• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chem ical Bond ing and In terp retation of Tim e-Dependen t Elec tronic Processes w ith Maxim um Probability Dom ains

    2018-05-25 00:57:35SAVINAndreas
    物理化學(xué)學(xué)報 2018年5期

    SAVIN Andreas

    Laboratoire de Chim ie Théorique,CNRS,and Sorbonne Université,UPMC Univ Paris 06,4 place Jussieu,F 75252 Paris cedex 05,France.

    1 Introduction

    Many tools have been developed to describe chem ical bonding using quantum mechanics.But chemical bonding changes during structuralmodificationsof themolecules.Does assigning spatial domains to electron pairs(the Lew is perspective)survive in time-dependent processes?Usual chemical routineuses curved arrows,suggesting that this is the case.Quantum chemical calculations performed along the reaction path tend to confi rm it.But is this adiabatic picture correct?

    This paper uses a simple model,of two independent particles of the same spin,in a one-dimensional box.(As the formation of the Lew is pairs is mainly due to the Pauli principle,and only independent particles are discussed in this paper,the treatmentof two electrons of the same spin is easily transposed to the treatmentof two electron pairs.)Atstart,each of the the particles is confined to a half-box.Thewallbetween boxes becomes transparentw ith time,allow ing the particle to pass from one half-box to the other.A fter some time,τ,the wall completely disappears.

    Using a “reasonable” definition,one can attribute a spatial domain to one of the electrons,the other one being in the remaining space available.This evidently workswhen thewall is impenetrable.One may naively believe that making the separation wall vanish does not qualitatively change the situation,that the Pauli principle forces the two electron pairs to remain as such,whether they are separated by awall,or not.However,aswe consider amodel for a chem ical reaction,we should look at the influence of time on the electron localization domain,and whether it aあects our perception of electron localization.

    The timeevolution is computed using

    (1)theadiabatic approximation,validwhen the Ham iltonian changes very slow ly w ith time,

    (2)the sudden approximation,valid when the change of the Hamiltonian is fast,

    (3)an explicit solution of the time-dependent Schr?dinger equation,for a finite basis set,and given parameters of the system.

    For amore precise definition of“slow”and “fast”,see,e.g.1,Section XVII.

    The calculations below show that w ith the last two approaches,for certain time intervals,electrons are not essentially confined to the half-boxes,in contrast to a Lew is-like concept.One can find thatone electron(or electron pair)is located in the center of the box,while the other is delocalized over the remaining leftand rightparts.

    The simplicity of themodel allows presenting the detailed structure of the wave function.Pictures are presented using other interpretative tools that can also be used for more complicated systems(localized orbitals,the density,and its second derivative,the electron localization function,and the maximum probability domains).It is concluded that the latter method is preferable to describe time-dependent processes,although one should keep inm ind that the present calculations are far from being representative for realsystems.

    Fig.1 One-particleeigenfunctionsof the stationary Schr?dinger equation for a particle in a box w ith an opaquewall;symmetric solutions u+,for n=1(top),for n=2(center),for diあerent valuesof theopacity param eter a,and antisymm etric solutions u?(bottom),for n=1,2.

    2 System

    2.1 Ham iltonian

    A one-dimensionalbox stretching from?L to L isseparated at x=0 by an opaquewall(see,e.g.2,problems19,20).The potential isgiven by:

    and is infinite outside this interval.The parameter a defines the “opacity” of the wall.For a=0 there is no separation between the two half-boxes(corresponding to x<0,and x>0,respectively).For a=∞there is no communication between them:the wall at x=0 is impenetrable,and each electron is confined to itshalf-box.In thispaperweconsiderthattheopacity parameter a can changew ith time,t.To simplify notation,L is dropped when equal to 1.

    2.2 Stationary so lutions

    The solution of the stationary Schr?dinger equation for this potentialisanalytically known.By thesymmetry of thepotential v(x),there are two typesof solutions,

    The antisymmetric solutions have a node at x=0,and are thus notaあected by the term aδ(x)appearing in v(x),Eq.(1).The explicit formsof u±are given in Appendix A.Fig.1 shows u+(n=1,x,a),and u+(n=2,x,a)for diあerent values of the parameter a,aswell as u?for n=1,2.Please notice the notch in u+produced by aδ(x)becom ingmore pronounced as a increases(atgiven n).

    2.3 A trip let non-in terac ting tw o partic le system

    Themodel system studied in this paper consists of two noninteracting ferm ions,in a triplet state.In fact,it stands for a system for two non-interacting electron pairs in a singletstate.Having another two electronsw ith opposite spin changes little to theproblem,as theanti-symmetrization needs to bedoneonly among particles of the same spin.The properties of this noninteracting system can be computed from awave function that is a product of two identical two-by-two Slater determ inants,one for each spin(see,e.g.3).It is thus suきcient to analyze only one of them,the properties of the four-electron system beingunderstood easily from thoseof thesame-spin twoelectron system.For example,ifwe have the density of the system w ith two spin-up electronsin the tripletstate,we justhave tomultiply itby two to obtain thatof the four-electron system.

    The repulsion between electronshasbeen neglected because the formation of electron pairs isnotdue to electron repulsion.The intuition of Lew iswas that Coulomb’s law is not valid at shortdistances,and that“each pairofelectronshasa tendency to be drawn together”4.Although theexplanation given by Lew is is not correct,such an eあect is seen inmean-fieldmodels like Hartree-Fock;localized orbitalsw ith diあerentspin are pairw ise identical in the spatial part.It is the Pauli principle that keeps the electronsw ith same spin apart,and it actswhether or not they interact.Opposite spin electronscan share the same spatial domain,and can form thepairsdescribed by Lew is.In fact,many of the tools used to analyze the chem icalbond only exploit the Pauliprinciple.

    Another reason not to introduce repulsion in the present calculations is that there is not a clear way how repulsion should be treated in one dimension.The Coulomb interaction in one dimension,1/|x1?x2|producesa severe singularity at x1=x2,and the volume elementdoesnotmake itvanish,as it does in three dimensions.Softened Coulomb repulsion has to be used(see,e.g.5).Physically,this is easy to understand:electrons can better avoid each other in three dimensions than in one dimension.

    2.4 Analogies

    In order to see a connection to chemistry,we can imagine someanalogue.Forexample,one could consider two Heatoms getting closer.From the Lew is pairing perspective,nothing interesting can be expected:even for He2,the electron pairs stay on each of the atoms.

    In analogy to amolecule formation in time,we startw ith the particles separated by an infinitewall,a=∞(or,w ith a very large value).As time evolves the opacity parameter a goes to zero so that the particles finally do notsee awallat x=0,and canmove freely in thewhole box,from?L to L.

    3 Too ls to analyze the electron d istribution

    Therearemany tools to analyze theelectronic structure.Just a few areused below,and arenow shortly described.

    3.1 Wave func tion

    Onecananalyzethewave function.Ingeneral,ithasatoohigh dimension.For our example,it is only in two dimensions(the coordinate of each of the particles),and can be easily plotted.

    In order to avoid the dimensionality problem,Artmann6proposed to locate themaxima of thewave function.This is a very appealing proposal,welladapted tomethod like Quantum Monte Carlo7.Ithas the disadvantage that thewave function can presentseveralmaxima,and onehas to chooseamong them.This can be avoided inmany practical situationsby choosing a domain around them8.

    3.2 Maxim um p robability dom ains

    Oneway to definea spatialdomain is to consider theone that maxim izes the probability to have a given number of particles,ν,in it9,the “maximum probability domains”(MPDs).In our example,we search fora domain?,such that the probability tofind one(and only one)particlein it

    ismaximal.?means that the integration is performed only over?thatmay,butmust not be spatially disconnected;the prefactor N,the numberof particles in the system,is due to the indistinguishably ofelectrons.

    3.3 Density

    A simple three-dimensional quantity is the electron density,ρ,

    Itsanalysisand use hasbeenmuch promoted by Bader10.The particle density should not be confused with a probability densZi t y,as

    This integral over the density gives the average number of particles in?.

    3.4 Second density derivative

    Themaxima of??2ρa(bǔ)re used to indicate where electron pairs localize(see,e.g.10,Section 7.1.4).Here,asoursystem is in one dimension,?isused.

    3.5 Elec tron localization func tion

    Another popular quantity to detect the Lew is pairs is the electron localization function(ELF)11.It isa function defined in each pointofspace,takig valuesbetween0 and 1.For regions where electrons localize,the values of ELF should be large.It has been generalized to time-dependent processes,TDELF12.In this paper,we use a formula that ismodified for particles in one dimension.The explicit expression of ELF is given in the Appendix B.

    As we deal w ith independent particles,we do not have to worry aboutgeneralizations of ELF forwave functions beyond a single Slater determ inant.

    3.6 Localized orbitals

    Localizedorbitalsprovideasimpleinterpretation tool,andare also beused below.Forexample,for thestationary lowestenergy solution,the localized orbitalsare just the linear combination of thetwo lowestenergy canonicalorbitalswith diあerentsymmetry,[u+(n=1,x,a)±u?(n=1,x,a)]/2.Inversion,x→?x,transformsone localized orbital into the other.

    4 Resu lts

    4.1 Ham iltonian changes s low ly w ith tim e

    Letus fi rstconsider systemswhere the Ham iltonian changes slow ly w ith time.In this case,one can simply use the solutions of the stationary Schr?dinger equation,ateachmoment t.This is themostw idely used treatment.For example,one solves the Schr?dinger equation on points on the reaction path,and uses oneof thebonding interpretation toolsavailable.

    Corresponding to thisimage,itissuきcientto presentpictures obtained for diあerentvalues of the opacity parameter a.To get an order-of-magnitude idea of how a changes w ith time,see Appendix C.

    As expected,our system turns out to be uninteresting.All themethodsmentioned above give the same result that can be summarized as “one electron in each of the half-boxes”,atall times.Of course,this statement is strictwhen a=∞,and is only qualitatively validwhen a is finite.Fig.2 showsthatonly the extreme cases,when there isan impenetrablewallseparating the half-boxes(a=∞),and when there is no separation(a=0).A discussion of this figure follows,in order to prepare that of the follow ing section,when a new situation showsup.

    Thewave function,for a=∞,isstrictly localized in each of the half-boxes(it is zero when x1is in one half-box,and x2in theother).When thewallis removed,thewave function slightly extendsover the otherhalf-box(Fig.2a).

    In accordancew ith it,the perfectly localized orbitals for a=∞,slightly delocalize,even for a down to 0(Fig.2b).

    The density shows two peaks,each centered in a half-box;?ρ(x)hasalso suchmaxima(Fig.2c and Fig.2d).

    ELF takes the maximal value(=1)when the half-boxes are separated,and each of the electrons is localized in one of them(Fig.2e).When a=0,ELF decreases,but only in the wall region,show ing again the localization of particles in the half-boxes.

    Fig.2f shows the probability of finding one electron between x.When the spatial region x∈(x<,x>),is chosen tomaxim ize the probability tofind one,and only one particle in it,two solutions are found:x<=?L,x>=0,and x<=0,x>=L.A maximum probability domain is thus either the segment corresponding to the left,or that corresponding to the righthalf-box.

    Fig.2 Slow changeof the Ham iltonian w ith time.From top to bottom:a)absolute valueof thewave function squared,as function of the coordinatesof the particles,x 1,x 2,b)localizedmolecular orbitals,c)density,d)m inus the second derivativeof the density,e)theelectron localization function,f)the probability tofind one,and only oneelectron between x;left:impenetrab lewall(a=∞),right:wallhasvanished(a=0).

    Fig.3 Absolute valueof thewave function squared,for a sudden changeof the Ham iltonian asa function of the coordinatesof the particles,x 1,x 2.The tim eafter the changeof the Ham iltonian is given in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    4.2 Sudden change of the Ham iltonian

    4.2.1 Mathematicaldescription

    Weconsidernow theoppositeextreme,when themodification in time occurs w ith a jump,from the Hamiltonian w ith a=∞ to that w ith a=0.We recall that all the u?states are unaあected by theperturbation(thatispresentonly atthenodeof these functions).After the Hamiltonian has changed,u+(n=1,x,a=∞,L)is not the ground state anymore.We expand the initial state,u+(n=1,x,a=∞,L)on the final states,u+(k,x,a=0,L),

    This expression shows how excited states of the stationary Schr?dinger equation for the final Hamiltonian participate to thewave function?+.

    4.2.2 Wave function

    Theevolution of the squareof the two-particlewave function w ith time ispresented in Fig.3.The starting point(t=0)is that shown for a=∞in Fig.2.At the very beginning of the process each of the particle remains highly localized in its half-box.However,the particles “realize” that they havemore space at theirdisposal,and starttoexpand(t=0.16).A broadmaximum appears later(t=0.24),and its nature is understood a short time later(t=0.28).Thewave function hasmaximaat x1=0,x2≈0.5,etc.:while one of the particles is in the center of the box,the other particle can be in eitherof the half boxes.This is followed,by another broad maximum(t=0.32),followed by again a situation as for t=0.28,etc.,until the particles retract to the initialhalf-boxes,and the processstartsagain.

    Fig.4 Absolute valueof the squareof the localized orbitals,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.5 Density,ρ,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.6 ?ρ,for a sudden changeof the Ham iltonian.The tim e after the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    4.2.3 Localized orbitals

    Localized orbitals for this process are shown in Fig.4.The orbitalsdelocalizeinto theotherhalf-box(t=0.24).During this process the orbitals getvery close to each other(t=0.28,t=0.32),before reversing themovement,going back to theoriginal half-box,and restarting the cycle.It isworth to remark that in the“unconventional”,intermediatestep(t≈ 0.3),the centroids of chargesof the two localized orbitals getmuch closer than at the start:the localization is only poorly realized.Wew ill later comeback to thispoint.

    4.2.4 Density

    The change of the density compresseswhat has been seen above,and some information can be lost,cf.Fig.5.At t=0.16 the density presents two importantpeaks,as could be expected,but a new smallmaximum shows up in between.The latter rem inds of the so-called “non-nuclear attractors” that are associated tometallic systems(see,e.g.10,Section E2.1.1).At t=0.24,in accordancew ith the broadmaximum in thewave function,there is a broad maximum in the density.At later times(t=0.28,0.32),the density hasa centralmaximum,and shoulders appear instead of the outer maxima.Plots of the density are notexpected to show such features in the stationary case.

    4.2.5 “Lap lacian”of the density

    Instead of the Laplacian of the densitywe consideragain,as suited to theone-dimensionalproblem,?.The problems in interpreting the density getmagnified,cf.Fig.6.For example,the smallmaximum in the density at t=0.16 gets sim ilar importance to theother two.At t=0.24 the diあerencebetween maxima fades.At t=0.32,four maxima show up.Should one relate them to the two maxima in each of the localized orbitals?Asw ith the density,one can speculateabouttheorigin of thesemaxima,once we havemore information,but can we interpret?ρ w ithout having it?The problem of having too manymaxima rem indsofoneknown for the CC bond in ethane,see,e.g.10,Section3.2.4).There,although there is justonebond and onewould expecta singlemaximum,the Laplacian of the density shows twomaxima.

    4.2.6 Electron localization function

    Theelectron localization functionbringsin information thatis consistentw ith the information theψ(x1,x2)gives.Thegraphs show more clearly what is happening than ?ρ,as for all t shown,atmost threemaxima show up(see,Fig.7).One is very weak at t=0.16,is weakly distinguishable from the others at t=0.24,while three clearmaxima show up clearly at t=0.28,0.32.However,as for?ρ,it ishard to guesswhat three maximamean,when only two electrons are present,because ELF is used to attribute a domain to each of the electrons(or electron pairs).Know ing that one electron is delocalized over two spatial regions solves the problem.However,one should know that the two basins(on the left,and on the right)have to be grouped together.One could integrate the density over these regions(thesebasins),and get≈3/4 electronsin it.Oneshould note,however,that,oscillations occur(see below),and some further criteria to unify the new ly appeared basinsare needed.

    4.2.7 Maximum probability domain

    Forinterpretation reasons,themaximum probability domains seem tohave thesimpleststructure.Fig.8 showstheprobabilities tofind one electron between x.In these pictureswe search for the pairs xthatcorrespond to themaximum probability.The segment(x<,x>)is a domain for which the probability tofind one and only one electron ismaximal.If only one electron is in this segment,the other one has to be in the remaining region between?L and L.Of course,when x/=?L,the latter is disconnected;it is the union of(?L,x<)and(x>,L).

    Fig.7 Electron localization function,η,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian is given in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.8 Probability tofind one,and only oneelectron between x,for a sudden changeof the Ham iltonian.The tim eafter the changeof the Ham iltonian isgiven in atom ic units(1 a.u.≈24 attoseconds),for L=1.

    Fig.9 Tim e-dependent orbitalssquared,reduced to the n=1,2components,at tim es t=0,T,...(upper panels),and t=T/2,3T/2,...(lower panels);left for symm etry-adapted orbitals(full lines:u+,dashed lines:u?),right for localized orbitals;sam e scale in allpanels.

    At t= 0.16,the two half-boxes are the maximum probability domains.However,at t=0.24,a diあerence to the adiabatic picture is clear.Forany fixed x

    4.2.8 Physical interpretation

    Eq.(2)is valid when the change of the Hamiltonian is sofast that the wave function does not have the time to change.After the change,the wave function?evolvesw ith time,and to 98 percent is amixture of the u+(n=1,a=0,x)and u+(n=2,a=0,x)states(Rabioscillationsare produced):

    where uk=u+(n=k,x,a=0),ΔE= π2is the diあerence between the energies of the n=2 and n=1 states,c1=8/(3π),c2=8/(5π).Theextreme casesoccurwhen the cosine function equals plus or m inus one,i.e.,at t=jT and t=(j+1/2)T where j isan integernumber,T=2π/ΔE=2/π.

    Fig.9 shows the squares of the orbitals for times equal to even or for odd numbersof T/2.One notices thatat t=0,the occupied canonical orbitals squared are similar.The diあerence between them comesmainly from the sign in one of the halfboxes.This allows an almost perfect localization by linearly combining the canonicalorbitals.In contrast to it,at t=T/2,the symmetric orbital iswell localized at the center of the box,while theantisymmetricone,u?,isunchanged.The localization obtainedby linearly combining thecanonicalorbitalsispoor:the centroids of the orbitals are close,the delocalization is strong.The total wave functionψ(x1,x2,t=T/2)is given by the Slater determ inant built from ?+and u?.It hasmaxima for x1=0,and x2= ±0.5.ψis not shown,as it resembles the one of Fig.3.One can understand it by noticing that u?=0 where?+has amaximum,and?+almostvanisheswhere u?hasextrema.Thepictureproduced by the canonicalorbitals(one strongly localized orbital,and one delocalized orbital)is closer to theoneobtained by looking directly to the totalwave function than theone produced by the two poorly localized orbitals.

    The maximum probability domains do not start from an orbital“prejudice”,but analyze the total wave function.A fter the separating wall has vanished,for certain intervals of time,there is a maximum probability domain around the position where thewallhas been.A lso,by perm itting the spatial region to be spatially disconnected,they allow for the description of the quantum phenomenon that a particle can be found in two diあerentdisconnected domains.

    4.2.9 Comparison to stationary states

    The bestdescription of the chem icalbond is notnecessarily given by a single localized solution even when considering the time-independent case.The simplest example is themolecule,where a localized solution does not exist.Onemay have a localized picture by using resonance structures.In the case of,one can describe itas H...H+?H+...H.For the system considered in this paper,one can imagine the state at t=T/2 as

    where?denotes an unoccupied site.One electron stays at the center,while the other can be either in the left,or in the right half-box.(Of course,as stated before,the single electron↑c(diǎn)an be replaced by apair↑↓.The leftor right locationof theelectron pair rem indsof the ionic resonantstateofH2,or thecharge-shift(resonating)bond13.)

    Another example is given by particles in a ring,ormetals,where the localization is not considered to give the best description.Let us assume that for particles in a ring we have found some region,defined by the points x,such that the probability tofindνparticles reaches a maximum.Displacing both points by some constantvalueκdefines a new region.By translational invariance,the probability tofindν particles in it is independentofκ.Of course,changing justone of x<,or x>lowers the probability.Thisbehavior isanalogous to what is seen in Fig.8,t=0.24:pairs of xfor which there is practically no change in the probability.

    Onemore example isgiven by atom ic shells.A lthough,e.g.,in an atom like Ne thereare fourelectron pairs,due to spherical symmetry a spatial region defining an electron pair can be oriented in any direction:there are infinitely many equivalent“pair domains”.In this case,we consider atom ic shells,and only destroying the symmetry fixes the orientation of the pairs.

    Itisworth to stress thatin the time-dependentcase discussed in this paper,it is not the symmetry that produces equivalent solutions,but them ixingw ith excited eigenstates thatgenerates diあerent localization patterns.

    Interestingly,Lew is4had the intuition of the failure of taking hismodel rigidly.Although desiring to explain polarity,and not the quantum eあects discussed here,he w rites about“tautomerism,where two ormore forms of themolecule pass readily into one another and exist together in a condition of mobileequilibrium”.

    4.2.10 Period of the cycle

    For L=1,the symmetric orbital?+changesw ith a period T≈0.64 atom ic units,or≈15 attoseconds.Thismainly due to the separation between the two lowest energy levels,E(n=1,a=0),and E(n=2,a=0),of the symmetric states u+.As E(k,a=0,L)=E(k,a=0,L=1)/L2,the time evolution for L /= 1 is easily recovered via the transformation t → tL2.The diあerence between E(n=2,a=0)and E(n=1,a=0)thatdeterm ines the period of the oscillations,is unrealistically large for L=1(≈10 hartree).This can be corrected by choosing a larger box.For example,by choosing L=10,it is brought down to≈0.1 hartree,or≈ 3 eV.This way,the period of the cycle is of 1.5 fem toseconds.

    4.2.11 Spatialoscillations

    Up to now,an important technical detail was hidden from the discussion,viz.,the number of functions u+(k,x,a=0)used in Eq.(2).As the process analyzed above is determined mainly by the two lowest energy symmetric states,the figures were produced by limiting the sum to k≤5.We can analyze the eあect of increasing the number of functions,e.g.,up to k=10.ELF,and evenmore importantly??2xρemphasize the rapid oscillations produced by adding these higher frequency components.These rapid oscillations producemany maxima,and this makes any analysis based on counting the maxima useless.However,almostno eあect is seen on the probabilities.This can be understood by the need of taking derivatives for obtaining ??2xρ ,while integration used for generating the probabilitieshasa smoothing eあect.

    4.3 Exp licit so lu tion of the tim e-dependen t Sch r?dinger equation

    4.3.1 Mathematicaldescription

    Up to now,we have obtained results in two lim iting cases.Wewould like to know whether the sudden approximationmay be relevant.For this,letusconsiderexpand the time-dependent,spatially symmetricwave function as

    After substitution ofφ+into the time-dependent Schr?dinger equation,and projection onχm(x),wehave

    where the dot above the letter represents the derivative w ith respect to t.

    Detailson solving thisequation aregiven in Appendix D.

    In contrast to the treatmentbefore,we cannotstartat t=∞,because we would need infinite time tofollow the evolution.Furthermore,wehave to decideabouthow theopacity parameter a changesw ith time.a is uniform ly sw itched oあfrom a large value,inτ≈10 fem toseconds.For t>τ,theHamiltoniandoes notchangew ith timeanymore,but thewave function continues toevolveaccording to theSchr?dingerequation,havingasinitial wave function φ+(τ,x).Detailson thechoiceof theparameters can be found in Appendix C.

    4.3.2 Probability evolution

    If the change of the opacity parameter a w ith timewere very slow,one would see essentially the same images as in Fig.2.However,for the choice of the parameters just described,the results look sim ilar to thosegiven for thesudden approximation.It is thusnotnecessary to show and analyze in detail the results again.The calculation has only shown that the regime of the sudden approximation isnotunrealistic.

    Nevertheless,we discuss how the probabilities evolve w ith time(see Fig.10).One of the curves corresponds to the probability of finding one electron in a half-box.The other,to that of finding one electron in the center(equal to that of finding one electron in the disconnected domain thatexcludes this central region).In Fig.10,when follow ing the evolution in the central region,x<= ?x>was arbitrarily set to a time-independent constant.The optimization of x<,x>increases the probability,andmovesup the curve in the figure.

    Although the probability tofind a centralMPD is not large at themomentτ,when the Hamiltonian hasarrived at the final form,one notices that the probabilities continues to change in time,w ith periods of≈ 64 a.u.(≈ 1.5 fem toseconds).Furthermore,the variation w ith time is important.For≈1/6 of the cycle,around the the probability of finding one electron in the central region is larger than that of finding one in a half-box.The duration where the two probabilities are comparable isevenmore important.

    Fig.10 Probability tofind one,and only oneelectron in a half-box(between x<=0 and x>=L),dashed curve,and that for x<=0.3L and x>=0.3L(full curve),asa function of tim e after the Ham iltonian stopped changing(given in atom ic units,1 a.u.≈24 attoseconds;for L=10,and the thewallm ade transparent inτ≈10 fem toseconds).

    5 Perspectives

    The example of two electronsw ith the same spin shows that when the Ham iltonian changes electron localizationmay look,for certain time intervals,qualitatively diあerent from what the adiabatic picture presents.In our example,the latter follows that of Lew is,while time dependence brings in quantum delocalization eあects.It gives a significant probability of finding an electron in two spatially disconnected regions.

    An analogue to the spatially disconnected regions exists for thewave function solving the stationary Schr?dinger equation,e.g.,when resonant structures are needed to describe the bonding.It can be speculated that phenomena like this play a role,e.g.,in charge transfer,in transport properties,also in nano and biologicalsystems.

    One should not forget that two particles in a box w ith an opaquewall do not represent reality,and thatno choice of the parameters of themodel can compensate for it.However,the simplicity of themodelallows us to look at thewave function,and understand betterhow well,orhow badly,the interpretation toolswork.Thus,the paper has only two objectives,namely to encourage

    ?the study of time-dependent processes,as they disclose unexpected situations for chemicalbond description,and

    ?theuseof themaximum probability domains thatseem well suited for such time-dependentprocesses.

    We finallymention that latter isclose towhatisalready used in time-dependentcontext,see,e.g.14,and that lim itationsof ELF in time-dependentcaseshasalso been noted before5.

    6 Ded ication

    Thispaper is dedicated to DebashisMukherjee,who reached his seventies birthday.During themany years of our friendship wespenta long timeindiscussionsonvarioussubjects,including thatof the presentpaper.

    Append ix

    A So lu tions of the stationary Sch r?dinger equation fo r a partic le in a box w ith an opaque wall

    As given in Ref.2(problems 19,20),the expressions of the one-particle wave functions,solutions of the stationary Schr?dinger equation w ith potential v(x)given in Eq.(1),are given by

    where k(n,a,L)is the solution of

    k(n,a,L)cot[k(n,a,L)L]=?a

    lying between(n ? 1/2)π/L and nπ/L.The normalization constant is

    Fig.11 Eigenvaluesof the stationary Schr?dinger equation for a particle in a box w ith awallhaving an opacity increasingw ith a;for n=1,2;those corresponding to the symmetric eigen functions u+are shown w ith fu ll lines;thoseof theantisymm etric eigen functions u?do not depend on a and are shown as horizontaldashed lines.

    B The exp ression of the elec tron localization func tion for a sing le Slater determ inant

    Aswe are discussing one-dimensional systems,the formula of ELF is slightly diあerent from thatgenerally used.A lso,we consider the fully polarized systems,while usually the closed-shell formula is given.We follow the initial choice of the interpretation of ELF11,viz.related to the curvature of the Ferm i hole.It also includes the current contribution15,as needed when orbitals are complex,as is the case in time-dependent theory12.For a single Slater determ inant,the explicitexpression of ELF is

    C Connec ting the opacity param eter a w ith tim e

    In order to associate time to the opacity parameter a,letus fi rstdefine the rangeof theopacity parameter,a,takes.Wewant to reach afinal=0 starting from a large ainitial=a(t=0)in a timeτ.Forsimplicity,weassumea lineardependenceon time

    We can define a constantυ=˙a(t)=ainitial/τ.We see that ainitial= ∞is not an acceptable choice if we wantτto be finite.We now choose ainitialsuch that the particles in the two half-boxesare just in contact,i.e.,the density isof the order of 0.001 atomic units.Thisvaluewas taken to delimit the shapeof themolecules(cf.10,Section 1.1).For a size of the box given by L=10 bohr,chosen to give a reasonable fi rstexcited state,thisgives ainitial≈40 atomic units.

    We have the freedom to chooseτ.For Fig.10,υ =0.1,i.e.,τ=400 atomic units≈ 10 fem toseconds.

    D So lving the tim e-dependen t Sch r?d inger equation

    In order to solve Eq.(5)abasishas to be chosen.Thebasis is given by the functions

    that correspond to the symmetric eigenfunctions u+at a=0.Thesystem ofdiあerentialequationswassolved numericallyw ith Mathematica16.

    Theexpansion in a fixed basis iscomplicated by the presence of the time-dependent cusp in u+(x=0),as shown in Fig.1.However,thisdoesnotseem toaあectthediscussionof theresults.

    Re ferences

    (1) Messiah,A.Quantum Mechanics;North Holland Publishing Company:Amsterdam,The Netherlands,1967.

    (2) Flügge,S.PracticalQuantum Mechanics;Springer:Berlin,Germany,1999;p.14.

    (3) W igner,E.Phys.Rev.1934,46,1002.doi:10.1103/PhysRev.46.1002

    (4) Lewis,G.N.J.Am.Chem.Soc.1916,38,762.doi:10.1021/ja02261a002

    (5) Durrant,T.R.;Hodgson,M.J.P.;Ramsden,J.D.;Godby,R.W.arXiv 2015,1505.07687.

    (6) Artmann,K.Z.Naturforschg.1946,1,426.

    (7) Scemama,A.;Caあarel,M.;Savin,A.J.Comput.Chem.2007,28,442.doi:10.1002/jcc.20526

    (8) Lüchow,A.;Petz,R.J.Comput.Chem.2011,32,2619.doi:10.1002/jcc.21841

    (9) Savin,A.ReviewsofModern Quantum Chemistry:ACelebration of the ContributionsofRobertG.Parr;Sen,K.D.Ed.;World Scientific:Singapore,2002;p.43.

    (10) Bader,R.F.W.AtomsinMolecules:AQuantum Theory;Oxford University Press:Oxford,UK,1990.

    (11) Becke,A.D.;Edgecombe,K.E.J.Chem.Phys.1990,92,5397.doi:10.1063/1.458517

    (12) Burnus,T.;Marques,M.A.L.;Gross,E.K.U.Phys.Rev.A 2005,71,010501.doi:10.1103/PhysRevA.71.010501

    (13) Sini,G.;Maitre,P.;Hiberty,P.C.;Shaik,S.S.J.Mol.Struct.THEOCHEM 1991,229,163.

    (14) Petersilka,M.;Gross,E.Laser Physics1999,9,1.

    (15) Dobson,J.F.J.Chem.Phys.1993,98,8870.doi:10.1063/1.464444

    (16) Wolfram,S.Mathematica Edition,Version 11.1;Wolfram Research,Inc.:Champaign,Illinois,USA,2017.

    丁香欧美五月| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩另类电影网站| av电影中文网址| 啦啦啦在线免费观看视频4| 久久这里只有精品19| 99精品久久久久人妻精品| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久人人人人人| 亚洲午夜精品一区,二区,三区| 搡老熟女国产l中国老女人| 搡老熟女国产l中国老女人| 欧美日韩国产mv在线观看视频| 精品一区二区三区av网在线观看| 黑人猛操日本美女一级片| 成熟少妇高潮喷水视频| 女警被强在线播放| 很黄的视频免费| 久久这里只有精品19| 首页视频小说图片口味搜索| 免费不卡黄色视频| 在线av久久热| 成人国语在线视频| 欧美中文日本在线观看视频| 校园春色视频在线观看| 久久精品国产99精品国产亚洲性色 | 欧美日韩亚洲国产一区二区在线观看| x7x7x7水蜜桃| 在线av久久热| 法律面前人人平等表现在哪些方面| 男女高潮啪啪啪动态图| 久久午夜综合久久蜜桃| 一级毛片女人18水好多| 麻豆一二三区av精品| 久久 成人 亚洲| 亚洲av片天天在线观看| 国产精品乱码一区二三区的特点 | 一本大道久久a久久精品| 不卡av一区二区三区| 色老头精品视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产视频一区二区在线看| 成年版毛片免费区| 久热爱精品视频在线9| 久热爱精品视频在线9| 亚洲成人免费电影在线观看| 亚洲熟女毛片儿| 日韩免费av在线播放| av天堂在线播放| 男女午夜视频在线观看| 一a级毛片在线观看| 丰满的人妻完整版| 久久天堂一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 啦啦啦 在线观看视频| 久久精品人人爽人人爽视色| 18禁美女被吸乳视频| 免费人成视频x8x8入口观看| 成人黄色视频免费在线看| 女警被强在线播放| 女人被狂操c到高潮| 欧美另类亚洲清纯唯美| 级片在线观看| 丁香六月欧美| 免费在线观看视频国产中文字幕亚洲| 9191精品国产免费久久| 成人永久免费在线观看视频| 国产精品国产高清国产av| 在线观看www视频免费| 免费在线观看影片大全网站| 波多野结衣高清无吗| 丁香欧美五月| 午夜免费观看网址| 日韩三级视频一区二区三区| 极品教师在线免费播放| 国产av精品麻豆| 69av精品久久久久久| 青草久久国产| 亚洲人成伊人成综合网2020| 成熟少妇高潮喷水视频| 国产精品一区二区免费欧美| 在线观看免费高清a一片| 在线十欧美十亚洲十日本专区| 黑人巨大精品欧美一区二区mp4| 纯流量卡能插随身wifi吗| 婷婷精品国产亚洲av在线| 男人舔女人下体高潮全视频| 亚洲精品美女久久久久99蜜臀| 大陆偷拍与自拍| 久久精品国产亚洲av高清一级| 一级,二级,三级黄色视频| 国产精品成人在线| 两性夫妻黄色片| 日本一区二区免费在线视频| 精品久久久久久电影网| 精品日产1卡2卡| 久久伊人香网站| 真人做人爱边吃奶动态| 中文字幕精品免费在线观看视频| 亚洲五月色婷婷综合| 大型黄色视频在线免费观看| 精品一区二区三卡| 一二三四社区在线视频社区8| 国产伦人伦偷精品视频| 国产黄色免费在线视频| 国产国语露脸激情在线看| 免费久久久久久久精品成人欧美视频| 级片在线观看| 亚洲欧美一区二区三区久久| 9热在线视频观看99| 少妇粗大呻吟视频| 国产精品久久久av美女十八| 亚洲第一av免费看| 欧美日本亚洲视频在线播放| 亚洲精品一二三| 淫秽高清视频在线观看| a级毛片在线看网站| 成人黄色视频免费在线看| 亚洲一区高清亚洲精品| 91老司机精品| 超碰成人久久| 身体一侧抽搐| 国产又色又爽无遮挡免费看| 亚洲精品粉嫩美女一区| 久久99一区二区三区| 一级片免费观看大全| 99在线视频只有这里精品首页| 久久久精品国产亚洲av高清涩受| 国产高清videossex| 精品卡一卡二卡四卡免费| 女同久久另类99精品国产91| 97碰自拍视频| 午夜福利一区二区在线看| 国产成人精品在线电影| 亚洲一区二区三区欧美精品| 国产国语露脸激情在线看| 免费av中文字幕在线| 韩国av一区二区三区四区| 一边摸一边做爽爽视频免费| 超碰97精品在线观看| 搡老岳熟女国产| 女性生殖器流出的白浆| 高清毛片免费观看视频网站 | 久久国产精品人妻蜜桃| 国产精品野战在线观看 | 久久中文字幕人妻熟女| 男人操女人黄网站| 亚洲精品国产一区二区精华液| 在线观看免费高清a一片| 免费日韩欧美在线观看| 国产无遮挡羞羞视频在线观看| 一级a爱片免费观看的视频| 亚洲av成人av| 最近最新中文字幕大全免费视频| 男人操女人黄网站| 老司机午夜福利在线观看视频| 丝袜美足系列| 丰满饥渴人妻一区二区三| 自线自在国产av| 欧美精品一区二区免费开放| 久久久久九九精品影院| 老司机午夜十八禁免费视频| 色婷婷av一区二区三区视频| 亚洲欧美日韩高清在线视频| 99国产精品一区二区三区| 老司机靠b影院| 80岁老熟妇乱子伦牲交| 免费观看人在逋| 午夜精品久久久久久毛片777| 午夜成年电影在线免费观看| 超碰成人久久| 人人妻,人人澡人人爽秒播| 亚洲成av片中文字幕在线观看| 久久久久久久久久久久大奶| 极品人妻少妇av视频| 久久久久久久久免费视频了| www日本在线高清视频| 97碰自拍视频| 91精品三级在线观看| 丝袜人妻中文字幕| 亚洲欧美精品综合久久99| 午夜福利影视在线免费观看| 女同久久另类99精品国产91| 色哟哟哟哟哟哟| 18禁国产床啪视频网站| 一个人观看的视频www高清免费观看 | 精品久久蜜臀av无| 精品卡一卡二卡四卡免费| 少妇粗大呻吟视频| 亚洲精品美女久久久久99蜜臀| 丝袜人妻中文字幕| 搡老乐熟女国产| 欧美日韩瑟瑟在线播放| 日本欧美视频一区| 精品免费久久久久久久清纯| 操美女的视频在线观看| 91精品国产国语对白视频| 亚洲精品在线美女| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人| 女人被狂操c到高潮| 国产亚洲精品一区二区www| 亚洲全国av大片| 天堂动漫精品| 大香蕉久久成人网| 搡老乐熟女国产| a级毛片黄视频| 国产又爽黄色视频| 免费高清在线观看日韩| 久久午夜亚洲精品久久| 亚洲精品国产色婷婷电影| 欧美人与性动交α欧美软件| 日韩精品青青久久久久久| 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 成人三级做爰电影| 91在线观看av| 一进一出抽搐gif免费好疼 | 中文字幕最新亚洲高清| 亚洲专区字幕在线| 久久婷婷成人综合色麻豆| 男女床上黄色一级片免费看| 亚洲五月婷婷丁香| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区mp4| 国产主播在线观看一区二区| 性色av乱码一区二区三区2| 免费不卡黄色视频| 美女福利国产在线| 男人舔女人的私密视频| 老汉色av国产亚洲站长工具| www.www免费av| 婷婷丁香在线五月| 9热在线视频观看99| 国产不卡一卡二| 日本a在线网址| 中文字幕色久视频| 成人精品一区二区免费| 伊人久久大香线蕉亚洲五| 欧美激情极品国产一区二区三区| 波多野结衣一区麻豆| 天堂网av新在线| 久久香蕉精品热| 免费av毛片视频| 色播亚洲综合网| 欧美日韩亚洲国产一区二区在线观看| 日日摸夜夜添夜夜添av毛片 | 99久久久亚洲精品蜜臀av| 天堂动漫精品| 午夜福利视频1000在线观看| 日韩欧美国产在线观看| 亚洲色图av天堂| 3wmmmm亚洲av在线观看| 一夜夜www| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 亚洲美女黄片视频| 美女xxoo啪啪120秒动态图 | 免费在线观看影片大全网站| 波多野结衣高清作品| 真人一进一出gif抽搐免费| 免费人成在线观看视频色| 久久精品91蜜桃| 欧美黄色片欧美黄色片| 18禁裸乳无遮挡免费网站照片| 日本在线视频免费播放| 亚洲经典国产精华液单 | 51国产日韩欧美| 麻豆一二三区av精品| 日韩免费av在线播放| 床上黄色一级片| 无人区码免费观看不卡| 国产精品野战在线观看| 每晚都被弄得嗷嗷叫到高潮| 成人特级av手机在线观看| 国产日本99.免费观看| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| 成人特级av手机在线观看| 俄罗斯特黄特色一大片| 国产日本99.免费观看| 成人永久免费在线观看视频| 久久国产乱子免费精品| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9| 国产乱人伦免费视频| 88av欧美| 国产真实乱freesex| 国产精品电影一区二区三区| 日韩人妻高清精品专区| 舔av片在线| 91麻豆av在线| 99视频精品全部免费 在线| 免费电影在线观看免费观看| 成年人黄色毛片网站| 国产av麻豆久久久久久久| 91字幕亚洲| 免费观看人在逋| 国产精品久久电影中文字幕| 网址你懂的国产日韩在线| 国产欧美日韩一区二区三| 日韩亚洲欧美综合| 免费av观看视频| 深夜a级毛片| 久久午夜福利片| 午夜精品一区二区三区免费看| 精品一区二区三区人妻视频| 久久国产乱子伦精品免费另类| 91久久精品国产一区二区成人| 在线播放国产精品三级| 国产亚洲精品久久久久久毛片| 国产私拍福利视频在线观看| 日韩有码中文字幕| 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 久久亚洲真实| 亚洲在线自拍视频| 日韩人妻高清精品专区| 国产精品爽爽va在线观看网站| 老司机午夜福利在线观看视频| 日本成人三级电影网站| 少妇的逼好多水| 老司机午夜十八禁免费视频| 看十八女毛片水多多多| 99热只有精品国产| 成人av在线播放网站| 亚洲无线观看免费| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久 | 午夜福利在线在线| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 国产高清视频在线播放一区| 极品教师在线免费播放| 校园春色视频在线观看| 身体一侧抽搐| 国产一区二区三区在线臀色熟女| 特大巨黑吊av在线直播| 午夜两性在线视频| 有码 亚洲区| 免费看日本二区| 久久精品91蜜桃| 国产一区二区三区在线臀色熟女| 亚洲精品456在线播放app | 小说图片视频综合网站| 琪琪午夜伦伦电影理论片6080| 欧美极品一区二区三区四区| 国内精品美女久久久久久| 国产精品日韩av在线免费观看| 美女高潮的动态| 全区人妻精品视频| 最近视频中文字幕2019在线8| 蜜桃亚洲精品一区二区三区| 动漫黄色视频在线观看| 女生性感内裤真人,穿戴方法视频| 免费在线观看亚洲国产| 国产黄片美女视频| www.999成人在线观看| 99久久精品国产亚洲精品| 亚洲,欧美,日韩| 88av欧美| 最新在线观看一区二区三区| 国产视频一区二区在线看| 成人特级av手机在线观看| 久久久久精品国产欧美久久久| 麻豆久久精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 亚洲国产精品久久男人天堂| 亚洲精品亚洲一区二区| 精品免费久久久久久久清纯| 淫妇啪啪啪对白视频| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| 免费人成在线观看视频色| 欧美在线黄色| 国产精品嫩草影院av在线观看 | 三级毛片av免费| 国产毛片a区久久久久| 国产高清视频在线观看网站| 免费看日本二区| 每晚都被弄得嗷嗷叫到高潮| 日日干狠狠操夜夜爽| 成人美女网站在线观看视频| 国产三级中文精品| 99久久无色码亚洲精品果冻| 啦啦啦观看免费观看视频高清| 亚洲精品日韩av片在线观看| 真人一进一出gif抽搐免费| 成人高潮视频无遮挡免费网站| 久久中文看片网| 国产亚洲欧美98| 亚洲 欧美 日韩 在线 免费| 在线观看美女被高潮喷水网站 | 黄色日韩在线| 久久久精品欧美日韩精品| 久久久久精品国产欧美久久久| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 久久久久久久久中文| 亚洲美女视频黄频| 99热6这里只有精品| 一级黄色大片毛片| 亚洲av电影在线进入| 亚洲第一电影网av| 最好的美女福利视频网| 性插视频无遮挡在线免费观看| 国产精品人妻久久久久久| 国产免费av片在线观看野外av| 国产亚洲欧美98| 国产免费一级a男人的天堂| 51午夜福利影视在线观看| 国产精品一区二区免费欧美| www日本黄色视频网| 国产人妻一区二区三区在| 国产精品野战在线观看| 国产蜜桃级精品一区二区三区| 在线看三级毛片| 三级国产精品欧美在线观看| 亚洲精华国产精华精| 国产aⅴ精品一区二区三区波| 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| 狂野欧美白嫩少妇大欣赏| 亚洲人成伊人成综合网2020| 欧美不卡视频在线免费观看| 久久久久久大精品| 国产综合懂色| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 天天一区二区日本电影三级| 色综合站精品国产| 亚洲第一电影网av| 精品人妻视频免费看| 一级作爱视频免费观看| h日本视频在线播放| 久久久精品欧美日韩精品| 亚洲三级黄色毛片| 黄色女人牲交| 亚洲第一欧美日韩一区二区三区| 成人毛片a级毛片在线播放| 亚洲精品影视一区二区三区av| 成人精品一区二区免费| 久久婷婷人人爽人人干人人爱| 亚洲人成伊人成综合网2020| 亚洲中文字幕一区二区三区有码在线看| 制服丝袜大香蕉在线| 中文字幕av在线有码专区| 天堂动漫精品| 内地一区二区视频在线| 亚洲av美国av| 长腿黑丝高跟| 亚洲av熟女| 国产淫片久久久久久久久 | 蜜桃亚洲精品一区二区三区| 色综合欧美亚洲国产小说| 国产精品一区二区免费欧美| 12—13女人毛片做爰片一| 国模一区二区三区四区视频| 在线播放无遮挡| 国产欧美日韩精品亚洲av| 一本精品99久久精品77| 欧美在线黄色| 亚洲人与动物交配视频| 午夜福利在线观看免费完整高清在 | 亚洲av.av天堂| 中出人妻视频一区二区| 国产三级中文精品| 一本一本综合久久| 九九在线视频观看精品| 日韩av在线大香蕉| 色5月婷婷丁香| 淫秽高清视频在线观看| 国产精品电影一区二区三区| 精品乱码久久久久久99久播| 亚洲人成网站在线播| 欧美日本亚洲视频在线播放| 亚洲人成电影免费在线| 午夜福利在线观看免费完整高清在 | 90打野战视频偷拍视频| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| 亚洲第一欧美日韩一区二区三区| av在线观看视频网站免费| 最近在线观看免费完整版| 在线观看免费视频日本深夜| 日韩av在线大香蕉| 亚洲一区二区三区不卡视频| 久久精品影院6| 天堂网av新在线| 亚洲综合色惰| 99久久成人亚洲精品观看| 日韩欧美精品v在线| xxxwww97欧美| 国产精品久久久久久亚洲av鲁大| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 波野结衣二区三区在线| 国产精品久久久久久人妻精品电影| 成人永久免费在线观看视频| 美女xxoo啪啪120秒动态图 | 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看| 精品午夜福利在线看| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 九色国产91popny在线| 免费av毛片视频| 精品久久久久久久久久久久久| 婷婷六月久久综合丁香| 在线播放国产精品三级| www.色视频.com| 欧美国产日韩亚洲一区| 国产主播在线观看一区二区| 日本三级黄在线观看| 久久精品久久久久久噜噜老黄 | 亚洲最大成人手机在线| 一级黄色大片毛片| 国产精品久久久久久人妻精品电影| 欧美不卡视频在线免费观看| 亚洲黑人精品在线| 国产黄片美女视频| 嫩草影院入口| 女同久久另类99精品国产91| 日本一二三区视频观看| 精品一区二区三区视频在线观看免费| 欧美乱妇无乱码| 人妻夜夜爽99麻豆av| 日韩有码中文字幕| 成人国产一区最新在线观看| 亚洲欧美激情综合另类| 国产野战对白在线观看| 免费在线观看成人毛片| av天堂在线播放| 欧美中文日本在线观看视频| 亚洲成人中文字幕在线播放| 老司机福利观看| 国产主播在线观看一区二区| 99久久成人亚洲精品观看| 亚洲激情在线av| 日韩欧美国产在线观看| 我的女老师完整版在线观看| 男女那种视频在线观看| 五月玫瑰六月丁香| 看免费av毛片| 色哟哟·www| 午夜免费男女啪啪视频观看 | h日本视频在线播放| 一边摸一边抽搐一进一小说| 在线a可以看的网站| 桃红色精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看| 1024手机看黄色片| 欧美一区二区精品小视频在线| 精品熟女少妇八av免费久了| 97碰自拍视频| 两人在一起打扑克的视频| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 欧美bdsm另类| 国内久久婷婷六月综合欲色啪| 在线免费观看的www视频| 真实男女啪啪啪动态图| 国产av不卡久久| 午夜日韩欧美国产| 免费大片18禁| 757午夜福利合集在线观看| 欧美黑人巨大hd| 亚洲精品一卡2卡三卡4卡5卡| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| a在线观看视频网站| 我的老师免费观看完整版| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 久久精品国产亚洲av香蕉五月| 成年女人永久免费观看视频| 午夜视频国产福利| 欧美性感艳星| 欧美日韩瑟瑟在线播放| 毛片一级片免费看久久久久 | 欧美潮喷喷水| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 男女视频在线观看网站免费| 99视频精品全部免费 在线| 男人和女人高潮做爰伦理| 嫩草影视91久久| 成年免费大片在线观看| av欧美777| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精华一区二区三区| 中文字幕av成人在线电影| 成人鲁丝片一二三区免费| 精品一区二区免费观看| 免费观看精品视频网站| a级毛片免费高清观看在线播放| 欧美乱色亚洲激情| 成人无遮挡网站| 老熟妇仑乱视频hdxx| 两人在一起打扑克的视频| 午夜福利欧美成人| 久久国产精品人妻蜜桃| 丰满乱子伦码专区| 亚洲一区二区三区不卡视频| 亚洲七黄色美女视频| 国产视频一区二区在线看| 精品人妻熟女av久视频| 成人三级黄色视频| 精品久久久久久久久久久久久|