• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fukui函數(shù)和局域軟度應(yīng)用于親電加成反應(yīng)的區(qū)位選擇性的研究

    2018-05-25 00:57:20朱尊偉楊巧鳳徐珍珍趙東霞樊紅軍楊忠志
    物理化學(xué)學(xué)報(bào) 2018年5期
    關(guān)鍵詞:化工學(xué)院遼寧化學(xué)

    朱尊偉,楊巧鳳,徐珍珍,,*,趙東霞,*,樊紅軍,楊忠志

    1遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧 大連 116029

    2中國(guó)科學(xué)院大連化學(xué)物理研究所,遼寧 大連 116029

    1 In troduction

    Electrophilic addition of an electrophile to alkenes is one of the most w idely studied electrophilic reactions1–9, as shown in Fig.1. The analysis of this sort of reactions has attracted great concern of both experimental and theoretical studies.Regioselectivity for the electrophilic addition has been shown tofollow the empirical Markovnikov’s rules10, the addition of an acidic proton to a double bond of an alkene yields a product where the proton is bound to the carbon atom bearing the largest number of hydrogen atoms when the substituent of alkene is electron-donating group. And when the substituent is electron-accepting group, the proton of acid favors to attack the carbon atom bearing the smallest number of hydrogen atoms,which calls the anti-Markovnikov’s rule. Many theoretical1–4,8and experimental5–7,9studies have focused on the regioselectivity of electrophilic addition to alkene all the while,such as, frontier molecular orbital (FMO) theory is sometimes used for explaining the regioselectivity of reaction8. Suresh and his coworkers have employed the molecular electrostatic potential to confirm the regioselectivity of Markovnikov reaction2. Recently, Yang, Ding and Zhao1have performed to use the frontier electron density of initial-state carbon atoms in molecular face theory (MFT) to estimate its regioselectivity: if the frontier electron density encoded on the Markovnikov carbon atom is larger than that of anti-Markovnikov, the reaction may be predicted to proceed on the Markovnikov route, and otherw ise it may prefer the anti-Markovnikov route.

    The local hard-soft and acids-bases (HSAB) principle is an efficient method in conceptual density functional theory(CDFT) to predict the regio- and stereoselectivities of reactions, especially the corresponding softness matching in a local approach11–17for two or four or much more reactive points between two reactants. Li-Evans18proposed that for a hard reaction the site of m inimal Fukui function (FF) is preferred and for a soft reaction the site of maximal Fukui function is preferred. Gazquez and Mendez19stated that the reaction between two chemical species w ill not necessarily occur through their softest atoms, but through those sites whose local softness are close to each other. In this respect, Geerlings,Proft and Langenacker20suggested that local softness should be used as an intermolecular reactivity descriptor, whereas the FF is as an intramolecular one. Thus, the comparisons of the FF or condensed FF values for different systems are meaningless because they represent only the relative reactivity among different sites w ithin a molecule. Therefore, in order to rationalize the intermolecular reactivity, we have proposed a series of generalized reactivity descriptors21, including generalized Fukui function (GFF) and generalized local softness (GLS)22.

    Recently,based on the generalized reactivity descriptors we have been successful to predict and to explain the regio-/stereoselectivities of Diels-Alder reactions22and the enzymatic catalyzed reactions of biological system21and to correlate their intermolecular reactivities of all reactions in terms of the atom-bond electronegativity equalization method(ABEEMσπ) model w ith the local HSAB principle at its generalized version. And we have obtained the results in good agreement w ith the experimentally observed outcomes.

    In this paper, we w ill use the usual reactivity descriptors and the generalized one combined w ith the local HSAB principle to investigate the regioselectivities of the electrophilic additions of alkene including the hydrogen chloride and benzeneselenyl w ith unsymmetrical alkene and to rationalize their order of reaction rate constants by the ab initio method at the level of MP2/6-311++G(d,p) w ith the finite difference approximation(FDA) method and the ABEEMσπ model. It should be noted that the FDA method involves the three systems of N, N + 1,and N ? 1 electrons, but ABEEMσπ model only involves one system of N electron.

    Fig.1 The regioselectivities of electrophilic additions of hyd rogen ch loride to the substituted ethenes (R3 = H) and benzeneselenenyl brom ide to substituted styrenes (R1 = R2 = H), including M arkovnikov and anti-M arkovnikov p roducts.

    2 Theo ry backg round

    2.1 The reac tivity descrip to rs

    Fukui function (FF) is one of the important reactivity descriptors in predicting the intramolecular reactivity in CDFT23,24. Parr and Yang defined the FF ()f r→ and local softness ()s r→25,26as:

    whereis the electron density at, N is the number of electrons for a molecular system, μ is the chem ical potential,the negative of the electronegativity,is the external potential generated by the nuclei, S is the global softness.

    2.2 The finite d ifference app roxim ation (FDA)

    In the FDA method, according to the Eq.(1), the condensed FF of nucleophilic attack for systems w ith electron gain can be w ritten as

    and the condensed FF of electrophilic attack for systems w ith electron donation can be expressed as

    where qk(N + 1), qk(N), and qk(N ? 1) stand for the partial charges on atom k in a molecule w ith N + 1, N, and N ? 1 electrons at the same geometry stru→cture, respectively27.

    A local softness descriptor s( r) is related to the FF via Eq.(2), so the condensed local softness is related to the condensed FF26through

    where,andimply how global softness is redistributed among various atoms of the molecule by the condensed Fukui function. The global softness, S, can be given as24S = 1/I ? A where I and A are the ionization potential and electron affinity,respectively. The first ionization potential I can be obtained by I = EN?1? ENand the electron affinity A by A = EN+1? ENw ith EN?1, EN, and EN+1denoting the total energies of the systems w ith N ? 1, N, and N + 1 electrons, respectively. The quantities involved can be calculated by an ab initio method at high level of theory.

    2.3 ABEEMσπ m odel

    Based on the DFT and electronegativity equalization method(EEM)28–34, Yang and his coworkers have developed ABEEMσπ model35–45, which explicitly partitions a molecule into atom, chemical bond, and lone pair (lp) regions. In this model, the single bond consists of one σ region, where the center of the charge for σ bond is located on the position of the ratio of the covalent atomic radii of two bonded atom; the double bond consists of one σ region and four π regions, where center of the σ bond charge is sim ilar w ith the σ region of single bond and the π bond partial charges are placed above and below the double-bonded atoms at the covalent radii of the this double-bonded atoms perpendicular to the plane formed by the σ bond; and the center of charge and its orientation for the lp region is determ ined in terms of the chem ical surrounding.

    In terms of the definition of electronegativity based on DFT,the effective electronegativity of a region a, χa, can be expressed as:

    whereandare valence-state electronegativity and hardness of the region a, respectively. a and b denote two regions, including the atom or single bond σ or double bond σ and π or lone pairs regions. qa and qb are the partial charges of regions a and b, Ra,b denotes the distance between regions a and b, and k, 0.57, is an overall correction coefficient in this formalism22,35–47. The electronegativity equalization principle demands that the effective electronegativity of every region is equal to the overall electronegativity of the molecule, χmol:

    For an arbitrary molecule partitioned into m regions, solving the Eq.(8) w ith the constraint Eq.(9) on its net charge, qmol, if the parametersandare known, we can obtain the charge of every region.

    On the basis of the definition of the FF, we can express the FF of region a in our ABEEMσπ model as:

    Hardness expressions for all the regions in a molecule like Eq.(11), altogether w ith the normalization condition of the FF, ∫f( r) dr = 1, can be also solved to directly and quickly give the molecular hardness, 2ηmol, and in particular, the condensed FF faof each region in the molecule if all parameters 2η*in Eq.(11) have been calibrated.

    2.4 The generalized reac tivity desc rip to rs

    The generalized Fukui function (GFF) fG(r) and the generalized local softness (GLS) sGhave been proposed and their definitions22are expressed as Eqs.(12) and (13):

    where, the f(and s→) are local Fukui function (FF) and local softness, the usual reactivity descriptors, NMis the number of atoms for a molecular system, and S is the global softness. Obviously, according →to Eq.(12), the GFF fG(r→) is normalized to NMbecause f( r) is normalized to 1 for a molecule. And sG( r→) is normalized to NMS rather than S,which means that the global softness is the average of the generalized local softness sG( r→). Based on the definition of fG( r→), the reactivity descriptor→ of the site is not only dependant on its charge and f( r), but also related to the number of the atoms in the molecule, NM, where the detailed ratiocination has been represented in Ref. 22.

    3 Com pu tational details

    We investigated the electrophilic additions of hydrogen chloride to asymmetric alkenes and benzeneselenenyl bromide to substituted styrenes, as shown in Fig.1. The geometries of all reactants were optimized and obtained by the B3LYP/6-311+G(d,p) level of theory in Gaussian-0348. All optimized reactants were stationary points of potential energy surface after checking the frequencies at the same level of theory.

    3.1 Calib ration of param eters χ* and 2η* fo r ABEEMσπ Model

    According to Eq.(7) and Eq.(11), we have calibrated the parameters χ*and 2η*, through a regression and least-squares optimization procedure by dealing with some model molecules35.For all model molecules, ab initio Hartree-Fock MO calculations were performed w ith STO-3G basis sets in Gaussian 0348and then the partial charges of all the model molecules were obtained by the Mulliken population analysis.Then the charge distributions obtained for the model molecules were brought into Eqs.(7–9) in order to determine the parameters χ*and 2η*through a regression and least-squares optimization procedure22,35–38,46,47. The old types of parameters were obtained from our previous work37, and the new added types and parameters of χ*and 2η*are listed in Table 1.

    For the calibration, the reason why we use the minimum STO-3G basis set is not due to its time-consuming but more importantly due to its physical significance. Ab initio calculation w ith a higher level of basis set can give more accurate prediction of energy and geometry, but can not give more suitable partial charges than lower level of basis set for practical use. This phenomenon comes from the fact that a diffuse basis function located on an atom may to some extent cover the regions of the other adjacent atoms leading to a somewhat overestimating population of this atom in the Mulliken population analysis. Derouane and coworkers49showed that the formal charges calculated w ith the 6-21 basis set are higher than those computed w ith the STO-3G basis set,and thus suggested STO-3G charges may be more reliable.W ilson and Ichikawa50and Torrent-Sucarrat and their coworkers51pointed out that the charge transfer between atoms in a molecule is overestimated when the polarization basis sets are used. Huzinaka et al.52and Jakalian et al.53, as well as our group47, had experienced that the use of higher level of basis sets overestimates the overlapping between their respective basis functions belonging to two atoms in a molecule. For example, if the 6-31G* basis set is used, the polarity of a molecule calculated by the partial charges is overestimated by 10%–15% than if the STO-3G basis set is used53. Therefore, in the calibration process of the parameters, STO-3G basis set has been used in the ab initio calculations for all the model molecules to obtain the partial charges from Mulliken population analysis.

    Tab le 1 Parameters χ* and 2η* in ABEEMσπ M odel.

    3.2 Calcu lation of Fukui func tion and local softness

    Geerlings, Proft and Langenacker20suggested that local softness should be used as an intermolecular reactivity descriptor, whereas the FF is as an intramolecular one. Under the FDA method, via S = 1/(I ? A), the global softness were obtained, where the first ionization potential I and the electron affinity A were calculated by ab initio method at MP2/6-311++G(d,p) level of theory. In terms of Eqs.(3) and(4), the condensed FFs of center atoms were calculated using the natural population analysis (NPA) at the MP2/6-311++G(d,p) level of theory, then obtained their local softness via Eqs.(5) and (6).

    In the ABEEMσπ model, the FFs of center atoms were calculated by Eq.(11), then their GFFs were calculated by Eq.(12). Their global softness was obtained by Eq.(11) because of it being the inverse of the hardness, hence the local softness and the GLS were calculated by Eqs.(2) and (13), respectively.

    3.3 Exp ression of the local HSAB p rincip le under the finite d ifference app roach and ABEEMσπ m odel

    The local HSAB principle claimed19that the interaction between two molecules w ill occur not necessarily through their the softest atoms but rather through those atoms of two systems, and their Fukui functions of which are close. Based on this principle, the softness-matching criteria was proposed by Chandea, Nguyen, Geerlings and coworkers for understanding the regioselectivity of cycloaddition reactions11–13,15,16. The softness-matching criterion at a local-local approach in the case of multiple sites of interaction has been cast in the form of the m inim ization of a quadratic form to articulate. In our investigated reactions, because there are two reaction center atoms in electrophilic additions, we w ill use the absolute values of differences between the local softness of the reaction center atoms of two reactants to express.

    Hence, w ithin the FDA method, the expression of the local HSAB principle is w ritten as Eq.(14), where the i is the site of reactivity on molecule A, and the k is the site of reactivity on molecule B, as seen in Fig.1, and theis the condensed local softness of the i th atom in A, which represents that the electrophile H atom in HCl or [PhSe] group in PhSeBr acquires a electron sharing from the π-bond of substituted ethene and theis the condensed local softness of the k th atom in B, which represents that the reactant B w ill be attacked by H atom or[PhSe] group to donate an electron to be shared. And then,based on the proposed generalized reactivity descriptor, the local HSAB principle can be expressed as the Eq.(15). In this kind of the reaction, the superscript + denotes the reactivity descriptor of the electrophilic H atom, while the superscript –represents the reactivity index of double bond C atom in alkene.

    According to the local HSAB principle, the smaller the Δs or ΔsGis, the easier the reaction is. In this paper, we only consider the state of single reactant, when ΔsMA< ΔsAMor<Δ, the Markovnikov product should be the main; and when ΔsMA> ΔsAMorA>, the anti-Markovnikov product should be favored. And the generalized reactivity descriptor can be further used to rationalize the reaction rate constants,i.e., the greater theis, the greater the reactivity is, and the easier the reaction is.

    Tab le 2 The difference values, Δs MA, Δs AM, Δ and Δ, for HCl w ith alkene in term s of MP2/6-311++G(d,p) level under thefinite difference approximation, and our ABEEMσπ model.

    Tab le 2 The difference values, Δs MA, Δs AM, Δ and Δ, for HCl w ith alkene in term s of MP2/6-311++G(d,p) level under thefinite difference approximation, and our ABEEMσπ model.

    Finite difference approximation ABEEMσπ model Δs MA Δs AM Δs G AM Δs G MA 103Δs MA 103Δs G AM 10Δs G MA 10Δs G MA ethene 0.589 0.589 2.647 2.647 0.069 0.069 0.526 0.526 propene 0.533 0.581 6.017 5.579 2.099 9.250 0.739 1.760 1-butene 0.549 0.556 8.863 8.779 2.867 5.727 0.981 2.012 2-methylpropene 0.604 0.627 8.195 7.924 3.008 6.643 0.964 2.122

    Table 3 The values of condensed f(r), f G(r), s(r), and s G(r) for the H atom of electrophile HCl and the C MA and C AM of unsymmetrical alkenes at the level of MP2/6-311++G(d,p) and the ABEEMσπ model.

    4 Resu lts and d iscussion

    4.1 Regioselec tivity of the add ition of HCl to alkene

    For the addition of HCl to unsymmetrical olefin CH2=CR1R2, when the substituent is electron-donating group, such as alkyl, the reactions comply w ith the Markovnikov’s rules to occur. When the substituent is electron-accepting group, such as ―CHO, ―COOH, the reactions comply w ith the anti-Markovnikov’s rules. As seen in Fig.1, these substituents belong to the alkyls, so the regioselectivities of these reactions abide by the Markovnikov’s rules to produce the Markovnikov’s products.

    According to Eqs.(14)–(17), the difference values, Δ sMA,Δ s , Δ sGand Δ sG, for the reactions of HCl w ith CH2=AM MA MA CR1R2were calculated by using the FDA method and the ABEEMσπ model, and listed in Table 2. Table 3 presents the detailed values of FF, GFF, local softness, and GLS of reactive center atoms obtained from these two methods.

    As shown in Table 2, follow ing the FDA method, the values of ΔsMA(0.589), ΔsAM(0.589) and(2.647),(2.647)for the reaction between HCl w ith ethene are equal to each other, respectively, which, of course, indicates that there is no regioselectivity in this reaction. When the olefin is propene, the value of ΔsMA(0.533) is smaller than the relevant(0.581).According to the local HSAB principle, the H atom of HCl favors to attack the Markovnikov’s carbon atom, so this result is in line w ith the experimental regioselectivity. However, the value of6.017) is greater than theM (5.579) by using the generalized local softness, then the regioselectivity of this reaction would be anticipated the anti-Markovnikov’s attacking. But, this result is not in agreement w ith the experimental result. By using the same way to deal w ith the rest two additions of HCl to 1-butene and 2-methylpropene, we also obtain Δs MA < Δs AM and>. Hence, according to the local HSAB principle, w ithin the FDA method, the predicted results obtained from the usual local softness are better than those from the generalized local softness (GLS).

    And then, how about are the results in terms of the ABEEMσπ model? It is clearly seen from Table 3 that the both values of ΔsMAand ΔsAMare 0.069 × 10?3, and both ΔsGMAandare 5.26 when the olefin is ethene, which indicates that the two double-bonded carbon atoms are identical. When R1is H and R2is ―CH3, Δ sMAis 2.099 × 10?3, Δ sAMis 9.250 ×10?3andis 73.9,is 17.60, i.e., Δ sMA< Δ sAMand<. Therefore, on basis of local HSABA AM principle, the Markovnikov’s product should constitute the main product of this reaction, and this result is in agreement w ith the Markovnikov’s rules. In the same way, when alkenes are 1-butene and 2-methylpropene, both Δ sMA< Δ sAMand<, so the results are consistent w ith the Markovnikov’s rules. Consequently, both Δs via usual local softness and Δ sGvia GLS from ABEEMσπ model can explain and forecast the regioselectivities of these reactions well, and the predicted results are better than those of the FDA method.

    It was reported that the rate constants for the addition of HI to ethene, propene, and 2-methylpropene were in the ratio 1:90:7005,6, which indicated that w ith raising the substituents,the reaction rates gradually became greater and greater.Furthermore, experimental activation energies of the additions of HCl to ethene (166.105 kJ·mol?1), to propene (144.348 kJ·mol?1), and to 2-methylpropene (119.244 kJ·mol?1) were reported2,9, which implied when the substituents gradually become larger and larger, the additions of HCl to CH2CR1R2are more and more easy to process. The generalized reactivity descriptors, GFF and GLS themselves, can rationalize the intermolecular reactivity, and especially forecast the order of reaction rate constants for a series of reactions. Hence, we applied the GLS, rather than Δ sGto correlate the order of the reaction rate constants for these investigated additions.

    The investigated electrophilic additions of HCl to alkenes,we have only considered the reactivity descriptors of reactants,which means that the values of GLS for the H atom of HCl are fixed and just the values of GLS for the CMAof alkenes are taken as variables, where the values of GLS for reaction centers by FDA method and ABEEMσπ model are listed in Table 3,i.e., we can disregard the GLS of H atom in HCl and only compare the GLS of CMAin alkenes of the main product. It is clear from our calculations that the values ofobtained from both FDA method and ABEEMσπ model (in Table 3) for alkenes increase w ith the substituents rising. Since the higher FF is, the higher reactivity is, i.e., the softest position of the molecule is, the easiest reactive site occurs. Hence, the addition for HCl to 2-methylpropene is the fastest reaction, the addition for HCl to ethene is the slowest one, and the addition of HCl to 1-butene is in the middle. These conclusions are just in agreement w ith experimental results and the results of usual local softness have not such regularity.

    In a word, both the usual reactivity descriptors and the generalized ones from ABEEMσπ model in combination w ith the local HSAB principle can successfully interpret and forecast the regioselectivities of the additions of HCl to alkenes, which results are in agreement w ith the Markovnikov rule, but the results of FDA method are not good. And then, the values offor the alkenes calculated by both the FDA method and the ABEEMσπ model can further correlate the reaction rate constants. When values ofgradually become big, the studied additions gradually become fast as substituents gradually increasing. But, the usual softness ofcan not do this result. Therefore, we have chosen the other series of electrophilic additions tofurther check the validity and practicability of generalized descriptors again, as seen in Fig.1.

    Table 4 The charges of CMA, CAM obtained from HF/STO-3G andABEEMσπ M odel.

    4.2 The regioselec tivity of add ition fo r benzeneseleny l b rom ide w ith alkene

    The additions of benzeneselenyl bromide to alkenes are usually considered to be the electrophilic addition reactions7.We have chosen four reactions between benzeneselenyl bromide and substituted styrene (X PhCH=CH2), where the substituents Ph X of alkenes are Ph, 3-ClPh, 4-ClPh and 4-CH3Ph, respectively. Here, [PhSe] group in electrophile is considered to be the H atom of HCl and it has the positive charge, which attacks one of the double-bonded carbon atoms of alkenes w ith enriched electron. The Br atomic charges obtained by HF/STO-3G level of theory and ABEEMσπ model are ?0.100 and ?0.140 a.u., respectively. Table 4 lists the charges of CMAand CAM, qMAand qAM, calculated by HF/STO-3G level of theory and ABEEMσπ model,respectively.

    These CMApossess much more negative charge and the CAMpossess a little charge compared w ith CMA, hence, the electrophile [PhSe] group w ill favor to attack the CMA. Here,we could consider the substituents X together w ith benzene(X―Ph―) as a whole to be the electron-donating groups, i.e.these four reactions should obey the Markovnikov’s rules according to the greater attraction between [PhSe] group and CMA, which are just in line w ith the experimental results7. We also can see that the qMAof 3-Cl and 4-Cl are less than that of the others, because the interaction between ―Cl, the electron-w ithdraw ing group, and benzene, the electron-donating group, represents the character of the electron-donating group in nonpolar solution, so leading to that result, if the reactions react in polar solution, the result may be the opposite7, however, the all calculations about these reactions were calculated at the gas state in vacuum. The charges of ABEEMσπ and ab initio method are in agreement by and large.

    Then, we make use of the usual local softness and the generalized one from FDA method and the ABEEMσπ model combination w ith local HSAB principle to estimate the regioselectivities of above four additions, the values of ΔsMA,Δ s , Δ sGand Δ sGfrom these two methods are listed in AM MA AM Table 5, and the ratio of Markovnikov’s product to anti-Markovnikov’s from the experiment7are also listed in Table 5.

    It can be seen from that Table 5 the fourandare all smaller than respective Δ sAMandunder the FDA method. And the values of Δ sMAandfrom ABEEMσπ model are also smaller than their respective Δ sAMand. Therefore, on basis of local HSAB principle, the Markovnikov’s products should constitute the main products of these four reactions by means of FDA method and ABEEMσπ model, which results are in line w ith the experimental regioselectivities.

    Table 5 The values of Δs MA, Δs AM, and for PhSeBr w ith substituted styrene (X-PhCH=CH 2) at the level of MP2/6-311++G(d,p) w ith the finite difference approach and ABEEMσπ model.

    Table 5 The values of Δs MA, Δs AM, and for PhSeBr w ith substituted styrene (X-PhCH=CH 2) at the level of MP2/6-311++G(d,p) w ith the finite difference approach and ABEEMσπ model.

    a Those reactions are reacting in benzene at 25 °C.

    X―PhCH=CH2finite difference approach ABEEMσπ Model aMA: AM Δs MA Δs AM Δs G MA Δs G AM 104Δs MA 104Δs AM 102Δs G MA 102Δs G AM H 0.841 1.457 8.915 18.780 1.666 1.680 4.683 4.711 78:22 3-Cl 0.854 1.413 9.133 18.066 1.636 1.649 4.600 4.629 59:41 4-Cl 0.857 1.442 9.183 18.534 1.644 1.658 4.625 4.652 76:24 4-CH3 0.853 1.517 7.128 19.754 1.579 1.593 6.689 6.721 86:14

    Fig.2 The line charts of the reaction rates (upper), the s G (m idd le) and s G? (lower) of CMA atom s in the four additions of benzeneselenyl brom ide to the substituted styrenes.

    We can obtain two sequences:4-CH3)<(H)<(3-Cl)<(4-Cl) via FDA method and(3-Cl)<(4-Cl)<(H)< ΔsG(4-CH)via ABEEMσπMA 3 model. According to the local HSAB principle, the smaller Δ sGis, the easier reaction is. Luk and his coworkers7gave second-order rate constants, k, its unit being dm3·mol?1·s?1of these reactions which are in order kH(2.58 ± 0.15) × 10?2, k3-Cl(1.57 ± 0.07) × 10?2, k4-Cl(2.20 ± 0.1) × 10?2, and k4-CH3(2.77 ±0.1) × 10?2, as shown in Fig.2 (upper). The order of the experimental reaction rates is k3-Cl< k4-Cl< kH< k4-CH3.Therefore, the intermolecular reactivity predicted by ABEEMσπ model is just in a reverse order compared w ith the experimental rate constants.

    Fig.2 (middle) displays the line chart of the sGobtained from the ABEEMσπ model. And Fig.2 (lower) represents the line charts of the sG?of the CMAatoms calculated by FDA method.It can be found from the Fig.2 that the order ofis4-Cl) <3-Cl) <H) <(4-CH3) (FDA method) and that ofis(3-Cl) <(4-Cl) <(H) <(4-CH3)(ABEEMσπ model). The sequence via ABEEMσπ model is just in accord w ith that of the experimental reaction rates, but that of FDA method is not for the ―Cl substituted additions.

    Therefore, the applications of the generalized reactivity descriptor combined w ith the local HSAB principle on this series of electrophilic additions demonstrate that both the values of Δs and ΔsGfrom ABEEMσπ model can forecast their regioselectivities and only the values of center atoms’generalized local softness of substituted ethenes calculated by ABEEMσπ model can rationalize the reaction rate constants rather than the difference of center atoms’ generalized local softness of the two reactants. However, the results of the finite difference approximation are not well related to the experimental results.

    5 Conc lusions

    For the addition reactions of HCl to the substituted ethenes and benzeneselenyl brom ide to the substituted styrenes,according to the local HSAB principle, the values of the softness differences,sΔ, in terms of ab initio method at the level of MP2/6-311++G(d,p) w ith the finite difference approximation (FDA) method and the ABEEMσπ model have been used to relate to their regioselectivities.

    As the performance of the generalized reactivity descriptor, it is shown that the CMAatoms of all reactions prefer to be attacked in terms of ABEEMσπ model, which is in agreement w ith the experimental results. But, the results of FDA method can not obtain such good indication. However, it is shown that there are two inverse orders, compared w ith the orders of experimental rate constants for these two series of electrophilic additions by using the ΔsGfrom FDA and ABEEMσπ model. In fact, only generalized local softness (GLS) of center atoms can be related to the orders of the experimental reaction rate constants by both the FDA method and the ABEEMσπ model except the results of the FDA method for 3-Cl substituted addition w ith a little flaw.

    Up to now, we have applied the generalized reactivity descriptors to study on several kinds of reactions, such as to predict the regio- and stereoselectivity of Diels-Alder reactions and to correlate their reaction rate constants, to rationalize the intermolecular reactivities and regioselectivities of enzymatic catalyzed nucleophilic reactions, etc. Moreover, we w ill continue to apply the generalized Fukui function and the generalized local softness to investigate other systems and tofurther check their rationality and validity.

    References

    (1) Yang, Z. -Z.; Ding, Y. -L.; Zhao, D. -X. ChemPhysChem 2008, 9,2379. doi: 10.1002/cphc.200800364

    (2) Suresh, C. H.; Koga, N.; Gadre, S. R. J. Org. Chem. 2001, 66, 6883.doi: 10.1021/jo010063f

    (3) Aizman, A.; Contreras, R.; Galvan, M.; Cedillo, A.; Santos, J. C.;Chamorro, E. J. Phys. Chem. A 2002, 106, 7844.doi: 10.1021/jp020214y

    (4) Menendez, M. I.; Suarez, D.; Sorod, J. A.; Sordo, T. L. J. Comput.Chem. 1995, 16, 659. doi: 10.1002/jcc.540160602

    (5) Benson, S. W.; Bose, A. N. J. Chem. Phys. 1963, 39, 3463.doi: 10.1063/1.1734215

    (6) Bose, A. N.; Benson, S. W. J. Chem. Phys. 1963, 38, 878.doi: 10.1063/1.1733776

    (7) Luh, T. -Y.; So, W. -H.; Cheung, K. S.; Tam, S. W. J. Org. Chem. 1985,50, 3051. doi: 10.1021/jo00217a006

    (8) Rauk, A. Orbital Interaction Theory of Organic Chemistry, 2nd ed.;John Wiley & Sons, Inc.: New York, USA, 2001.

    (9) Sathre, J. L.; Thomas, T. D.; Svensson, S. J. J. Chem. Soc., Perkin Trans 2 1997, 28, 749. doi: 10.1002/chin.199730041

    (10) Markovnikov, V. Ann. Chem. Pharm. 1870, 153, 228.doi: 10.1002/jlac.18701530204

    (11) Chandra, A. K.; Nguren, M. T. J. Comput. Chem. 1998, 19, 195.doi: 10.1002/(SICI)1096-987X(19980130)19:2<195::AID-JCC12>3.0.CO;2-H

    (12) Chandra, A. K.; Nguyen, M. T. J. Phys. Chem. A 1998, 102, 6181.doi: 10.1021/jp980949w

    (13) Damoun, S.; Woude, V. D.; Mendez, F.; Geerlings, P. J. Phys. Chem.A 1997, 101, 886. doi: 10.1021/jp9611840

    (14) Geerlings, P.; De Proft, F. Int. J. Quantum Chem. 2000, 80, 227. doi:10.1002/1097-461X(2000)80:2<227::AID-QUA17>3.0.CO;2-N

    (15) Nguyen, L. T.; De Proft, F.; Dao, V. L.; Nguyen, M. T.; Geerlings, P.J. Phys. Orgs. Chem. 2003, 16, 615. doi: 10.1002/poc.653

    (16) Nguyen, L. T.; Le, T. N.; Proft, F. D.; Chandra, A. K.; Langenaeker,W.; Nguyen, M. T.; Geerlings, P. J. Am. Chem. Soc. 1999, 121, 5992.doi: 10.1021/ja983394r

    (17) Sengupta, D.; Chandra, A. K.; Nguren, M. T. J. Org. Chem. 1997, 62,6404. doi: 10.1021/jo970353p

    (18) Li, Y.; Evans, J. N. S. J. Am. Chem. Soc. 1995, 117, 7756.doi: 10.1021/ja00134a021

    (19) Gazquez, J. L.; Mendez, F. J. Phys. Chem. 1994, 98, 4591.doi: 10.1021/j100068a018

    (20) Geerlings, P.; Proft, F. D.; Langenaeker, W. Adv. Quantum Chem.1998, 33, 303. doi: 10.1016/S0065-3276(08)60442-6

    (21) Xu, Z. -Z.; Zhao, D. -X.; Yang, Z. -Z. Chin. Sci. Bull. 2012, 57, 2787.doi: 10.1360/972012-537

    (22) Zhao, D. -X.; Xu, Z. -Z.; Yang, Z. -Z. Int. J. Quantum Chem. 2013,113, 1116. doi: 10.1002/qua.24173

    (23) Geerlings, P.; Proft, F. D.; Langenaeker, W. Chem. Rev. 2003, 103,1793. doi: 10.1021/cr990029p

    (24) Parr, R. G.; Yang, W. Density Functional Theory of Atom and Molecules; Oxford University Press: New York, USA, 1989.

    (25) Parr, R. G.; Yang, W. T. J. Am. Chem. Soc. 1984, 106, 4049.doi: 10.1021/ja00326a036

    (26) Yang, Y.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723.doi: 10.1073/pnas.82.20.6723

    (27) Padmanabhan, J.; Parthasarathi, R.; Elango, M.; Subramanian, V.;Krishnamoorthy, B. S.; Gutierrez-Oliva, S.; Toro-Labb, A.; Roy, D. R.;Chattaraj, P. K. J. Phys. Chem. A 2007, 111, 9130.doi: 10.1021/jp0718909

    (28) Baekelandt, B. G.; Janssens, G. O. A.; Toufar, H.; Mortier, W. J.;Schoongeydt, R. A. J. Phys. Chem. 1995, 99, 9784.doi: 10.1021/j100024a020

    (29) Baekelandt, B. G.; Mortier, W. J.; Lievens, J. L.; Schoonheydt, R. A.J. Am. Chem. Soc. 1991, 113, 6730. doi: 10.1021/ja00018a003

    (30) Baekelandt, B. G.; Mortier, W. J.; Schoonheydt, R. A. The EEM Approach to Chemical Hardness in Molecules and Solids:Fundamentals and Applications, Structruce and Bonding; Springer:Berlin Heidelberg, Germany, 1993; Vol. 80, pp. 187–227.

    (31) Bultinck, P.; Langenaeker, W.; Lahorte, P.; De Proft, F.; Geerlings, P.;Waroquier, M.; Tollenaere, J. P. J. Phys. Chem. A 2002, 106, 7887.doi: 10.1021/jp0205463

    (32) Bultinck, P.; Langenaeker, W.; Lahorte, P.; Proft, F. D.; Geerlings, P.;Alsenoy, C. V.; Tollenaere, J. P. J. Phys. Chem. A 2002, 106, 7895.doi: 10.1021/jp020547v

    (33) Janssens, G. O. A.; Toufar, H.; Baekelandt, B. G.; Mortier, W. J.;Schoonheydt, R. A. Stud. Surf. Sci. Cat. 1997, 105, 725.doi: 10.1016/S0167-2991(97)80622-2

    (34) Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108,4315. doi: 10.1021/ja00275a013

    (35) Cong, Y.; Yang, Z. Z. Chem. Phys. Lett. 2000, 316, 324.doi: 10.1016/S0009-2614(99)01289-0

    (36) Yang, Z. -Z.; Wang, J. -J.; Zhao, D. -X. J. Comput. Chem. 2014, 35,1690. doi: 10.1002/jcc.23676

    (37) Zhao, D. X.; Liu, C.; Wang, F. F.; Yu, C. Y.; Gong, L. D.; Liu, S. B.;Yang, Z. Z. J. Chem. Theory Comput. 2010, 6, 795.doi: 10.1021/ct9006647

    (38) Liu, C.; Li, Y.; Han, B. -Y.; Gong, L. -D.; Lu, L. -N.; Yang, Z. -Z.;Zhao, D. -X. J. Chem. Theory Comput. 2017, 13, 2098.doi: 10.1021/acs.jctc.6b01206

    (39) Liu, L. -L.; Yang, Z .-Z.; Zhao, D. -X.; Gong, L. -D.; Liu, C. RSC Adv.2014, 4, 52083. doi: 10.1039/c4ra09631b

    (40) Wu, Y.; Yang, Z. Z. J. Phys. Chem. 2004, 108, 7563.doi: 10.1021/jp0493881

    (41) Yang, Z. Z.; Cui, B. Q. J. Chem. Theory Comput. 2007, 3, 1561.doi: 10.1021/ct600379n

    (42) Yang, Z. Z.; Qian, P. J. Chem. Phys. 2006, 125, 064311.doi: 10.1063/1.2210940

    (43) Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys. 2004, 120, 2541.doi: 10.1063/1.1640345

    (44) Yang, Z. Z.; Zhang, Q. J. Comput. Chem. 2006, 27, 1.doi: 10.1002/jcc.20317

    (45) Zhang, Q.; Yang, Z. Z. Chem. Phys. Lett. 2005, 403, 242.doi: 10.1016/j.cplett.2005.01.011

    (46) Wang, C. S.; Yang, Z. Z. J. Chem. Phys. 1999, 110, 6189.doi: 10.1063/1.478524

    (47) Yang, Z. Z.; Wang, C. S. J. Phys. Chem. A 1997, 101, 6315.doi: 10.1021/jp9711048

    (48) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J. C.; et al. Gaussian 03, Revision C.02; Gaussian, Inc.:Wallingford, CT, USA, 2004.

    (49) Derouane, E. G.; Fripiat, J. G.; Ballmoos, R. V. J. Phys. Chem. 1990,94, 1687. doi: 10.1021/j100367a085

    (50) Wilson, M. S.; Ichikawa, S. J. Phys. Chem. 1989, 93, 3087.doi: 10.1021/j100345a041

    (51) Torrent-Sucarrat, M.; Proft, F. D.; Geerlings, P.; Ayers, P. W. Chem.Eur. J. 2008, 14, 8652. doi: 10.1002/chem.200800570

    (52) Huzinaka, S.; Sakai, Y.; M iyoshi, E.; Narita, S. J. Chem. Phys. 1990,93, 3319. doi: 10.1063/1.458812

    (53) Jakalian, A.; Bush, B.; Jack, D. B.; Bayly, C. I. J. Comput. Chem.2000, 21, 132. doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P

    猜你喜歡
    化工學(xué)院遼寧化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    遼寧之光
    新少年(2022年3期)2022-03-17 07:06:38
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    讀遼寧 愛(ài)遼寧
    遼寧艦
    學(xué)與玩(2018年5期)2019-01-21 02:13:08
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    国产精品久久久久久久电影| 久久久久精品国产欧美久久久| 欧美中文日本在线观看视频| 美女cb高潮喷水在线观看| 免费观看的影片在线观看| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 亚洲久久久久久中文字幕| 蜜桃久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 老司机午夜福利在线观看视频| 如何舔出高潮| 日韩欧美在线二视频| 精品日产1卡2卡| 国产v大片淫在线免费观看| 热99re8久久精品国产| 午夜激情欧美在线| 一级av片app| 欧美色欧美亚洲另类二区| 日韩有码中文字幕| 久久人人精品亚洲av| 免费无遮挡裸体视频| 国产午夜福利久久久久久| 国产一区二区三区视频了| 午夜福利在线在线| av中文乱码字幕在线| 久久久成人免费电影| 他把我摸到了高潮在线观看| 九色成人免费人妻av| 亚洲狠狠婷婷综合久久图片| 欧美一区二区亚洲| 深爱激情五月婷婷| 色精品久久人妻99蜜桃| 真人一进一出gif抽搐免费| 国产精华一区二区三区| 嫩草影院新地址| 免费人成视频x8x8入口观看| 欧美zozozo另类| 久99久视频精品免费| 亚洲欧美精品综合久久99| 国产高清三级在线| 亚洲avbb在线观看| 欧美xxxx性猛交bbbb| 亚洲欧美日韩高清专用| 久久久国产成人免费| 狂野欧美白嫩少妇大欣赏| 欧美丝袜亚洲另类 | 国产欧美日韩精品亚洲av| 麻豆国产97在线/欧美| 黄色视频,在线免费观看| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 每晚都被弄得嗷嗷叫到高潮| 久久久久久国产a免费观看| 在现免费观看毛片| 国产大屁股一区二区在线视频| 亚洲专区国产一区二区| 久久久久久久久大av| 99国产精品一区二区蜜桃av| 欧美中文日本在线观看视频| 免费无遮挡裸体视频| 精品久久久久久久久亚洲 | 亚洲成av人片免费观看| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 日韩免费av在线播放| 丰满的人妻完整版| 久久午夜亚洲精品久久| 男女那种视频在线观看| 精品一区二区三区人妻视频| 国产黄a三级三级三级人| 俺也久久电影网| 美女高潮的动态| 人妻久久中文字幕网| 99久久99久久久精品蜜桃| 国产白丝娇喘喷水9色精品| av中文乱码字幕在线| 日本五十路高清| 九九久久精品国产亚洲av麻豆| 黄色女人牲交| 超碰av人人做人人爽久久| 成人性生交大片免费视频hd| 少妇的逼水好多| 一区二区三区高清视频在线| 国产精品一及| 久久九九热精品免费| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 草草在线视频免费看| 91在线精品国自产拍蜜月| 一区二区三区免费毛片| 美女高潮的动态| 18+在线观看网站| 国产精品一区二区性色av| 男女做爰动态图高潮gif福利片| 免费观看人在逋| 可以在线观看的亚洲视频| av在线老鸭窝| 人妻夜夜爽99麻豆av| 欧美黑人欧美精品刺激| 亚洲av免费高清在线观看| 国产高清三级在线| 成人毛片a级毛片在线播放| 波多野结衣高清作品| 久久久久国内视频| 国内精品久久久久精免费| 亚洲第一区二区三区不卡| 久久中文看片网| 久久亚洲真实| 国产又黄又爽又无遮挡在线| 国产高清视频在线播放一区| 精品久久国产蜜桃| 亚洲成a人片在线一区二区| 观看免费一级毛片| 午夜两性在线视频| 哪里可以看免费的av片| 日本撒尿小便嘘嘘汇集6| 亚洲成av人片在线播放无| 国产精品久久久久久亚洲av鲁大| 日本免费a在线| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久久亚洲 | aaaaa片日本免费| 波多野结衣巨乳人妻| 人妻夜夜爽99麻豆av| 天堂√8在线中文| 精品一区二区三区视频在线| 在线观看舔阴道视频| 2021天堂中文幕一二区在线观| av在线天堂中文字幕| 在线免费观看不下载黄p国产 | 一区二区三区高清视频在线| 女生性感内裤真人,穿戴方法视频| 精品人妻熟女av久视频| 久久久久久久久久成人| 久久久成人免费电影| 十八禁人妻一区二区| 又爽又黄a免费视频| 国产精品1区2区在线观看.| 少妇丰满av| 欧美黑人巨大hd| 亚洲国产精品久久男人天堂| 我的老师免费观看完整版| 亚洲熟妇熟女久久| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 亚洲美女视频黄频| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区视频在线| 国产精品永久免费网站| 两性午夜刺激爽爽歪歪视频在线观看| 老熟妇仑乱视频hdxx| 日韩欧美精品v在线| 我的女老师完整版在线观看| 日韩av在线大香蕉| 精品欧美国产一区二区三| 国产69精品久久久久777片| 精品久久久久久久久久久久久| 99热精品在线国产| 国产视频一区二区在线看| 欧美一区二区精品小视频在线| 男人舔女人下体高潮全视频| 中文字幕熟女人妻在线| 真人一进一出gif抽搐免费| 夜夜夜夜夜久久久久| 一本精品99久久精品77| 好看av亚洲va欧美ⅴa在| 在线观看免费视频日本深夜| 97人妻精品一区二区三区麻豆| 国产精华一区二区三区| 国产在线男女| 亚洲精品成人久久久久久| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| 2021天堂中文幕一二区在线观| 丝袜美腿在线中文| 丁香六月欧美| 少妇丰满av| www.www免费av| 又黄又爽又刺激的免费视频.| 12—13女人毛片做爰片一| 综合色av麻豆| 中文字幕人妻熟人妻熟丝袜美| 国内精品美女久久久久久| 噜噜噜噜噜久久久久久91| 色综合欧美亚洲国产小说| 久久香蕉精品热| 国产亚洲欧美在线一区二区| 日本三级黄在线观看| 三级国产精品欧美在线观看| 一夜夜www| 国产久久久一区二区三区| 亚洲一区二区三区色噜噜| 亚洲最大成人av| 日本黄色片子视频| 永久网站在线| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 国产精品不卡视频一区二区 | 精品一区二区三区av网在线观看| 此物有八面人人有两片| 97热精品久久久久久| 天堂av国产一区二区熟女人妻| 亚洲自拍偷在线| 久久午夜福利片| 欧美潮喷喷水| 色噜噜av男人的天堂激情| 国产亚洲av嫩草精品影院| 国产亚洲精品av在线| 久久婷婷人人爽人人干人人爱| 国产淫片久久久久久久久 | 九色成人免费人妻av| 久久久国产成人精品二区| 欧美区成人在线视频| a级毛片免费高清观看在线播放| 色av中文字幕| 人人妻,人人澡人人爽秒播| 一个人观看的视频www高清免费观看| 午夜精品一区二区三区免费看| 国产三级在线视频| 精品一区二区三区视频在线| 波野结衣二区三区在线| 18禁黄网站禁片免费观看直播| 波多野结衣高清作品| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 中文字幕人成人乱码亚洲影| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 色哟哟哟哟哟哟| 搡老妇女老女人老熟妇| 国产探花在线观看一区二区| 精品一区二区免费观看| 中文字幕精品亚洲无线码一区| 国产白丝娇喘喷水9色精品| 九色成人免费人妻av| 亚洲欧美精品综合久久99| 身体一侧抽搐| 国模一区二区三区四区视频| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 精品99又大又爽又粗少妇毛片 | 亚洲av成人av| 国产av一区在线观看免费| 神马国产精品三级电影在线观看| 久久午夜亚洲精品久久| 国产毛片a区久久久久| 国产黄a三级三级三级人| 亚洲欧美精品综合久久99| 免费在线观看影片大全网站| 成人无遮挡网站| 在线观看舔阴道视频| 亚洲,欧美精品.| 国产精品伦人一区二区| 国产高清视频在线播放一区| 俺也久久电影网| 国产亚洲精品av在线| 久久欧美精品欧美久久欧美| 天美传媒精品一区二区| 夜夜夜夜夜久久久久| netflix在线观看网站| 波多野结衣高清无吗| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲 | 久久亚洲真实| 久久久久久久亚洲中文字幕 | 亚洲精品久久国产高清桃花| 免费在线观看日本一区| 12—13女人毛片做爰片一| 亚洲熟妇熟女久久| 成人鲁丝片一二三区免费| 国产免费男女视频| 91av网一区二区| 午夜亚洲福利在线播放| 久久精品国产亚洲av天美| 又紧又爽又黄一区二区| 国产国拍精品亚洲av在线观看| 国产精品伦人一区二区| 日本五十路高清| 久久久色成人| 欧美日韩综合久久久久久 | 亚洲五月天丁香| a级一级毛片免费在线观看| 亚洲激情在线av| 最新在线观看一区二区三区| 日韩精品青青久久久久久| 久久性视频一级片| 国产精品亚洲一级av第二区| 欧美激情在线99| 在线播放无遮挡| 丰满人妻一区二区三区视频av| 欧美成人免费av一区二区三区| 日韩精品青青久久久久久| 亚洲最大成人手机在线| 亚洲成人免费电影在线观看| 国产精品久久久久久人妻精品电影| 18+在线观看网站| 精品午夜福利在线看| 欧美日韩亚洲国产一区二区在线观看| 成人三级黄色视频| 国产69精品久久久久777片| 国产高潮美女av| 99riav亚洲国产免费| 亚洲国产精品合色在线| 我要搜黄色片| 欧美日韩国产亚洲二区| 国产精品自产拍在线观看55亚洲| 国产成人a区在线观看| 欧美bdsm另类| 色av中文字幕| 婷婷色综合大香蕉| 日本黄色片子视频| 最好的美女福利视频网| 精品国内亚洲2022精品成人| 久久国产乱子伦精品免费另类| 18美女黄网站色大片免费观看| 午夜日韩欧美国产| 色在线成人网| 青草久久国产| 看黄色毛片网站| 国产免费av片在线观看野外av| 少妇人妻精品综合一区二区 | 亚洲国产高清在线一区二区三| 综合色av麻豆| 高清在线国产一区| 91字幕亚洲| 两个人视频免费观看高清| 夜夜躁狠狠躁天天躁| 亚洲综合色惰| 乱码一卡2卡4卡精品| 久久国产乱子免费精品| 亚洲精品456在线播放app | 我要看日韩黄色一级片| 欧美高清成人免费视频www| 国产黄a三级三级三级人| 精品久久久久久久久久久久久| 亚洲一区二区三区色噜噜| 嫩草影院精品99| 蜜桃久久精品国产亚洲av| 午夜免费成人在线视频| bbb黄色大片| 悠悠久久av| 亚洲av免费高清在线观看| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片| 国产黄片美女视频| 国产精品久久视频播放| 精品福利观看| 午夜福利在线观看吧| 亚洲色图av天堂| 欧美性猛交╳xxx乱大交人| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 天堂网av新在线| 亚州av有码| 真实男女啪啪啪动态图| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 欧美黄色片欧美黄色片| 国产综合懂色| 色吧在线观看| 久久久精品大字幕| 亚州av有码| 又黄又爽又刺激的免费视频.| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 美女高潮喷水抽搐中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲自偷自拍三级| 精品一区二区三区av网在线观看| АⅤ资源中文在线天堂| 国产精品野战在线观看| a级毛片a级免费在线| 国产欧美日韩精品一区二区| 久久久久久大精品| 国产熟女xx| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 一个人免费在线观看的高清视频| 国产精品人妻久久久久久| 长腿黑丝高跟| 国产精品电影一区二区三区| 亚洲精品粉嫩美女一区| 看黄色毛片网站| 国产精品爽爽va在线观看网站| 午夜免费男女啪啪视频观看 | 国产私拍福利视频在线观看| 精品一区二区三区av网在线观看| 床上黄色一级片| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 99久久精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 麻豆一二三区av精品| 亚洲av日韩精品久久久久久密| 少妇的逼水好多| 久久久精品欧美日韩精品| 搡老熟女国产l中国老女人| 国产精品女同一区二区软件 | 少妇人妻一区二区三区视频| 欧美丝袜亚洲另类 | 18禁在线播放成人免费| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区成人| 99久久九九国产精品国产免费| 欧美成人性av电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 18美女黄网站色大片免费观看| 99视频精品全部免费 在线| 亚洲五月婷婷丁香| 一进一出抽搐gif免费好疼| 一进一出抽搐动态| 国产野战对白在线观看| 一卡2卡三卡四卡精品乱码亚洲| 热99在线观看视频| 天堂影院成人在线观看| 久久人人爽人人爽人人片va | 国产欧美日韩一区二区三| 黄色丝袜av网址大全| 日韩欧美三级三区| 亚洲三级黄色毛片| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添av毛片 | 国产日本99.免费观看| 欧美+亚洲+日韩+国产| 夜夜夜夜夜久久久久| 18禁黄网站禁片免费观看直播| xxxwww97欧美| 久久香蕉精品热| 日日干狠狠操夜夜爽| 久久久久久久久中文| 精品不卡国产一区二区三区| 一区二区三区四区激情视频 | 免费人成视频x8x8入口观看| 全区人妻精品视频| av女优亚洲男人天堂| 日韩免费av在线播放| xxxwww97欧美| 久久精品夜夜夜夜夜久久蜜豆| av黄色大香蕉| 欧美精品国产亚洲| 91九色精品人成在线观看| 日日干狠狠操夜夜爽| 国产精品1区2区在线观看.| 午夜福利视频1000在线观看| 老熟妇仑乱视频hdxx| xxxwww97欧美| 日本 av在线| 国产在视频线在精品| 免费高清视频大片| 搡老熟女国产l中国老女人| 成人午夜高清在线视频| 全区人妻精品视频| 三级毛片av免费| 久久国产乱子免费精品| 亚洲天堂国产精品一区在线| 国产三级黄色录像| 国产探花极品一区二区| 午夜老司机福利剧场| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 中文字幕人成人乱码亚洲影| 国产高清三级在线| 国产精品爽爽va在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久视频播放| 老熟妇仑乱视频hdxx| 欧美3d第一页| 亚洲综合色惰| 看片在线看免费视频| 天美传媒精品一区二区| 九九在线视频观看精品| 男人和女人高潮做爰伦理| 神马国产精品三级电影在线观看| 亚洲avbb在线观看| 国产欧美日韩精品亚洲av| 亚洲国产日韩欧美精品在线观看| 欧美成人a在线观看| 亚洲一区二区三区色噜噜| aaaaa片日本免费| av欧美777| 夜夜躁狠狠躁天天躁| 国产精品自产拍在线观看55亚洲| 亚洲经典国产精华液单 | 国产精品影院久久| 亚洲美女搞黄在线观看 | .国产精品久久| 最近在线观看免费完整版| 自拍偷自拍亚洲精品老妇| 亚洲国产精品久久男人天堂| 有码 亚洲区| 久久精品国产亚洲av涩爱 | 亚洲电影在线观看av| 非洲黑人性xxxx精品又粗又长| 久久精品国产自在天天线| 日本一本二区三区精品| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区免费观看 | h日本视频在线播放| a在线观看视频网站| 午夜福利高清视频| 国产中年淑女户外野战色| av国产免费在线观看| av在线老鸭窝| 欧美性猛交黑人性爽| 99久久九九国产精品国产免费| 午夜精品在线福利| 精品久久久久久,| 天堂影院成人在线观看| 一个人免费在线观看的高清视频| 熟妇人妻久久中文字幕3abv| 久久性视频一级片| 亚洲乱码一区二区免费版| av黄色大香蕉| 欧美日韩中文字幕国产精品一区二区三区| 婷婷亚洲欧美| av女优亚洲男人天堂| 一级a爱片免费观看的视频| 精品久久久久久久久久久久久| 亚洲18禁久久av| 久久久久久久久久成人| 美女cb高潮喷水在线观看| av在线观看视频网站免费| 精品人妻一区二区三区麻豆 | 日韩人妻高清精品专区| 亚洲男人的天堂狠狠| www.999成人在线观看| 特级一级黄色大片| 国产成人影院久久av| 三级国产精品欧美在线观看| 亚洲国产色片| 成人毛片a级毛片在线播放| 精品无人区乱码1区二区| 亚洲真实伦在线观看| 国产久久久一区二区三区| 国产精品日韩av在线免费观看| 99久久九九国产精品国产免费| 一级作爱视频免费观看| 久久国产乱子免费精品| 人妻丰满熟妇av一区二区三区| 日本a在线网址| 麻豆久久精品国产亚洲av| 91麻豆av在线| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影| 国产人妻一区二区三区在| avwww免费| 久久久精品大字幕| 日日干狠狠操夜夜爽| 国产一级毛片七仙女欲春2| 成年女人毛片免费观看观看9| 国产精品免费一区二区三区在线| 小蜜桃在线观看免费完整版高清| 免费搜索国产男女视频| 欧美一区二区精品小视频在线| 欧美日韩亚洲国产一区二区在线观看| 精品久久国产蜜桃| 波野结衣二区三区在线| 无人区码免费观看不卡| 国产欧美日韩一区二区三| 中文字幕av在线有码专区| 色精品久久人妻99蜜桃| 国产精品综合久久久久久久免费| 亚洲第一欧美日韩一区二区三区| 五月玫瑰六月丁香| 国产精品乱码一区二三区的特点| 嫩草影院新地址| 黄色日韩在线| 国产亚洲精品久久久com| 此物有八面人人有两片| 乱码一卡2卡4卡精品| 超碰av人人做人人爽久久| 国产极品精品免费视频能看的| 国产v大片淫在线免费观看| 九色成人免费人妻av| 一个人看的www免费观看视频| 99精品久久久久人妻精品| avwww免费| 波多野结衣巨乳人妻| 日韩欧美精品免费久久 | 18禁黄网站禁片午夜丰满| 亚洲片人在线观看| 免费一级毛片在线播放高清视频| 一区二区三区免费毛片| 亚洲乱码一区二区免费版| 国产色婷婷99| 女人十人毛片免费观看3o分钟| 91字幕亚洲| 国产综合懂色| 日日干狠狠操夜夜爽| 亚洲 国产 在线| 精品久久久久久久久久久久久| 亚洲av一区综合| 国产午夜福利久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 天堂√8在线中文| 亚洲经典国产精华液单 | 亚洲精品亚洲一区二区| 老女人水多毛片| 国产精品女同一区二区软件 | 国产一区二区在线av高清观看| 又黄又爽又免费观看的视频| 在线免费观看不下载黄p国产 | 亚洲最大成人手机在线| 最新中文字幕久久久久| 亚洲午夜理论影院| 一本一本综合久久| 色噜噜av男人的天堂激情|