. J. Org. Chem. 2001, 66, 6883.doi: 10.1021/jo010063f

    (3) Aizman, A.; Contreras, R.; Galvan, M.; Cedillo, A.; Santos, J. C.;Chamorro, E. J. Phys. Chem. A 2002, 106, 7844.doi: 10.1021/jp020214y

    (4) Menendez, M. I.; Suarez, D.; Sorod, J. A.; Sordo, T. L. J. Comput.Chem. 1995, 16, 659. doi: 10.1002/jcc.540160602

    (5) Benson, S. W.; Bose, A. N. J. Chem. Phys. 1963, 39, 3463.doi: 10.1063/1.1734215

    (6) Bose, A. N.; Benson, S. W. J. Chem. Phys. 1963, 38, 878.doi: 10.1063/1.1733776

    (7) Luh, T. -Y.; So, W. -H.; Cheung, K. S.; Tam, S. W. J. Org. Chem. 1985,50, 3051. doi: 10.1021/jo00217a006

    (8) Rauk, A. Orbital Interaction Theory of Organic Chemistry, 2nd ed.;John Wiley & Sons, Inc.: New York, USA, 2001.

    (9) Sathre, J. L.; Thomas, T. D.; Svensson, S. J. J. Chem. Soc., Perkin Trans 2 1997, 28, 749. doi: 10.1002/chin.199730041

    (10) Markovnikov, V. Ann. Chem. Pharm. 1870, 153, 228.doi: 10.1002/jlac.18701530204

    (11) Chandra, A. K.; Nguren, M. T. J. Comput. Chem. 1998, 19, 195.doi: 10.1002/(SICI)1096-987X(19980130)19:2<195::AID-JCC12>3.0.CO;2-H

    (12) Chandra, A. K.; Nguyen, M. T. J. Phys. Chem. A 1998, 102, 6181.doi: 10.1021/jp980949w

    (13) Damoun, S.; Woude, V. D.; Mendez, F.; Geerlings, P. J. Phys. Chem.A 1997, 101, 886. doi: 10.1021/jp9611840

    (14) Geerlings, P.; De Proft, F. Int. J. Quantum Chem. 2000, 80, 227. doi:10.1002/1097-461X(2000)80:2<227::AID-QUA17>3.0.CO;2-N

    (15) Nguyen, L. T.; De Proft, F.; Dao, V. L.; Nguyen, M. T.; Geerlings, P.J. Phys. Orgs. Chem. 2003, 16, 615. doi: 10.1002/poc.653

    (16) Nguyen, L. T.; Le, T. N.; Proft, F. D.; Chandra, A. K.; Langenaeker,W.; Nguyen, M. T.; Geerlings, P. J. Am. Chem. Soc. 1999, 121, 5992.doi: 10.1021/ja983394r

    (17) Sengupta, D.; Chandra, A. K.; Nguren, M. T. J. Org. Chem. 1997, 62,6404. doi: 10.1021/jo970353p

    (18) Li, Y.; Evans, J. N. S. J. Am. Chem. Soc. 1995, 117, 7756.doi: 10.1021/ja00134a021

    (19) Gazquez, J. L.; Mendez, F. J. Phys. Chem. 1994, 98, 4591.doi: 10.1021/j100068a018

    (20) Geerlings, P.; Proft, F. D.; Langenaeker, W. Adv. Quantum Chem.1998, 33, 303. doi: 10.1016/S0065-3276(08)60442-6

    (21) Xu, Z. -Z.; Zhao, D. -X.; Yang, Z. -Z. Chin. Sci. Bull. 2012, 57, 2787.doi: 10.1360/972012-537

    (22) Zhao, D. -X.; Xu, Z. -Z.; Yang, Z. -Z. Int. J. Quantum Chem. 2013,113, 1116. doi: 10.1002/qua.24173

    (23) Geerlings, P.; Proft, F. D.; Langenaeker, W. Chem. Rev. 2003, 103,1793. doi: 10.1021/cr990029p

    (24) Parr, R. G.; Yang, W. Density Functional Theory of Atom and Molecules; Oxford University Press: New York, USA, 1989.

    (25) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049.doi: 10.1021/ja00326a036

    (26) Yang, Y.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723.doi: 10.1073/pnas.82.20.6723

    (27) Padmanabhan, J.; Parthasarathi, R.; Elango, M.; Subramanian, V.;Krishnamoorthy, B. S.; Gutierrez-Oliva, S.; Toro-Labb, A.; Roy, D. R.;Chattaraj, P. K. J. Phys. Chem. A 2007, 111, 9130.doi: 10.1021/jp0718909

    (28) Baekelandt, B. G.; Janssens, G. O. A.; Toufar, H.; Mortier, W. J.;Schoongeydt, R. A. J. Phys. Chem. 1995, 99, 9784.doi: 10.1021/j100024a020

    (29) Baekelandt, B. G.; Mortier, W. J.; Lievens, J. L.; Schoonheydt, R. A.J. Am. Chem. Soc. 1991, 113, 6730. doi: 10.1021/ja00018a003

    (30) Baekelandt, B. G.; Mortier, W. J.; Schoonheydt, R. A. The EEM Approach to Chemical Hardness in Molecules and Solids:Fundamentals and Applications, Structruce and Bonding; Springer:Berlin Heidelberg, Germany, 1993; Vol. 80, pp. 187–227.

    (31) Bultinck, P.; Langenaeker, W.; Lahorte, P.; De Proft, F.; Geerlings, P.;Waroquier, M.; Tollenaere, J. P. J. Phys. Chem. A 2002, 106, 7887.doi: 10.1021/jp0205463

    (32) Bultinck, P.; Langenaeker, W.; Lahorte, P.; Proft, F. D.; Geerlings, P.;Alsenoy, C. V.; Tollenaere, J. P. J. Phys. Chem. A 2002, 106, 7895.doi: 10.1021/jp020547v

    (33) Janssens, G. O. A.; Toufar, H.; Baekelandt, B. G.; Mortier, W. J.;Schoonheydt, R. A. Stud. Surf. Sci. Cat. 1997, 105, 725.doi: 10.1016/S0167-2991(97)80622-2

    (34) Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108,4315. doi: 10.1021/ja00275a013

    (35) Cong, Y.; Yang, Z. Z. Chem. Phys. Lett. 2000, 316, 324.doi: 10.1016/S0009-2614(99)01289-0

    (36) Yang, Z. -Z.; Wang, J. -J.; Zhao, D. -X. J. Comput. Chem. 2014, 35,1690. doi: 10.1002/jcc.23676

    (37) Zhao, D. X.; Liu, C.; Wang, F. F.; Yu, C. Y.; Gong, L. D.; Liu, S. B.;Yang, Z. Z. J. Chem. Theory Comput. 2010, 6, 795.doi: 10.1021/ct9006647

    (38) Liu, C.; Li, Y.; Han, B. -Y.; Gong, L. -D.; Lu, L. -N.; Yang, Z. -Z.;Zhao, D. -X. J. Chem. Theory Comput. 2017, 13, 2098.doi: 10.1021/acs.jctc.6b01206

    (39) Liu, L. -L.; Yang, Z .-Z.; Zhao, D. -X.; Gong, L. -D.; Liu, C. RSC Adv.2014, 4, 52083. doi: 10.1039/c4ra09631b

    (40) Wu, Y.; Yang, Z. Z. J. Phys. Chem. 2004, 108, 7563.doi: 10.1021/jp0493881

    (41) Yang, Z. Z.; Cui, B. Q. J. Chem. Theory Comput. 2007, 3, 1561.doi: 10.1021/ct600379n

    (42) Yang, Z. Z.; Qian, P. J. Chem. Phys. 2006, 125, 064311.doi: 10.1063/1.2210940

    (43) Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys. 2004, 120, 2541.doi: 10.1063/1.1640345

    (44) Yang, Z. Z.; Zhang, Q. J. Comput. Chem. 2006, 27, 1.doi: 10.1002/jcc.20317

    (45) Zhang, Q.; Yang, Z. Z. Chem. Phys. Lett. 2005, 403, 242.doi: 10.1016/j.cplett.2005.01.011

    (46) Wang, C. S.; Yang, Z. Z. J. Chem. Phys. 1999, 110, 6189.doi: 10.1063/1.478524

    (47) Yang, Z. Z.; Wang, C. S. J. Phys. Chem. A 1997, 101, 6315.doi: 10.1021/jp9711048

    (48) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J. C.; et al. Gaussian 03, Revision C.02; Gaussian, Inc.:Wallingford, CT, USA, 2004.

    (49) Derouane, E. G.; Fripiat, J. G.; Ballmoos, R. V. J. Phys. Chem. 1990,94, 1687. doi: 10.1021/j100367a085

    (50) Wilson, M. S.; Ichikawa, S. J. Phys. Chem. 1989, 93, 3087.doi: 10.1021/j100345a041

    (51) Torrent-Sucarrat, M.; Proft, F. D.; Geerlings, P.; Ayers, P. W. Chem.Eur. J. 2008, 14, 8652. doi: 10.1002/chem.200800570

    (52) Huzinaka, S.; Sakai, Y.; M iyoshi, E.; Narita, S. J. Chem. Phys. 1990,93, 3319. doi: 10.1063/1.458812

    (53) Jakalian, A.; Bush, B.; Jack, D. B.; Bayly, C. I. J. Comput. Chem.2000, 21, 132. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P

    猜你喜歡
    化工學(xué)院遼寧化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    遼寧之光
    新少年(2022年3期)2022-03-17 07:06:38
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    讀遼寧 愛(ài)遼寧
    遼寧艦
    學(xué)與玩(2018年5期)2019-01-21 02:13:08
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    91久久精品国产一区二区三区| 亚洲在线自拍视频| 国产精品不卡视频一区二区| 国产精品一区二区性色av| 亚洲中文字幕日韩| 又黄又爽又免费观看的视频| 日韩精品中文字幕看吧| 午夜福利在线在线| 精品久久国产蜜桃| 午夜激情欧美在线| 中文字幕av在线有码专区| 亚洲人成网站在线播放欧美日韩| 精品国产三级普通话版| 夜夜爽天天搞| 内地一区二区视频在线| 男女啪啪激烈高潮av片| 国产亚洲91精品色在线| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| 国产精品亚洲一级av第二区| 婷婷六月久久综合丁香| 欧美xxxx黑人xx丫x性爽| 中文字幕免费在线视频6| 内射极品少妇av片p| 大型黄色视频在线免费观看| 国产精品日韩av在线免费观看| 中国美女看黄片| 国产av麻豆久久久久久久| av在线亚洲专区| 国产爱豆传媒在线观看| 国产 一区精品| 成人av一区二区三区在线看| 欧美三级亚洲精品| 国产高清视频在线播放一区| 一进一出抽搐gif免费好疼| 少妇人妻一区二区三区视频| 午夜福利欧美成人| 成人国产一区最新在线观看| h日本视频在线播放| 久久精品国产亚洲av涩爱 | 精品一区二区三区人妻视频| 成人高潮视频无遮挡免费网站| 国产成人a区在线观看| 老女人水多毛片| 又黄又爽又刺激的免费视频.| 成人美女网站在线观看视频| 亚洲无线观看免费| 国产乱人伦免费视频| 国产精品久久久久久亚洲av鲁大| 大型黄色视频在线免费观看| 色综合站精品国产| 国产高清有码在线观看视频| 少妇人妻精品综合一区二区 | 日韩欧美精品v在线| 久久久久久久久大av| 偷拍熟女少妇极品色| 少妇人妻精品综合一区二区 | 国产私拍福利视频在线观看| 亚洲av一区综合| 最近在线观看免费完整版| xxxwww97欧美| 精品人妻一区二区三区麻豆 | 久久久国产成人精品二区| 国产日本99.免费观看| 老司机福利观看| 精品一区二区三区av网在线观看| 赤兔流量卡办理| 麻豆一二三区av精品| 91在线观看av| 少妇熟女aⅴ在线视频| 日本黄色视频三级网站网址| 亚洲精品亚洲一区二区| 亚洲成人中文字幕在线播放| 欧美一区二区精品小视频在线| 成人毛片a级毛片在线播放| 嫩草影视91久久| 2021天堂中文幕一二区在线观| 色噜噜av男人的天堂激情| www.色视频.com| 亚洲熟妇熟女久久| 国产伦人伦偷精品视频| 国产精品嫩草影院av在线观看 | 99热这里只有精品一区| 直男gayav资源| 亚洲av电影不卡..在线观看| 亚洲精华国产精华精| 日本一二三区视频观看| 别揉我奶头~嗯~啊~动态视频| 欧美色欧美亚洲另类二区| 中国美女看黄片| 国产精品伦人一区二区| 久久国产精品人妻蜜桃| 别揉我奶头 嗯啊视频| 午夜久久久久精精品| 日韩欧美在线乱码| 久久久久久九九精品二区国产| 久久久久久大精品| 老司机福利观看| 三级男女做爰猛烈吃奶摸视频| 国产精品一及| 精品无人区乱码1区二区| 欧美日本视频| eeuss影院久久| 男女之事视频高清在线观看| 麻豆精品久久久久久蜜桃| 人妻丰满熟妇av一区二区三区| 九色国产91popny在线| 国产伦精品一区二区三区四那| 国内精品一区二区在线观看| 又爽又黄a免费视频| 色综合婷婷激情| 国产乱人伦免费视频| 久久久久国产精品人妻aⅴ院| 12—13女人毛片做爰片一| 1000部很黄的大片| 美女大奶头视频| 色噜噜av男人的天堂激情| 久久精品夜夜夜夜夜久久蜜豆| 国产蜜桃级精品一区二区三区| 日韩强制内射视频| 国内精品宾馆在线| 特大巨黑吊av在线直播| 日韩大尺度精品在线看网址| 少妇熟女aⅴ在线视频| 久久精品国产亚洲av香蕉五月| 俺也久久电影网| 乱码一卡2卡4卡精品| av在线亚洲专区| 日本黄大片高清| 精华霜和精华液先用哪个| 五月玫瑰六月丁香| 一区二区三区四区激情视频 | 一个人看视频在线观看www免费| 亚洲电影在线观看av| 美女免费视频网站| 日韩欧美精品免费久久| 午夜视频国产福利| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 老司机深夜福利视频在线观看| 婷婷色综合大香蕉| 麻豆国产97在线/欧美| 精品久久久久久久末码| 国产精品美女特级片免费视频播放器| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区四那| 99视频精品全部免费 在线| 最新中文字幕久久久久| 欧美xxxx性猛交bbbb| 国产亚洲精品av在线| 搡老岳熟女国产| 97热精品久久久久久| 亚洲三级黄色毛片| 国产精品无大码| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 日韩一本色道免费dvd| 俄罗斯特黄特色一大片| 直男gayav资源| 悠悠久久av| 我要看日韩黄色一级片| 高清在线国产一区| 男女啪啪激烈高潮av片| 国模一区二区三区四区视频| av专区在线播放| 亚洲美女黄片视频| 给我免费播放毛片高清在线观看| av在线亚洲专区| 黄色女人牲交| 日韩亚洲欧美综合| 亚洲色图av天堂| 亚洲精品色激情综合| 真人一进一出gif抽搐免费| 中文字幕av在线有码专区| 亚洲精品日韩av片在线观看| 久久九九热精品免费| 午夜日韩欧美国产| 日日撸夜夜添| 成年免费大片在线观看| 不卡一级毛片| 在线观看美女被高潮喷水网站| 日韩欧美在线二视频| 99久久久亚洲精品蜜臀av| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 欧美又色又爽又黄视频| www.www免费av| av专区在线播放| 婷婷色综合大香蕉| bbb黄色大片| 国内精品一区二区在线观看| 亚洲av成人av| 亚洲avbb在线观看| 亚洲一区二区三区色噜噜| 欧美性猛交╳xxx乱大交人| 欧美高清性xxxxhd video| 人妻夜夜爽99麻豆av| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 国产男靠女视频免费网站| 欧美成人a在线观看| 日日摸夜夜添夜夜添小说| 搡老岳熟女国产| 久久久色成人| .国产精品久久| 天堂√8在线中文| 欧美成人免费av一区二区三区| 欧美日韩黄片免| 精品免费久久久久久久清纯| 国产伦精品一区二区三区四那| www日本黄色视频网| 18禁裸乳无遮挡免费网站照片| 午夜福利成人在线免费观看| 国产精品人妻久久久久久| 三级国产精品欧美在线观看| 国产欧美日韩精品亚洲av| 国产亚洲精品久久久com| 精品午夜福利视频在线观看一区| 看黄色毛片网站| 亚洲精品色激情综合| 最近最新免费中文字幕在线| 18+在线观看网站| 亚洲av.av天堂| 午夜爱爱视频在线播放| av福利片在线观看| 色综合站精品国产| 天堂影院成人在线观看| 精品久久久久久久久亚洲 | 亚洲成人久久性| 亚洲av一区综合| 人妻丰满熟妇av一区二区三区| 国产一区二区在线观看日韩| 亚洲va在线va天堂va国产| 午夜视频国产福利| 亚州av有码| 国产69精品久久久久777片| 99视频精品全部免费 在线| 欧美一区二区亚洲| 色综合婷婷激情| 一进一出好大好爽视频| 亚洲欧美精品综合久久99| 老熟妇仑乱视频hdxx| 免费搜索国产男女视频| 看黄色毛片网站| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av在线| www.www免费av| 搡老熟女国产l中国老女人| 国产精品av视频在线免费观看| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久 | 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 欧美黑人巨大hd| 国产亚洲精品综合一区在线观看| 天堂√8在线中文| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| 精品午夜福利在线看| 最新在线观看一区二区三区| 22中文网久久字幕| 男插女下体视频免费在线播放| 日日摸夜夜添夜夜添av毛片 | 99久久精品一区二区三区| 美女免费视频网站| 一级黄片播放器| av.在线天堂| 极品教师在线免费播放| 窝窝影院91人妻| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| av中文乱码字幕在线| 高清毛片免费观看视频网站| 欧美日韩国产亚洲二区| 国产黄a三级三级三级人| 老师上课跳d突然被开到最大视频| 人人妻人人澡欧美一区二区| 国产人妻一区二区三区在| 99久久九九国产精品国产免费| 欧美日韩中文字幕国产精品一区二区三区| 亚洲在线自拍视频| 精品一区二区免费观看| 中出人妻视频一区二区| 国产精品乱码一区二三区的特点| 日本五十路高清| 国国产精品蜜臀av免费| 无人区码免费观看不卡| 国产亚洲精品av在线| 日韩一本色道免费dvd| 深夜精品福利| 日韩高清综合在线| 亚洲天堂国产精品一区在线| 欧美日韩综合久久久久久 | 老女人水多毛片| 久久精品国产自在天天线| 在线免费观看不下载黄p国产 | 舔av片在线| 成人鲁丝片一二三区免费| av在线亚洲专区| 深夜a级毛片| 欧美在线一区亚洲| 在线播放国产精品三级| av福利片在线观看| 亚州av有码| 久久久国产成人免费| 99热这里只有是精品50| 国产乱人伦免费视频| 美女黄网站色视频| 在线观看午夜福利视频| 久久99热6这里只有精品| 尾随美女入室| 亚洲乱码一区二区免费版| 中文字幕熟女人妻在线| 老司机午夜福利在线观看视频| 色5月婷婷丁香| 91久久精品电影网| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 成年女人看的毛片在线观看| 最近最新免费中文字幕在线| 看十八女毛片水多多多| 亚洲精品影视一区二区三区av| 亚洲性久久影院| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕久久专区| 国产欧美日韩精品亚洲av| 日本在线视频免费播放| 亚洲精品成人久久久久久| 欧美丝袜亚洲另类 | 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 日本 欧美在线| 亚洲欧美日韩东京热| 丰满乱子伦码专区| 国产精品野战在线观看| 亚洲一级一片aⅴ在线观看| 日韩欧美在线二视频| 精华霜和精华液先用哪个| 两人在一起打扑克的视频| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 我的老师免费观看完整版| 男人的好看免费观看在线视频| 国产精品1区2区在线观看.| 免费搜索国产男女视频| h日本视频在线播放| 免费人成视频x8x8入口观看| 欧美绝顶高潮抽搐喷水| 欧美激情在线99| 天天一区二区日本电影三级| 欧美在线一区亚洲| av福利片在线观看| 桃红色精品国产亚洲av| 三级国产精品欧美在线观看| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看 | 嫩草影院入口| 国产黄片美女视频| 一区二区三区免费毛片| 国产精品亚洲一级av第二区| 亚洲四区av| 欧美日韩综合久久久久久 | 黄色配什么色好看| 国产高清有码在线观看视频| 国产探花极品一区二区| 亚洲av熟女| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说| 国产黄片美女视频| videossex国产| 变态另类成人亚洲欧美熟女| 精品久久久久久久末码| 欧美三级亚洲精品| 国产精品嫩草影院av在线观看 | 亚洲精品久久国产高清桃花| 又紧又爽又黄一区二区| 亚洲狠狠婷婷综合久久图片| 国产精品伦人一区二区| 国产视频一区二区在线看| 欧美一区二区国产精品久久精品| 色av中文字幕| 国内精品美女久久久久久| a级毛片免费高清观看在线播放| 在现免费观看毛片| 欧美日韩国产亚洲二区| 国产男人的电影天堂91| 国内精品久久久久精免费| 亚洲精品色激情综合| 真实男女啪啪啪动态图| av天堂在线播放| 国产伦人伦偷精品视频| 久久精品国产亚洲av天美| 欧美三级亚洲精品| 综合色av麻豆| 国产精品久久久久久久久免| 亚洲自拍偷在线| 国产视频内射| av在线观看视频网站免费| xxxwww97欧美| 亚洲欧美日韩无卡精品| 男人狂女人下面高潮的视频| 美女免费视频网站| 黄色丝袜av网址大全| 99久久精品热视频| 天堂网av新在线| 国产精品人妻久久久影院| 又黄又爽又刺激的免费视频.| 88av欧美| 99热精品在线国产| 狂野欧美激情性xxxx在线观看| 亚洲午夜理论影院| 听说在线观看完整版免费高清| 搡老熟女国产l中国老女人| 日本爱情动作片www.在线观看 | 色在线成人网| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 欧美一级a爱片免费观看看| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 免费在线观看成人毛片| 色在线成人网| 在线播放国产精品三级| 精品午夜福利在线看| 精品久久久噜噜| 国产欧美日韩精品亚洲av| 国产探花在线观看一区二区| 久久久久久久午夜电影| 亚洲成av人片在线播放无| 嫩草影院新地址| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| 久久精品91蜜桃| 国产亚洲精品久久久com| 国产女主播在线喷水免费视频网站 | 国产主播在线观看一区二区| 又爽又黄a免费视频| 国产欧美日韩精品亚洲av| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 国产精品亚洲美女久久久| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 俺也久久电影网| ponron亚洲| 国产美女午夜福利| 久久国产乱子免费精品| 国产大屁股一区二区在线视频| 欧美精品国产亚洲| 中文字幕高清在线视频| 99国产精品一区二区蜜桃av| 小说图片视频综合网站| 久9热在线精品视频| 日本免费一区二区三区高清不卡| 少妇被粗大猛烈的视频| 成人av在线播放网站| 欧美最新免费一区二区三区| 一级毛片久久久久久久久女| 淫妇啪啪啪对白视频| 搡老岳熟女国产| 久9热在线精品视频| 色综合色国产| 色综合站精品国产| 九色国产91popny在线| 精华霜和精华液先用哪个| 乱系列少妇在线播放| 身体一侧抽搐| 一本久久中文字幕| 色综合色国产| 国产高清有码在线观看视频| 看黄色毛片网站| 国产黄a三级三级三级人| 中文在线观看免费www的网站| 午夜福利在线在线| 1024手机看黄色片| 色哟哟哟哟哟哟| 最后的刺客免费高清国语| 欧美精品啪啪一区二区三区| 国产一区二区三区在线臀色熟女| 免费观看精品视频网站| 国产精品国产三级国产av玫瑰| 欧美高清性xxxxhd video| 午夜免费成人在线视频| 成人av在线播放网站| av.在线天堂| 色精品久久人妻99蜜桃| 黄色日韩在线| 日本a在线网址| 日韩欧美在线乱码| 色综合站精品国产| 99热精品在线国产| 欧美精品国产亚洲| 免费人成在线观看视频色| 国产亚洲91精品色在线| 色5月婷婷丁香| 亚洲五月天丁香| 成人av一区二区三区在线看| 又爽又黄无遮挡网站| 国产精品免费一区二区三区在线| 在线国产一区二区在线| 啪啪无遮挡十八禁网站| 午夜福利高清视频| 特大巨黑吊av在线直播| 天堂√8在线中文| 伦精品一区二区三区| 俺也久久电影网| 亚洲精品亚洲一区二区| 色尼玛亚洲综合影院| 精品久久久久久久久av| 欧美不卡视频在线免费观看| 麻豆国产av国片精品| 18禁黄网站禁片免费观看直播| 最近最新中文字幕大全电影3| or卡值多少钱| 亚洲专区国产一区二区| 一级黄片播放器| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 国产精品自产拍在线观看55亚洲| 一级黄色大片毛片| 欧美xxxx性猛交bbbb| 国产主播在线观看一区二区| 日日夜夜操网爽| 亚洲七黄色美女视频| 亚洲第一区二区三区不卡| 免费看av在线观看网站| 99热网站在线观看| 亚洲午夜理论影院| 欧美成人一区二区免费高清观看| 日韩欧美国产一区二区入口| 色尼玛亚洲综合影院| 露出奶头的视频| 婷婷精品国产亚洲av| 热99re8久久精品国产| 国产一区二区三区av在线 | 性欧美人与动物交配| 亚洲综合色惰| 免费av观看视频| 久久天躁狠狠躁夜夜2o2o| 91久久精品电影网| 亚洲不卡免费看| 久久久久久国产a免费观看| 网址你懂的国产日韩在线| 能在线免费观看的黄片| 最新中文字幕久久久久| 日韩一区二区视频免费看| 毛片一级片免费看久久久久 | 99riav亚洲国产免费| 日日啪夜夜撸| 亚洲第一电影网av| 18禁在线播放成人免费| 国产精品久久久久久久电影| 国产精品伦人一区二区| 亚洲国产欧洲综合997久久,| 婷婷亚洲欧美| 国产美女午夜福利| 香蕉av资源在线| 中国美白少妇内射xxxbb| 毛片女人毛片| 亚洲成人中文字幕在线播放| 国产av麻豆久久久久久久| 免费搜索国产男女视频| 91午夜精品亚洲一区二区三区 | 88av欧美| 一个人看视频在线观看www免费| 精品一区二区三区视频在线| 少妇丰满av| a级一级毛片免费在线观看| 国产精品久久视频播放| 欧美+亚洲+日韩+国产| 国产综合懂色| 免费大片18禁| 日韩中文字幕欧美一区二区| 女人被狂操c到高潮| 国产精品人妻久久久影院| 久久久久国产精品人妻aⅴ院| 能在线免费观看的黄片| 久久精品国产亚洲av香蕉五月| 中国美白少妇内射xxxbb| 美女cb高潮喷水在线观看| 日韩中字成人| 天堂av国产一区二区熟女人妻| 一个人观看的视频www高清免费观看| 日韩一本色道免费dvd| 欧洲精品卡2卡3卡4卡5卡区| 极品教师在线免费播放| 国产午夜福利久久久久久| 性欧美人与动物交配| 精品久久国产蜜桃| 国产白丝娇喘喷水9色精品| 国产精品美女特级片免费视频播放器| 在线观看一区二区三区| 别揉我奶头 嗯啊视频| 色哟哟·www| 小蜜桃在线观看免费完整版高清| 亚洲无线在线观看| 91在线观看av| 69人妻影院| .国产精品久久| 精品欧美国产一区二区三| 亚洲精品在线观看二区| 免费看日本二区| eeuss影院久久| 国产精品久久电影中文字幕| 一区福利在线观看| 直男gayav资源| 丰满人妻一区二区三区视频av| 成人欧美大片| 乱人视频在线观看| 亚洲色图av天堂|