• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Hirsh feld Partitioning w ith Orien ted and Prom o ted Proatom s

    2018-05-25 00:57:04HEIDARZADEHFarnazAYERSPaul
    物理化學(xué)學(xué)報 2018年5期

    HEIDAR-ZADEH Farnaz, AYERS Paul W.

    1 Department of Chem istry & Chem ical Biology; M cMaster University; Ham ilton, Ontario, L8P 4Z2, Canada.

    2 Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium.

    3 Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zw ijnaarde, Belgium.

    1 Motivation

    Within the conceptual density functional theory (conceptual DFT) framework, chemical reactivity indicators are commonly defined as the derivatives of the ground-state energy and the grand potential w ith respect to the number of electrons,chem ical potential and external potential1–6. These global, local and nonlocal functions measure the sensitivity of a molecule to electron transfer and electrostatic interactions7–14. However, to pinpoint the molecule’s preferred reactive site in an electrophilic or a nucleophilic attack, it is common to partition the (non)local indictors among the constituent atoms and define the corresponding condensed reactivity indicators15–27. As atoms-in-molecules are not uniquely defined w ithin quantum mechanics, this requires selecting a method to decompose a molecule into atomic subsystems by distributing either the molecular orbitals28–35or the molecular electron density36–41.Here, we are interested in generalizing the Hirshfeld partitioning approaches to utilize non-spherical reference proatom densities.

    In 1977, Hirshfeld proposed an approach for identifying atoms in a molecule based on the stockholder perspective40.Specifically, given the spherically-averaged densities of the isolated neutral reference atoms,, let the density of an atom in a molecule, ρA(r), be determ ined by the fraction of the molecular electron density, ρmol(r), that was “invested” by that reference atom, defined intuitively as

    The density of the atom in a molecule (AIM) is then

    and obviously the sum of the AIM densities is the molecular density, guaranteeing an exhaustive partitioning,

    The reference-atom densities in Eq.(1) are commonly referred to as the proatom densities, and their sum is called the promolecular density,

    While Hirshfeld presented the partitioning in Eq.(1) as a heuristic, Nalewajski and Parr provided a mathematical interpretation for it42–44. Their motivation was to define AIM to be as close as possible to isolated neutral atoms, and to maxim ize that closeness by m inim izing the Kullback-Leibler divergence between the density of AIM and the reference atoms,subject to the constraint in Eq.(3). The result of the Nalewajski-Parr variational formulation,

    is the Hirshfeld AIM density, Eqs.(1)–(2). Once one realizes that the Hirshfeld partitioning tries to maxim ize the sim ilarity between the AIM densities and those of the neutral reference atoms in an information-theoretic sense, it is not surprising that Hirshfeld partitioning tends to systematically underestimate the magnitude of AIM charges (relative to other approaches like electrostatic potential fitting and natural population analysis)45.

    To “improve” the Hirshfeld partitioning, one can use a different method to measure the dissim ilarity between the AIM density and the proatom density or one can use a different definition for the proatom46. Both techniques have been explored in the literature. There is a very broad class of dissim ilarity measures that retain the partitioning in Eq.(1)47–52,but the Kullback-Leibler divergence in particular has appealing mathematical properties53,54. It seems most effective, then, to change the definition of the proatom density. There are many attempts to do this in the literature, most (but not all55) of which are restricted to the spherically-symmetric proatom densities53,56–67.

    To understand why aspherical proatoms are not commonly employed, suppose that one had aspherical proatom ic densities denoted by ρ0A;αA,βA,γA(r), where (αA, βA, γA) are the Euler angles controlling the orientation of proatom A. The best orientation for the proatom density is obtained by minim izing the information-theoretic divergence in Eq.(5) w ith respect to Euler angles

    Because of the objective function’s complicated nonlinear dependence on the Euler angles, Eq.(7) is a difficult global optimization problem.

    Moreover, it is not clear how one should choose the non-spherical densities. For example, for the sulfur atom,should one use a non-spherical density corresponding to the Cartesian p-orbitals, {pm}m=x,y,zor the ones defined by the(complex) spherical Harmonics, {Y1m}m=?1,0,+1? The answer almost certainly depends on the molecule that one is considering: one would expect to prefer a different representation for MgS (perhaps the spherical harmonics) and SO2(perhaps the Cartesian orbitals). In some molecules(perhaps SF6), the spherically averaged sulfur proatom density m ight be preferable.

    In the next section, we w ill propose a method that avoids the problem of choosing an optimal orientation for the aspherical atomic densities. However the problem of global optimization,while perhaps somewhat reduced, w ill remain.

    2 Orien ted p roatom s

    2.1 Orien ted p roatom s in degenerate g round states

    For simplicity, we w ill start by restricting ourselves to neutral proatoms, as in traditional Hirshfeld partitioning. The neutral atoms that can have non-spherical ground-state electron densities always have degenerate ground states. Let {Ψgdenote an orthonormal basis for the G-dimensional manifold of ground-state wave-functions defined by

    The electron densities associated w ith pure (as opposed to mixed) ground states of this system have the form

    where in the second line we have, for convenience, introduced the field operators.

    In analogy to Eq.(7), we can consider the density expression of Eq.(10) as the proatom density and m inim ize the information loss w ith respect to the wave-function coefficients of each atom,

    Both the objective function and the constraints are nonlinear in the wave-function coefficients, so this is again a (difficult)global optim ization problem. In addition, spherical proatom densities (which are not pure-state v-representable68,69) are excluded from Eq.(13).

    Notice that an objective functions of the form

    is positive definite. This motivates us to choose a new set of variables,

    These constraints follow directly from the definition (16) and the normalization constraint on the wave-function, Eq.(9)70,71.The last constraint in Eq.(18) is especially important: w ithout this constraint the electron density in Eq.(17) can become negative.

    To relax the requirement that the electron density corresponds to a pure state, we can relax the final equality in Eq.(18)70,71,

    We can now rew rite Eq.(13) as the optim ization of a convex objective function subject to some constraints,

    has negative eigenvalues. The constrained optim ization problem in Eq.(20), therefore, typically has many local m inima.Nonetheless, solution of Eq.(20) allows one to choose the best proatom density among the set of ensemble-state-representable ground state proatom densities.

    2.2 Prom o ted p roatom s in quasi-degenerate g round states

    To make contact w ith the valence-bond picture,it would be desirable to include promoted and ionized states of the reference proatoms. This is easily achieved using the previous approach because non-ground-state wave-functions can be included in Eq.(8),

    Equation (20) still holds in this case, and a complete (but chemically unreasonable and computationally intractable)description would be obtained by including all possible wave-functions in Eq.(23). Sensible truncations are clearly required, perhaps by using sim ilar strategies to those one uses to select dom inant resonance structures in valence-bond approaches.

    Notice that the optimization in Eq.(20) becomes tractable if all the transition densities are zero. i.e.,

    If the wave-functions are Slater determ inants, this is true for double-excitations. For exact eigenfunctions of the atoms, this is true when ΨfandΨgcorrespond to eigenstates of the number of electrons, the spin, or the spin-projection. (i.e.,different eigenfunctions of N?, S?2, or S?z) If we restrict ourselves to those eigenstates, then we can rew rite Eq.(20) as a convex optim ization problem w ith respect to linear constraints,

    This formulation allows promoted proatoms, however because it does not allow one to adjust the orientation of the proatoms, the densities that are used in Eq.(25) should be spherically averaged. Nevertheless, Eq.(25) is a tractable convex optim ization, which can be solved using the same iterative strategies employed by the m inimal basis iterative stockholder analysis53.

    3 Summ ary

    We have developed a variational procedure, Eq.(20), which determines the optimal ground state proatom density in Hirshfeld partitioning. This procedure includes the traditional spherically-averaged neutral proatoms as a special case, but allows oriented and polarized proatoms to be used when that would allow the molecular electron density to be more closely approximated by the promolecular density. Unfortunately, the variational procedure is a convex optimization that is constrained by a non-convex inequality constraint, and so it w ill generally have many local minima. This procedure, then, is impractical except for very small molecules.

    By including contributions from the wave-functions of excited and ionized states in Eq.(20), one can consider promoted and oriented proatoms. This variational procedure is also intractable in general, except when all the states under consideration have vanishing transition densities, Eq.(24). This condition is achieved if one considers only wave-functions corresponding to different eigenvalues for ?N,2?S, or ?zS,which allows one to generalize the Hirshfeld method to the variational principle in Eq.(25). This extended variational Hirshfeld framework requires the optimization of a convex objective function subject to linear constraints, and thus has a unique solution. We believe that the proatoms used in Eq.(25)provide a very prom ising direction for further generalizing Hirshfeld partitioning.

    Acknow ledgm en t: This paper was motivated by a discussion we had w ith Prof. Randall (Randy) Dumont at McMaster University, and his remarkable ability to ask probing questions (about almost any topic) is appreciated and gratefully acknow ledged. Finally, we w ish to dedicate this paper to the memory of Robert (Bob) Parr: w ithout his inspiring scientific work (esp. Ref. 44) and exemplary scientific temperament, this paper could not have been w ritten.

    References

    (1) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford UP: New York, NY, USA, 1989.

    (2) Yang, W.; Cohen, A. J.; Proft, F. D.; Geerlings, P. J. Chem. Phys.2012, 136 (14), 144110. doi: 10.1063/1.3701562

    (3) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103(5), 1793. doi: 10.1021/cr990029p

    (4) Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.

    (5) Liu, S.-B. Acta Phys. -Chim. Sin. 2009, 25 (3), 590.doi: 10.3866/PKU.WHXB20090332

    (6) Heidar-Zadeh, F.; M iranda-Quintana, R. A.; Verstraelen, T.;Bultinck, P.; Ayers, P. W. J. Chem. Theory Comp. 2016, 12 (12),5777. doi: 10.1021/acs.jctc.6b00494

    (7) Heidar-Zadeh, F.; Richer, M.; Fias, S.; M iranda-Quintana, R. A.;Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.;Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307.doi: 10.1016/j.cplett.2016.07.039

    (8) Geerlings, P.; De Proft, F. Phys. Chem. Chem. Phys. 2008, 10 (21),3028. doi: 10.1039/B717671F

    (9) Fuentealba, P.; Parr, R. G. J. Chem. Phys. 1991, 94 (8), 5559.doi: 10.1063/1.460491

    (10) Senet, P. J. Chem. Phys. 1996, 105 (15), 6471.doi: 10.1063/1.472498

    (11) Franco-Pérez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem.Phys. 2015, 143 (24), 244117. doi: 10.1063/1.4938422

    (12) Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101 (5), 520. doi: 10.1002/qua.20307

    (13) Echegaray, E.; Cardenas, C.; Rabi, S.; Rabi, N.; Lee, S.; Zadeh, F. H.;Toro-Labbe, A.; Anderson, J. S. M.; Ayers, P. W. J. Mol. Model.2013, 19 (7), 2779. doi: 10.1007/s00894-012-1637-3

    (14) Echegaray, E.; Rabi, S.; Cardenas, C.; Zadeh, F. H.; Rabi, N.; Lee, S.;Anderson, J. S. M.; Toro-Labbe, A.; Ayers, P. W. J. Mol. Model.2014, 20, 2162. doi: 10.1007/s00894-014-2162-3

    (15) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108 (19), 5708.doi: 10.1021/ja00279a008

    (16) Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116(20), 8731. doi: 10.1063/1.1467338

    (17) Bultinck, P.; Fias, S.; Van A lsenoy, C.; Ayers, P. W.; Carbó-Dorca,R. J. Chem. Phys. 2007, 127 (3), 034102. doi: 10.1063/1.2749518

    (18) Echegaray, E.; Toro-Labbe, A.; Dikmenli, K.; Heidar-Zadeh, F.;Rabi, N.; Rabi, S.; Ayers, P. W.; Cardenas, C.; Parr, R. G.; Anderson,J. S. M. In Correlations in Condensed Matter under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday; La Magna, A. Ed.; Springer International Publishing:Cham, Sw itzerland, 2017; p. 269.doi: 10.1007/978-3-319-53664-4_19

    (19) Fuentealba, P.; Pérez, P.; Contreras, R. J. Chem. Phys. 2000, 113 (7),2544. doi: 10.1063/1.1305879

    (20) Tiznado, W.; Chamorro, E.; Contreras, R.; Fuentealba, P. J. Phys.Chem. A 2005, 109 (14), 3220. doi: 10.1021/jp0450787

    (21) Zadeh, F. H.; Fuentealba, P.; Cardenas, C.; Ayers, P. W. Phys. Chem.Chem. Phys. 2014, 16 (13), 6019. doi: 10.1039/c3cp52906a

    (22) Rong, C.; Lu, T.; Liu, S. J. Chem. Phys. 2014, 140 (2), 024109.doi: 10.1063/1.4860969

    (23) Morgenstern, A.; W ilson, T. R.; Eberhart, M. E. J. Phys. Chem. A 2017, 121 (22), 4341. doi: 10.1021/acs.jpca.7b00630

    (24) Sablon, N.; Proft, F. D.; Ayers, P. W.; Geerlings, P. J. Chem. Phys.2007, 126 (22), 224108. doi: 10.1063/1.2736698

    (25) Olah, J.; Van A lsenoy, C.; Sannigrahi, A. B. J. Phys. Chem. A 2002,106 (15), 3885. doi: 10.1021/jp014039h

    (26) Liu, S. J. Chem. Phys. 2014, 141 (19), 194109.doi: 10.1063/1.4901898

    (27) Zhou, X.-Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Acta Phys. -Chim. Sin.2014, 30 (11), 2055. doi: 10.3866/PKU.WHXB201409193

    (28) Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1833.doi: 10.1063/1.1740588

    (29) Mulliken, R. S. J. Chem. Phys. 1955, 23 (10), 1841.doi: 10.1063/1.1740589

    (30) Mulliken, R. S. J. Chem. Phys. 1955, 23 (12), 2338.doi: 10.1063/1.1741876

    (31) Mulliken, R. S. J. Chem. Phys. 1955, 23 (12), 2343.doi: 10.1063/1.1741877

    (32) L?wdin, P.-O. Adv. Quantum Chem. 1970, 5, 185.doi: 10.1016/S0065-3276(08)60339-1

    (33) Davidson, E. R. J. Chem. Phys. 1967, 46 (9), 3320.doi: 10.1063/1.1841219

    (34) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,83 (2), 735. doi: 10.1063/1.449486

    (35) Lu, W. C.; Wang, C. Z.; Schmidt, M. W.; Bytautas, L.; Ho, K. M.;Ruedenberg, K. J. Chem. Phys. 2004, 120 (6), 2629.doi: 10.1063/1.1638731

    (36) Bader, R. F. W. Atoms in Molecules: A Quantum Theory;Clarendon: Oxford, UK, 1990.

    (37) Heidarzadeh, F.; Shahbazian, S. Int. J. Quantum Chem. 2010, 111(12), 2788. doi: 10.1002/qua.22629

    (38) Zadeh, F. H.; Shahbazian, S. Theor. Chem. Acc. 2010, 128 (2),175.doi: 10.1007/s00214-010-0811-x

    (39) Morgenstern, A.; Morgenstern, C.; M iorelli, J.; W ilson, T.;Eberhart, M. E. Phys. Chem. Phys. Chem. 2016, 18 (7), 5638.doi: 10.1039/c5cp07852k

    (40) Hirshfeld, F. L. Theor. Chim. Act. 1977, 44, 129.doi: 10.1007/BF00549096

    (41) Guerra, C. F.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F.M.J. Comput. Chem. 2004, 25 (2), 189. doi: 10.1002/jcc.10351

    (42) Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. 2000, 97,8879. doi: 10.1073/pnas.97.16.8879

    (43) Nalewajski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105 (31),7391. doi: 10.1021/jp004414q

    (44) Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109 (17), 3957. doi: 10.1021/jp0404596

    (45) Davidson, E. R.; Chakravorty, S. Theor. Chim. Acta 1992, 83 (5–6), 319. doi: 10.1007/bf01113058

    (46) Heidar-Zadeh, F.; Ayers, P. W.; Verstraelen, T.; Vinogradov, I.;Vohringer-Martinez, E.; Bultinck, P. J. Phys. Chem. A subm itted,2017.

    (47) Heidar-Zadeh, F.; Ayers, P. W.; Bultinck, P. J. Chem. Phys. 2014,141, 094103. doi: 10.1063/1.4894228

    (48) Heidar-Zadeh, F.; Ayers, P. W. J. Chem. Phys. 2015, 142 (4),044107. doi: 10.1063/1.4905123

    (49) Heidar-Zadeh, F.; Vinogradov, I.; Ayers, P. W. Theor. Chem. Acc.2017, 136 (4), 54. doi: 10.1007/s00214-017-2077-z

    (50) Ayers, P. W. J. Chem. Phys. 2000, 113 (24), 10886. doi:10.1063/1.1327268

    (51) Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370.doi: 10.1007/s00214-006-0121-5

    (52) Heidar-Zadeh, F.; Ayers, P. W. Theor. Chem. Acc. 2017, 136 (8),92. doi: 10.1007/s00214-017-2114-y

    (53) Verstraelen, T.; Vandenbrande, S.; Heidar-Zadeh, F.;Vanduyfhuys, L.; Van Speybroeck, V.; Waroquier, M.; Ayers, P.W. J. Chem. Theory Comp. 2016, 12 (8), 3894. doi:10.1021/acs.jctc.6b00456

    (54) Heidar-Zadeh, F. Variational Information-Theoretic Atoms-in-Molecules. Ph. D. Dissertation, M cMaster University,Canada, and Ghent University, Belgium, 2017.

    (55) M isquitta, A. J.; Stone, A. J.; Fazeli, F. J. Chem. Theory Comp.2014, 10 (12), 5405. doi: 10.1021/ct5008444

    (56) Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M.J. Chem. Theory Comp. 2013, 9 (5), 2221. doi:10.1021/ct4000923

    (57) Bultinck, P.; Van Alsenoy, C.; Ayers, P. W.; Carbo-Dorca, R.J. Chem. Phys. 2007, 126 (14), 144111. doi: 10.1063/1.2715563

    (58) Bultinck, P.; Ayers, P. W.; Fias, S.; Tiels, K.; Van Alsenoy, C.Chem. Phys. Lett. 2007, 444 (1?3), 205. doi:10.1016/j.cplett.2007.07.014

    (59) Ghillem ijn, D.; Bultinck, P.; Van Neck, D.; Ayers, P. W. J.Comput. Chem. 2011, 32, 1561. doi: 10.1002/jcc.21734

    (60) Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2010, 6 (8),2455. doi: 10.1021/ct100125x

    (61) Manz, T. A.; Sholl, D. S. J. Chem. Theory Comp. 2012, 8 (8),2844. doi: 10.1021/ct3002199

    (62) Lee, L. P.; Limas, N. G.; Cole, D. J.; Payne, M. C.; Skylaris, C.K.; Manz, T. A. J. Chem. Theory Comp. 2014, 10 (12), 5377.doi: 10.1021/ct500766v

    (63) Limas, N. G.; Manz, T. A. RSC Adv. 2016, 6 (51), 45727.doi: 10.1039/c6ra05507a

    (64) Manz, T. A.; Limas, N. G. RSC Adv. 2016, 6 (53), 47771.doi: 10.1039/c6ra04656h

    (65) Lillestolen, T. C.; Wheatley, R. J. Chem. Commun. 2008, 45,5909. doi: 10.1039/b812691g

    (66) Lillestolen, T. C.; Wheatley, R. J. J. Chem. Phys. 2009, 131,144101. doi: 10.1063/1.3243863

    (67) Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M.Chem. Phys. Lett. 2012, 545, 138. doi:10.1016/j.cplett.2012.07.028

    (68) Levy, M. Phys. Rev. A 1982, 26 (3), 1200.doi: 10.1103/PhysRevA.26.1200

    (69) Lieb, E. H. Int. J. Quantum Chem. 1983, 24 (3), 243.doi: 10.1002/qua.560240302

    (70) Ayers, P. W. Phys. Rev. A 2006, 73, 012513.doi: 10.1103/PhysRevA.73.012513

    (71) Cardenas, C.; Ayers, P. W.; Cedillo, A. J. Chem. Phys. 2011, 134,174103. doi: 10.1063/1.3585610

    国模一区二区三区四区视频| av在线播放精品| 久久女婷五月综合色啪小说 | 三级经典国产精品| 亚洲国产欧美人成| 中文天堂在线官网| av黄色大香蕉| 色婷婷久久久亚洲欧美| 欧美日韩视频精品一区| 精品久久久久久久人妻蜜臀av| 在现免费观看毛片| 国产视频首页在线观看| 2022亚洲国产成人精品| 黄色欧美视频在线观看| 亚洲国产精品成人综合色| 国产 一区精品| 国产伦理片在线播放av一区| 国产 精品1| 久久久久久久午夜电影| 一个人看的www免费观看视频| 内地一区二区视频在线| 欧美性感艳星| av播播在线观看一区| 国产精品蜜桃在线观看| 一级毛片久久久久久久久女| 国内少妇人妻偷人精品xxx网站| 中文字幕久久专区| 中文乱码字字幕精品一区二区三区| 啦啦啦在线观看免费高清www| 黄色日韩在线| 大又大粗又爽又黄少妇毛片口| 亚洲人与动物交配视频| 国产av不卡久久| 久久久亚洲精品成人影院| 免费看日本二区| 中国三级夫妇交换| 欧美最新免费一区二区三区| 亚洲精品中文字幕在线视频 | 97在线人人人人妻| 在线观看美女被高潮喷水网站| 身体一侧抽搐| 尤物成人国产欧美一区二区三区| 久久6这里有精品| 神马国产精品三级电影在线观看| 午夜精品一区二区三区免费看| 午夜福利视频1000在线观看| 少妇人妻 视频| 国产v大片淫在线免费观看| 狂野欧美激情性xxxx在线观看| 中文字幕av成人在线电影| 黄色欧美视频在线观看| 午夜爱爱视频在线播放| 99久久中文字幕三级久久日本| 免费av不卡在线播放| 蜜桃亚洲精品一区二区三区| 国产av国产精品国产| 久久99精品国语久久久| 日本一本二区三区精品| 国产黄片视频在线免费观看| 自拍偷自拍亚洲精品老妇| 国产伦理片在线播放av一区| 国产精品久久久久久精品电影小说 | 久久人人爽人人爽人人片va| 国产午夜精品一二区理论片| 日韩亚洲欧美综合| 亚州av有码| 免费观看在线日韩| 亚洲国产成人一精品久久久| 国产高清有码在线观看视频| 亚洲伊人久久精品综合| 男女边摸边吃奶| 久久久久久久久久人人人人人人| 国产免费视频播放在线视频| 好男人视频免费观看在线| 久久人人爽av亚洲精品天堂 | 国产探花在线观看一区二区| av专区在线播放| 亚洲在线观看片| 在线观看人妻少妇| 久久精品久久久久久久性| 国产一区二区在线观看日韩| 精品少妇黑人巨大在线播放| 九九爱精品视频在线观看| 老司机影院成人| 亚洲aⅴ乱码一区二区在线播放| 午夜激情久久久久久久| 国产一区二区在线观看日韩| 久久精品人妻少妇| 国产av码专区亚洲av| 免费看光身美女| 老女人水多毛片| 亚洲最大成人手机在线| 一区二区av电影网| 99视频精品全部免费 在线| 秋霞伦理黄片| 久久精品国产亚洲网站| 午夜免费鲁丝| 亚洲精品色激情综合| 免费看a级黄色片| 伦精品一区二区三区| 伊人久久国产一区二区| 亚洲精品成人av观看孕妇| 国产综合精华液| 亚洲一区二区三区欧美精品 | 欧美 日韩 精品 国产| 好男人视频免费观看在线| 狂野欧美激情性xxxx在线观看| www.色视频.com| 日产精品乱码卡一卡2卡三| 女人久久www免费人成看片| 国产日韩欧美亚洲二区| 51国产日韩欧美| 18禁在线无遮挡免费观看视频| 搡女人真爽免费视频火全软件| 国产男女超爽视频在线观看| 亚洲三级黄色毛片| 99久久精品国产国产毛片| 99九九线精品视频在线观看视频| 久久精品国产自在天天线| 国产午夜福利久久久久久| 18+在线观看网站| 美女高潮的动态| 久久午夜福利片| 中文精品一卡2卡3卡4更新| 神马国产精品三级电影在线观看| 国产又色又爽无遮挡免| 亚洲精品国产av蜜桃| 最后的刺客免费高清国语| 狂野欧美激情性xxxx在线观看| 99久久中文字幕三级久久日本| 免费高清在线观看视频在线观看| 亚洲无线观看免费| videos熟女内射| 热re99久久精品国产66热6| 亚洲高清免费不卡视频| 男女边吃奶边做爰视频| 国产一区二区三区av在线| 亚洲欧美成人精品一区二区| 免费看av在线观看网站| 亚洲综合精品二区| 久久久精品94久久精品| 九色成人免费人妻av| 黄色日韩在线| 亚洲精华国产精华液的使用体验| 国产久久久一区二区三区| 久久人人爽人人片av| 久久韩国三级中文字幕| 亚洲精品乱久久久久久| 日韩欧美精品v在线| 大话2 男鬼变身卡| 看十八女毛片水多多多| 亚洲人成网站在线观看播放| 欧美97在线视频| 成人美女网站在线观看视频| 久久精品国产a三级三级三级| 国产精品久久久久久久久免| 日本黄色片子视频| 丰满少妇做爰视频| 激情五月婷婷亚洲| 日韩制服骚丝袜av| 欧美精品人与动牲交sv欧美| 国产精品一区二区三区四区免费观看| 中文字幕久久专区| 精品久久久久久久末码| 亚洲精品国产色婷婷电影| 日韩不卡一区二区三区视频在线| 亚洲精品亚洲一区二区| 蜜臀久久99精品久久宅男| 看非洲黑人一级黄片| 一级毛片 在线播放| 777米奇影视久久| 91久久精品国产一区二区三区| 嫩草影院精品99| 久久99热这里只有精品18| 日韩av不卡免费在线播放| 大陆偷拍与自拍| 国产成人一区二区在线| 尤物成人国产欧美一区二区三区| 午夜激情福利司机影院| 亚洲精品国产av成人精品| 嫩草影院新地址| 在线观看国产h片| 一边亲一边摸免费视频| 精华霜和精华液先用哪个| 亚洲综合精品二区| 国产av国产精品国产| 丰满乱子伦码专区| 视频区图区小说| 亚洲自拍偷在线| 亚洲av欧美aⅴ国产| 日本-黄色视频高清免费观看| 久久久久久久久久人人人人人人| 欧美+日韩+精品| 99久久九九国产精品国产免费| 国产成人一区二区在线| 中文资源天堂在线| 黄色欧美视频在线观看| 国产高清三级在线| 国产久久久一区二区三区| 特大巨黑吊av在线直播| 在现免费观看毛片| 丝袜脚勾引网站| 亚洲成人久久爱视频| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品成人综合色| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品久久久久久| 少妇高潮的动态图| 日韩,欧美,国产一区二区三区| 少妇的逼水好多| 国产日韩欧美亚洲二区| 别揉我奶头 嗯啊视频| 在线亚洲精品国产二区图片欧美 | 国产日韩欧美亚洲二区| 熟妇人妻不卡中文字幕| 国产爽快片一区二区三区| 欧美人与善性xxx| 中文字幕人妻熟人妻熟丝袜美| 熟妇人妻不卡中文字幕| 欧美成人午夜免费资源| 欧美 日韩 精品 国产| 韩国av在线不卡| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 欧美97在线视频| 日韩在线高清观看一区二区三区| 欧美高清成人免费视频www| 老女人水多毛片| 国产色爽女视频免费观看| 免费大片黄手机在线观看| 午夜福利高清视频| 男女下面进入的视频免费午夜| 国产av不卡久久| 黄色怎么调成土黄色| 亚洲国产最新在线播放| 亚洲精品456在线播放app| 日韩视频在线欧美| 国产伦精品一区二区三区四那| 男女无遮挡免费网站观看| 国产老妇女一区| 亚洲国产日韩一区二区| 伦精品一区二区三区| 伊人久久精品亚洲午夜| 成人一区二区视频在线观看| 成人亚洲精品一区在线观看 | 国产精品av视频在线免费观看| 美女xxoo啪啪120秒动态图| 欧美成人一区二区免费高清观看| 精品人妻一区二区三区麻豆| 你懂的网址亚洲精品在线观看| 精品午夜福利在线看| 婷婷色综合www| 高清在线视频一区二区三区| 国产av码专区亚洲av| 久久久久久伊人网av| 六月丁香七月| 美女视频免费永久观看网站| 久久久久久久久久成人| 国产精品无大码| av在线播放精品| 中文字幕免费在线视频6| 欧美高清成人免费视频www| 纵有疾风起免费观看全集完整版| 黑人高潮一二区| 亚洲精品影视一区二区三区av| 国产v大片淫在线免费观看| 人妻制服诱惑在线中文字幕| 欧美日韩在线观看h| 国产综合精华液| 蜜桃亚洲精品一区二区三区| 黄色日韩在线| 亚洲国产欧美在线一区| 青春草国产在线视频| 国产色婷婷99| 国产黄色免费在线视频| 综合色丁香网| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 中国三级夫妇交换| 免费观看无遮挡的男女| 女人被狂操c到高潮| 麻豆成人av视频| 一区二区三区精品91| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 可以在线观看毛片的网站| 91久久精品电影网| 国产亚洲91精品色在线| 在线观看免费高清a一片| 别揉我奶头 嗯啊视频| 亚洲成人av在线免费| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色综合www| 欧美一级a爱片免费观看看| 国产乱人视频| 黄色怎么调成土黄色| 成人欧美大片| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| 欧美日韩精品成人综合77777| 51国产日韩欧美| 最近中文字幕2019免费版| 久久精品综合一区二区三区| 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 亚洲自偷自拍三级| 在线免费观看不下载黄p国产| 欧美人与善性xxx| 99热网站在线观看| 在线 av 中文字幕| 国产大屁股一区二区在线视频| av.在线天堂| 亚洲av电影在线观看一区二区三区 | av黄色大香蕉| 99久久精品热视频| 99热6这里只有精品| 国产成人freesex在线| av国产免费在线观看| av.在线天堂| av在线天堂中文字幕| 欧美 日韩 精品 国产| 精品酒店卫生间| 国产精品人妻久久久久久| 永久网站在线| 超碰av人人做人人爽久久| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 一级片'在线观看视频| 久久久久性生活片| 欧美激情国产日韩精品一区| 亚洲国产av新网站| 2021少妇久久久久久久久久久| 人妻 亚洲 视频| 亚洲精品成人久久久久久| 能在线免费看毛片的网站| 日本一本二区三区精品| 亚洲精品自拍成人| av卡一久久| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩| 国产老妇伦熟女老妇高清| 麻豆成人av视频| 99久久中文字幕三级久久日本| 久久久久国产精品人妻一区二区| 亚洲,欧美,日韩| 午夜福利视频1000在线观看| 欧美+日韩+精品| 久久久久久九九精品二区国产| 久久99热这里只频精品6学生| 极品少妇高潮喷水抽搐| 国产精品久久久久久久电影| 国产精品爽爽va在线观看网站| 亚洲久久久久久中文字幕| 欧美精品一区二区大全| 色播亚洲综合网| 波多野结衣巨乳人妻| 精品一区二区免费观看| 国产69精品久久久久777片| 亚洲经典国产精华液单| 亚洲内射少妇av| 美女高潮的动态| av专区在线播放| 亚洲欧美精品自产自拍| 又粗又硬又长又爽又黄的视频| 特大巨黑吊av在线直播| 天堂中文最新版在线下载 | 激情五月婷婷亚洲| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| a级毛色黄片| 在线天堂最新版资源| 国产伦精品一区二区三区视频9| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲不卡免费看| 国产av码专区亚洲av| 91久久精品国产一区二区三区| 在线免费观看不下载黄p国产| 国产人妻一区二区三区在| 国产成人freesex在线| 97超视频在线观看视频| 三级国产精品片| 欧美高清成人免费视频www| 亚洲综合色惰| 成年人午夜在线观看视频| 久久精品国产亚洲av涩爱| 黑人高潮一二区| 蜜桃亚洲精品一区二区三区| 91久久精品电影网| 精品久久久久久久末码| 尾随美女入室| 亚洲av福利一区| 欧美日韩亚洲高清精品| 边亲边吃奶的免费视频| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 少妇丰满av| 熟女人妻精品中文字幕| 九草在线视频观看| 久久久精品94久久精品| 又爽又黄a免费视频| 国产午夜精品久久久久久一区二区三区| 18禁裸乳无遮挡免费网站照片| 色综合色国产| 亚洲国产av新网站| 日韩大片免费观看网站| 97精品久久久久久久久久精品| 岛国毛片在线播放| 亚洲精品国产色婷婷电影| 国产大屁股一区二区在线视频| 欧美日韩精品成人综合77777| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 97热精品久久久久久| 看免费成人av毛片| 亚洲精品国产色婷婷电影| 国产日韩欧美在线精品| 精品人妻视频免费看| 国语对白做爰xxxⅹ性视频网站| 在线精品无人区一区二区三 | 免费电影在线观看免费观看| 建设人人有责人人尽责人人享有的 | 国产精品熟女久久久久浪| 亚洲性久久影院| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| 色网站视频免费| 久久99热这里只频精品6学生| 欧美高清成人免费视频www| 精品午夜福利在线看| 亚洲人成网站在线播| 神马国产精品三级电影在线观看| 日本欧美国产在线视频| 高清午夜精品一区二区三区| 欧美少妇被猛烈插入视频| 日日啪夜夜爽| 一区二区三区精品91| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频| 人妻夜夜爽99麻豆av| 中国国产av一级| 日韩电影二区| 少妇丰满av| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 日韩三级伦理在线观看| 久久精品国产亚洲网站| 欧美xxⅹ黑人| 一个人观看的视频www高清免费观看| 精品酒店卫生间| 七月丁香在线播放| 色视频www国产| 三级国产精品欧美在线观看| 一级二级三级毛片免费看| 成人美女网站在线观看视频| 国产 一区精品| 免费在线观看成人毛片| 午夜福利在线观看免费完整高清在| 王馨瑶露胸无遮挡在线观看| 特级一级黄色大片| 嫩草影院精品99| av在线老鸭窝| 久久久成人免费电影| 99热这里只有精品一区| 亚洲自拍偷在线| 一级黄片播放器| 欧美精品一区二区大全| 亚洲精品国产av成人精品| 三级男女做爰猛烈吃奶摸视频| 在线观看免费高清a一片| 久久久久国产网址| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 2018国产大陆天天弄谢| 国产日韩欧美亚洲二区| 亚洲伊人久久精品综合| 久久精品国产a三级三级三级| 亚洲欧美日韩无卡精品| 国产精品国产三级国产专区5o| 亚洲精品视频女| 热99国产精品久久久久久7| www.av在线官网国产| 人人妻人人看人人澡| 亚洲国产欧美在线一区| 亚洲av成人精品一区久久| 中国三级夫妇交换| 国产高清三级在线| 免费电影在线观看免费观看| 熟妇人妻不卡中文字幕| 欧美bdsm另类| 女人被狂操c到高潮| 国产极品天堂在线| 亚洲人与动物交配视频| 国产精品一区二区性色av| 美女cb高潮喷水在线观看| 国产成人freesex在线| 精品一区在线观看国产| 免费人成在线观看视频色| 97人妻精品一区二区三区麻豆| 午夜激情福利司机影院| 午夜福利高清视频| 在线 av 中文字幕| 成年女人看的毛片在线观看| 婷婷色综合www| 成年女人看的毛片在线观看| 国内精品宾馆在线| 国产免费福利视频在线观看| 免费观看的影片在线观看| 高清午夜精品一区二区三区| 春色校园在线视频观看| 免费观看av网站的网址| 国产亚洲av嫩草精品影院| 在线天堂最新版资源| 禁无遮挡网站| 制服丝袜香蕉在线| 亚洲精品日本国产第一区| 纵有疾风起免费观看全集完整版| 亚洲欧美中文字幕日韩二区| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 我的老师免费观看完整版| av女优亚洲男人天堂| 麻豆久久精品国产亚洲av| 日本一二三区视频观看| 国产黄片美女视频| 国产av国产精品国产| 欧美激情国产日韩精品一区| av在线天堂中文字幕| 国产伦理片在线播放av一区| 国产精品精品国产色婷婷| 亚洲精品一二三| 久久ye,这里只有精品| 80岁老熟妇乱子伦牲交| 综合色av麻豆| 中国美白少妇内射xxxbb| 一级毛片久久久久久久久女| 一个人看视频在线观看www免费| 黄色怎么调成土黄色| 黄色配什么色好看| 嫩草影院入口| 国产高清不卡午夜福利| 日韩免费高清中文字幕av| 色网站视频免费| 久久国内精品自在自线图片| 午夜福利在线观看免费完整高清在| 国产老妇伦熟女老妇高清| 边亲边吃奶的免费视频| 国产 精品1| 久久久亚洲精品成人影院| 亚洲精品第二区| 亚洲成人精品中文字幕电影| 亚洲国产成人一精品久久久| 日韩不卡一区二区三区视频在线| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆| av线在线观看网站| 久久99热这里只有精品18| 中文字幕人妻熟人妻熟丝袜美| 少妇人妻 视频| 国产欧美日韩一区二区三区在线 | 亚洲精品aⅴ在线观看| 最近的中文字幕免费完整| 中文字幕av成人在线电影| 狂野欧美激情性bbbbbb| 亚洲一区二区三区欧美精品 | 日本-黄色视频高清免费观看| 热99国产精品久久久久久7| 国产精品久久久久久久电影| 性插视频无遮挡在线免费观看| 欧美最新免费一区二区三区| 欧美xxxx黑人xx丫x性爽| 美女脱内裤让男人舔精品视频| 亚洲综合精品二区| av天堂中文字幕网| 色播亚洲综合网| 三级经典国产精品| 女人十人毛片免费观看3o分钟| 色网站视频免费| 久久久久网色| 日本与韩国留学比较| 免费黄网站久久成人精品| 免费电影在线观看免费观看| 大又大粗又爽又黄少妇毛片口| 夫妻午夜视频| 色5月婷婷丁香| 女人十人毛片免费观看3o分钟| 成年版毛片免费区| 卡戴珊不雅视频在线播放| 伊人久久精品亚洲午夜| 啦啦啦中文免费视频观看日本| 色5月婷婷丁香| 一级毛片久久久久久久久女| 亚洲欧美成人精品一区二区| 嫩草影院精品99| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 人人妻人人爽人人添夜夜欢视频 | 深爱激情五月婷婷| 在线播放无遮挡| 国产视频首页在线观看| 中文资源天堂在线| 美女xxoo啪啪120秒动态图| 中文资源天堂在线| 色视频在线一区二区三区| 搞女人的毛片| 91久久精品国产一区二区成人| 黄色一级大片看看| 国产精品久久久久久av不卡| 大香蕉久久网| 好男人视频免费观看在线| 你懂的网址亚洲精品在线观看| 日本一二三区视频观看| av在线蜜桃| 最近2019中文字幕mv第一页| 男的添女的下面高潮视频|